CMPSCI 611: Advanced Algorithms
 Lecture 15: Tail Inequalities

Andrew McGregor

Variance Refresher

Variance Refresher

- Expectation: $\mathbb{E}[X]=\sum_{r} r \mathbb{P}[X=r]$

Variance Refresher

- Expectation: $\mathbb{E}[X]=\sum_{r} r \mathbb{P}[X=r]$
- Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$

Variance Refresher

- Expectation: $\mathbb{E}[X]=\sum_{r} r \mathbb{P}[X=r]$
- Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance random variable: $\mathbb{V}[X]=\sigma_{X}^{2}=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$

Variance Refresher

- Expectation: $\mathbb{E}[X]=\sum_{r} r \mathbb{P}[X=r]$
- Linearity of expectation: $\mathbb{E}[X+Y]=\mathbb{E}[X]+\mathbb{E}[Y]$
- Variance random variable: $\mathbb{V}[X]=\sigma_{X}^{2}=\mathbb{E}\left[(X-\mathbb{E}[X])^{2}\right]$
- Linearity of variance if X and Y are independent:

$$
\mathbb{V}[X+Y]=\mathbb{V}[X]+\mathbb{V}[Y]
$$

Examples of Random Variables

Example

Let X have the binomial distribution $\operatorname{Bin}(n, p)$:

$$
\mathbb{P}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

"How many heads do we see when we toss a coin with probability p of heads n times?" $\mathbb{E}[X]=n p$ and $\mathbb{V}[X]=n p(1-p)$.

Examples of Random Variables

Example

Let X have the binomial distribution $\operatorname{Bin}(n, p)$:

$$
\mathbb{P}[X=i]=\binom{n}{i} p^{i}(1-p)^{n-i}
$$

"How many heads do we see when we toss a coin with probability p of heads n times?" $\mathbb{E}[X]=n p$ and $\mathbb{V}[X]=n p(1-p)$.

Example

Let X have the geometric distribution $\operatorname{Geom}(p)$:

$$
\mathbb{P}[X=i]=(1-p)^{i-1} p
$$

"How many times do we toss a coin with probability p of heads until we see a heads." $\mathbb{E}[X]=1 / p, \mathbb{V}[X]=(1-p) / p^{2}$.

Outline

Markov and Chebyshev

Chernoff Bounds

Lazy Select

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Proof.

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Proof.

- $\mathbb{E}[Y]=\sum_{r} r \cdot \mathbb{P}[Y=r]$

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Proof.

- $\mathbb{E}[Y]=\sum_{r} r \cdot \mathbb{P}[Y=r] \geq \sum_{r \geq t \mu} r \cdot \mathbb{P}[Y=r]$

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Proof.
$-\mathbb{E}[Y]=\sum_{r} r \cdot \mathbb{P}[Y=r] \geq \sum_{r \geq t \mu} r \cdot \mathbb{P}[Y=r] \geq \mathbb{P}[Y \geq t \mu] \cdot t \cdot \mu$

Markov Inequality

Theorem (Markov)
Let Y be a positive random variable and let $\mu=\mathbb{E}[Y]$ be strictly positive. Then, for $t>0$,

$$
\mathbb{P}[Y \geq t \mu] \leq 1 / t
$$

Proof.

- $\mathbb{E}[Y]=\sum_{r} r \cdot \mathbb{P}[Y=r] \geq \sum_{r \geq t \mu} r \cdot \mathbb{P}[Y=r] \geq \mathbb{P}[Y \geq t \mu] \cdot t \cdot \mu$
- Therefore, $\mathbb{P}[Y \geq t \mu] \leq 1 / t$.

Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation μ and variance σ^{2} that is strictly positive. Then for $t>0$,

$$
\mathbb{P}[|X-\mu| \geq t \sigma] \leq 1 / t^{2}
$$

Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation μ and variance σ^{2} that is strictly positive. Then for $t>0$,

$$
\mathbb{P}[|X-\mu| \geq t \sigma] \leq 1 / t^{2}
$$

Proof.

