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Variance Refresher

I Expectation: E [X ] =
∑

r rP [X = r ]

I Linearity of expectation: E [X + Y ] = E [X ] + E [Y ]

I Variance random variable: V [X ] = σ2
X = E

[
(X − E [X ])2

]
I Linearity of variance if X and Y are independent:

V [X + Y ] = V [X ] + V [Y ]
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Examples of Random Variables

Example
Let X have the binomial distribution Bin(n, p):

P [X = i ] =

(
n

i

)
pi (1− p)n−i

“How many heads do we see when we toss a coin with probability p of
heads n times?” E [X ] = np and V [X ] = np(1− p).

Example
Let X have the geometric distribution Geom(p):

P [X = i ] = (1− p)i−1p

“How many times do we toss a coin with probability p of heads until we
see a heads.” E [X ] = 1/p, V [X ] = (1− p)/p2.
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Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let µ = E [Y ] be strictly
positive. Then, for t > 0,

P [Y ≥ tµ] ≤ 1/t .

Proof.
I E [Y ] =

∑
r r · P [Y = r ] ≥

∑
r≥tµ r · P [Y = r ] ≥ P [Y ≥ tµ] · t · µ

I Therefore, P [Y ≥ tµ] ≤ 1/t.
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Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation µ and variance σ2 that is
strictly positive. Then for t > 0,

P [|X − µ| ≥ tσ] ≤ 1/t2 .

Proof.

I Note that P [|X − µ| ≥ tσ] = P
[
(X − µ)2 ≥ t2σ2

]
I Let Y = (X − µ)2 and note E [Y ] = σ2

I Use Markov’s inequality to show P
[
Y ≥ t2E [Y ]

]
≤ 1/t2
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Chernoff Bound

Theorem
Let X1, . . . ,Xn be independent boolean random variables such that
P [Xi = 1] = pi . Then, for X =

∑
i Xi , µ = E [X ], and δ > 0,

P [X > (1 + δ)µ] <

[
eδ

(1 + δ)1+δ

]µ

Other versions: For 0 < δ ≤ 1

P [X ≥ (1 + δ)µ] ≤ e−δ
2µ/3

P [X ≤ (1− δ)µ] ≤ e−δ
2µ/2

and so by the union bound, P [|X − µ| ≥ δµ] ≤ 2e−δ
2µ/3.
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Chernoff Bound: Proof of Upper Tail (1/2)
Proof.
I For any t > 0: P [X > (1 + δ)µ] = P

[
etX > et(1+δ)µ

]

I Apply Markov inequality:

P
[
etX > et(1+δ)µ

]
< E

[
etX
]
/et(1+δ)µ

I By independence:

E
[
etX
]

= E
[
et

∑
i Xi

]
= E

[∏
i

etXi

]
=
∏
i

E
[
etXi
]

I We will prove
∏

i E
[
etXi
]
≤ e(e

t−1)µ in the next slide.

I For t = ln(1 + δ):

E
[
etX
]
/et(1+δ)µ ≤ e(e

t−1)µ/et(1+δ)µ =

[
eδ

(1 + δ)1+δ

]µ
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Chernoff Bound: Proof of Upper Tail (2/2)

Lemma∏
i E
[
etXi
]
≤ e(e

t−1)µ

Proof.
I Using 1 + x ≤ ex :

E
[
etXi
]

= pie
t + (1− pi ) = 1 + pi (e

t − 1) ≤ exp(pi (e
t − 1))

I Using µ = E [
∑

i Xi ] =
∑

i pi :∏
i

exp(pi (e
t − 1)) = exp(

∑
i

pi (e
t − 1)) = exp((et − 1)µ)
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Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.

Algorithm

1. Add each element in S to a set R with probability p = 1/n1/4.

2. Call this set R, Sort R and let

a = (n3/4/2− 5
√
n) smallest element in R.

b = (n3/4/2 + 5
√
n) smallest element in R.

3. Construct S ′ = {i ∈ S : a < y < b} and let t be the number of
values less or equal to a amongst S.

4. Sort S ′ and return (k − t)th smallest value in S ′.

We’ll analyze it next time. . .
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