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Variance Refresher

» Expectation: E[X] =), rP[X =]
» Linearity of expectation: E[X + Y] =E[X]+E[Y]
> Variance random variable: V[X] = 0% = E [(X — E [X])?]

» Linearity of variance if X and Y are independent:

VIX + Y] = V[X] +V[Y]




Examples of Random Variables

Example
Let X have the binomial distribution Bin(n, p):

PIX =i]= (’I’) (1= p)

“How many heads do we see when we toss a coin with probability p of
heads n times?” E[X] = np and V[X] = np(1 — p).
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Example
Let X have the binomial distribution Bin(n, p):

PIX =i]= (’I’) (1= p)

“How many heads do we see when we toss a coin with probability p of
heads n times?” E[X] = np and V[X] = np(1 — p).

Example
Let X have the geometric distribution Geom(p):

PIX=i=(1-p)p

“How many times do we toss a coin with probability p of heads until we
see a heads.” E[X] =1/p, V[X] = (1 — p)/p*.
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Theorem (Markov)

Let Y be a positive random variable and let u = E[Y] be strictly
positive. Then, for t > 0,

PlY > tu] <1/t.
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Markov Inequality

Theorem (Markov)

Let Y be a positive random variable and let u = E[Y] be strictly
positive. Then, for t > 0,

PlY > tu] <1/t.

Proof.

> E[Y]=3,rPlY=r 23, rPlY=rZ=P[Y >ty t-p
» Therefore, P[Y > tu] < 1/t.
]
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Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation . and variance o that is
strictly positive. Then for t > 0,

P[|X — p| > to] Sl/tz.

Proof.
> Note that P[|X — | > to] =P [(X — p)? > t20?]
> Let Y = (X — pu)? and note E[Y] = 02
> Use Markov's inequality to show P [Y > ?E[Y]] < 1/t




Outline

Chernoff Bounds




Chernoff Bound

Theorem

Let Xi,...,X, be independent boolean random variables such that
P[X; = 1] = p;. Then, for X =3, X;, p =E[X], and 6 > 0,
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Theorem

Let Xi,...,X, be independent boolean random variables such that
P[X; = 1] = p;. Then, for X =3, X;, p =E[X], and 6 > 0,

PIXC> (o < [

e
(1+9¢

Other versions: For 0 < 6 <1
PIX > (1+6)u] < e /3

P[X < (1-68)u] < e ¥n?
and so by the union bound, P[|X — p| > 0] < 29 /3.




Chernoff Bound: Proof of Upper Tail (1/2)

Proof.
> Forany t > 0: P[X > (1+6)u] =P [e™ > ef(1+0)]
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Chernoff Bound: Proof of Upper Tail (1/2)

Proof.
> Forany t > 0: P[X > (1+6)u] =P [e™ > ef(1+0)]
» Apply Markov inequality:

P [etX > et(1+6)/¢i| <E [etX}/et(lJré)p,

» By independence:

E[e¥] =E [etzl'x'} =F Hetx"l = HE [e%]

» We will prove H,-E [etxf] < e(e =11 in the next slide.
» For t =In(1+9):

5 p
X 146 1 1+8)p _ €
E [eX] /et < ole' =1 jgtl+ih {(Hé)l*“}




Chernoff Bound: Proof of Upper Tail (2/2)

Lemma
HIE [etX,-] < e(ef_l),u

Proof.
> Using 1+ x < e

E [e™] = pie' + (1 — pi) = 1+ pi(e — 1) < exp(pi(e’ — 1))




Chernoff Bound: Proof of Upper Tail (2/2)

Lemma
HIE [etX,-] < e(ef_l),u

Proof.
> Using 1+ x < e

E [e™] = pief + (1 - pj) = 1+ pi(e" — 1) < exp(pj(e’ — 1))
> Using p=E[>; Xi] = >, pic

[Texp(pi(e = 1)) = exp(}_ pile” — 1)) = exp((e" — 1)n)




Outline

Lazy Select




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.

Algorithm




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
Algorithm
1. Add each element in S to a set R with probability p = 1/n'/*.




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
Algorithm

1. Add each element in S to a set R with probability p = 1/n'/*.
2. Call this set R, Sort R and let

a= (n%*/2 —5\/n) smallest element in R.

b= (n3/*/2 + 5\/n) smallest element in R.




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
Algorithm
1. Add each element in S to a set R with probability p = 1/n'/*.
2. Call this set R, Sort R and let
a= (n%*/2 —5\/n) smallest element in R.

b= (n3/*/2 + 5\/n) smallest element in R.

3. Construct S' ={i € S:a<y < b} and let t be the number of
values less or equal to a amongst S.




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
Algorithm

1. Add each element in S to a set R with probability p = 1/n'/*.
2. Call this set R, Sort R and let
a= (n%*/2 —5\/n) smallest element in R.

b= (n3/*/2 + 5\/n) smallest element in R.

3. Construct S' ={i € S:a<y < b} and let t be the number of
values less or equal to a amongst S.

4. Sort S’ and return (k — t)th smallest value in S’.




Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
Algorithm

1. Add each element in S to a set R with probability p = 1/n'/*.
2. Call this set R, Sort R and let
a= (n%*/2 —5\/n) smallest element in R.

b= (n3/*/2 + 5\/n) smallest element in R.

3. Construct S' ={i € S:a<y < b} and let t be the number of
values less or equal to a amongst S.

4. Sort S’ and return (k — t)th smallest value in S’.

We'll analyze it next time. ..
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