- Note that $\mathbb{P}[|X-\mu| \geq t \sigma]=\mathbb{P}\left[(X-\mu)^{2} \geq t^{2} \sigma^{2}\right]$

Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation μ and variance σ^{2} that is strictly positive. Then for $t>0$,

$$
\mathbb{P}[|X-\mu| \geq t \sigma] \leq 1 / t^{2}
$$

Proof.

- Note that $\mathbb{P}[|X-\mu| \geq t \sigma]=\mathbb{P}\left[(X-\mu)^{2} \geq t^{2} \sigma^{2}\right]$
- Let $Y=(X-\mu)^{2}$ and note $\mathbb{E}[Y]=\sigma^{2}$

Chebyshev Inequality

Theorem (Chebyshev)
Let X be a random variable with expectation μ and variance σ^{2} that is strictly positive. Then for $t>0$,

$$
\mathbb{P}[|X-\mu| \geq t \sigma] \leq 1 / t^{2}
$$

Proof.

- Note that $\mathbb{P}[|X-\mu| \geq t \sigma]=\mathbb{P}\left[(X-\mu)^{2} \geq t^{2} \sigma^{2}\right]$
- Let $Y=(X-\mu)^{2}$ and note $\mathbb{E}[Y]=\sigma^{2}$
- Use Markov's inequality to show $\mathbb{P}\left[Y \geq t^{2} \mathbb{E}[Y]\right] \leq 1 / t^{2}$

Outline

Markov and Chebyshev

Chernoff Bounds

Lazy Select

Chernoff Bound

Theorem
Let X_{1}, \ldots, X_{n} be independent boolean random variables such that $\mathbb{P}\left[X_{i}=1\right]=p_{i}$. Then, for $X=\sum_{i} X_{i}, \mu=\mathbb{E}[X]$, and $\delta>0$,

$$
\mathbb{P}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}
$$

Chernoff Bound

Theorem
Let X_{1}, \ldots, X_{n} be independent boolean random variables such that $\mathbb{P}\left[X_{i}=1\right]=p_{i}$. Then, for $X=\sum_{i} X_{i}, \mu=\mathbb{E}[X]$, and $\delta>0$,

$$
\mathbb{P}[X>(1+\delta) \mu]<\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}
$$

Other versions: For $0<\delta \leq 1$

$$
\begin{aligned}
& \mathbb{P}[X \geq(1+\delta) \mu] \leq e^{-\delta^{2} \mu / 3} \\
& \mathbb{P}[X \leq(1-\delta) \mu] \leq e^{-\delta^{2} \mu / 2}
\end{aligned}
$$

and so by the union bound, $\mathbb{P}[|X-\mu| \geq \delta \mu] \leq 2 e^{-\delta^{2} \mu / 3}$.

Chernoff Bound: Proof of Upper Tail $(1 / 2)$

Proof.

- For any $t>0: \mathbb{P}[X>(1+\delta) \mu]=\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]$

Chernoff Bound: Proof of Upper Tail $(1 / 2)$

Proof.

- For any $t>0: \mathbb{P}[X>(1+\delta) \mu]=\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]$
- Apply Markov inequality:

$$
\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]<\mathbb{E}\left[e^{t X}\right] / e^{t(1+\delta) \mu}
$$

Chernoff Bound: Proof of Upper Tail $(1 / 2)$

Proof.

- For any $t>0: \mathbb{P}[X>(1+\delta) \mu]=\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]$
- Apply Markov inequality:

$$
\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]<\mathbb{E}\left[e^{t X}\right] / e^{t(1+\delta) \mu}
$$

- By independence:

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[e^{t \sum_{i} X_{i}}\right]=\mathbb{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right]
$$

Chernoff Bound: Proof of Upper Tail $(1 / 2)$

Proof.

- For any $t>0: \mathbb{P}[X>(1+\delta) \mu]=\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]$
- Apply Markov inequality:

$$
\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]<\mathbb{E}\left[e^{t X}\right] / e^{t(1+\delta) \mu}
$$

- By independence:

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[e^{t \sum_{i} X_{i}}\right]=\mathbb{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right]
$$

- We will prove $\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right] \leq e^{\left(e^{t}-1\right) \mu}$ in the next slide.

Chernoff Bound: Proof of Upper Tail $(1 / 2)$

Proof.

- For any $t>0: \mathbb{P}[X>(1+\delta) \mu]=\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]$
- Apply Markov inequality:

$$
\mathbb{P}\left[e^{t X}>e^{t(1+\delta) \mu}\right]<\mathbb{E}\left[e^{t X}\right] / e^{t(1+\delta) \mu}
$$

- By independence:

$$
\mathbb{E}\left[e^{t X}\right]=\mathbb{E}\left[e^{t \sum_{i} X_{i}}\right]=\mathbb{E}\left[\prod_{i} e^{t X_{i}}\right]=\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right]
$$

- We will prove $\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right] \leq e^{\left(e^{t}-1\right) \mu}$ in the next slide.
- For $t=\ln (1+\delta)$:

$$
\mathbb{E}\left[e^{t X}\right] / e^{t(1+\delta) \mu} \leq e^{\left(e^{t}-1\right) \mu} / e^{t(1+\delta) \mu}=\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\mu}
$$

Chernoff Bound: Proof of Upper Tail $(2 / 2)$

Lemma
$\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right] \leq e^{\left(e^{t}-1\right) \mu}$
Proof.

- Using $1+x \leq e^{x}$:

$$
\mathbb{E}\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right)=1+p_{i}\left(e^{t}-1\right) \leq \exp \left(p_{i}\left(e^{t}-1\right)\right)
$$

Chernoff Bound: Proof of Upper Tail $(2 / 2)$

Lemma
$\prod_{i} \mathbb{E}\left[e^{t X_{i}}\right] \leq e^{\left(e^{t}-1\right) \mu}$
Proof.

- Using $1+x \leq e^{x}$:

$$
\mathbb{E}\left[e^{t X_{i}}\right]=p_{i} e^{t}+\left(1-p_{i}\right)=1+p_{i}\left(e^{t}-1\right) \leq \exp \left(p_{i}\left(e^{t}-1\right)\right)
$$

- Using $\mu=\mathbb{E}\left[\sum_{i} X_{i}\right]=\sum_{i} p_{i}$:

$$
\prod_{i} \exp \left(p_{i}\left(e^{t}-1\right)\right)=\exp \left(\sum_{i} p_{i}\left(e^{t}-1\right)\right)=\exp \left(\left(e^{t}-1\right) \mu\right)
$$

Outline

Markov and Chebyshev

Chernoff Bounds

Lazy Select

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value.

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

1. Add each element in S to a set R with probability $p=1 / n^{1 / 4}$.

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

1. Add each element in S to a set R with probability $p=1 / n^{1 / 4}$.
2. Call this set R, Sort R and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { smallest element in } R .
\end{aligned}
$$

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

1. Add each element in S to a set R with probability $p=1 / n^{1 / 4}$.
2. Call this set R, Sort R and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { smallest element in } R .
\end{aligned}
$$

3. Construct $S^{\prime}=\{i \in S: a<y<b\}$ and let t be the number of values less or equal to a amongst S.

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

1. Add each element in S to a set R with probability $p=1 / n^{1 / 4}$.
2. Call this set R, Sort R and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { smallest element in } R .
\end{aligned}
$$

3. Construct $S^{\prime}=\{i \in S: a<y<b\}$ and let t be the number of values less or equal to a amongst S.
4. Sort S^{\prime} and return $(k-t)$ th smallest value in S^{\prime}.

Lazy Select

Let S be set of $n=2 k$ distinct values. Want to find k-th smallest value. Algorithm

1. Add each element in S to a set R with probability $p=1 / n^{1 / 4}$.
2. Call this set R, Sort R and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { smallest element in } R .
\end{aligned}
$$

3. Construct $S^{\prime}=\{i \in S: a<y<b\}$ and let t be the number of values less or equal to a amongst S.
4. Sort S^{\prime} and return $(k-t)$ th smallest value in S^{\prime}.

We'll analyze it next time...

