# CMPSCI 611: Advanced Algorithms <br> Lecture 16: Lazy Select 

Andrew McGregor

## Outline

Lazy Select

Next Time: Balls and Bins and Birthdays and Coupons

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

Warm-Up:

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Warm-Up:

1. Assume for a moment, we are given values $a, b \in S$ such that $a<v_{2}<b$ and there aren't too many values in $S$ between $a$ and $b$.

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Warm-Up:

1. Assume for a moment, we are given values $a, b \in S$ such that $a<v_{2}<b$ and there aren't too many values in $S$ between $a$ and $b$.
2. An approach could be:

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Warm-Up:

1. Assume for a moment, we are given values $a, b \in S$ such that $a<v_{2}<b$ and there aren't too many values in $S$ between $a$ and $b$.
2. An approach could be:
2.1 Take $O(n)$ time to compute the number of elements in $S$ that are less than equal to $a$. Call this number $t$.

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Warm-Up:

1. Assume for a moment, we are given values $a, b \in S$ such that $a<v_{2}<b$ and there aren't too many values in $S$ between $a$ and $b$.
2. An approach could be:
2.1 Take $O(n)$ time to compute the number of elements in $S$ that are less than equal to a. Call this number $t$.
2.2 Let $S^{\prime}=\{y \in S: a<y<b\}$. Return the $(k-t)$ th smallest element in $S^{\prime}$. This is easier than the original problem since $\left|S^{\prime}\right| \ll|S|$.

## Lazy Select: Warm Up

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Warm-Up:

1. Assume for a moment, we are given values $a, b \in S$ such that $a<v_{2}<b$ and there aren't too many values in $S$ between $a$ and $b$.
2. An approach could be:
2.1 Take $O(n)$ time to compute the number of elements in $S$ that are less than equal to $a$. Call this number $t$.
2.2 Let $S^{\prime}=\{y \in S: a<y<b\}$. Return the $(k-t)$ th smallest element in $S^{\prime}$. This is easier than the original problem since $\left|S^{\prime}\right| \ll|S|$.
3. Question: How can we easily compute $a$ and $b$ ?

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.
Algorithm

1. Finding a and b: Sample each element in $S$ with probabilityy $p=1 / n^{1 / 4}$. Call the sampled set $R$, sort $R$, and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { th smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { th smallest element in } R .
\end{aligned}
$$

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.
Algorithm

1. Finding a and b: Sample each element in $S$ with probabilityy $p=1 / n^{1 / 4}$. Call the sampled set $R$, sort $R$, and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { th smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { th smallest element in } R .
\end{aligned}
$$

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.
Algorithm

1. Finding a and b: Sample each element in $S$ with probabilityy $p=1 / n^{1 / 4}$. Call the sampled set $R$, sort $R$, and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { th smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { th smallest element in } R .
\end{aligned}
$$

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.
Algorithm

1. Finding a and b: Sample each element in $S$ with probabilityy $p=1 / n^{1 / 4}$. Call the sampled set $R$, sort $R$, and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { th smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { th smallest element in } R .
\end{aligned}
$$

2. Construct $S^{\prime}=\{y \in S: a<y<b\}$ and let $t$ be the number of values less or equal to a amongst $S$.

## Lazy Select

Let $S$ be set of $n=2 k$ distinct values. Want to find $k$-th smallest value. For the sake of analysis, let $v_{2}$ be the value that we need to return.
Algorithm

1. Finding a and b: Sample each element in $S$ with probabilityy $p=1 / n^{1 / 4}$. Call the sampled set $R$, sort $R$, and let

$$
\begin{aligned}
& a=\left(n^{3 / 4} / 2-5 \sqrt{n}\right) \text { th smallest element in } R . \\
& b=\left(n^{3 / 4} / 2+5 \sqrt{n}\right) \text { th smallest element in } R .
\end{aligned}
$$

2. Construct $S^{\prime}=\{y \in S: a<y<b\}$ and let $t$ be the number of values less or equal to a amongst $S$.
3. Sort $S^{\prime}$ and return $(k-t)$ th smallest value in $S^{\prime}$.

Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$ if $|R| \leq 2 n^{3 / 4}$ and $\left|S^{\prime}\right| \leq 20 n^{3 / 4}$

## Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$ if $|R| \leq 2 n^{3 / 4}$ and $\left|S^{\prime}\right| \leq 20 n^{3 / 4}$
Proof.

- $O(n)$ steps to define $R$.


## Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$ if $|R| \leq 2 n^{3 / 4}$ and $\left|S^{\prime}\right| \leq 20 n^{3 / 4}$
Proof.

- $O(n)$ steps to define $R$.
- $O(|R| \log |R|)$ steps to sort $R$ and find $a$ and $b$.


## Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$ if $|R| \leq 2 n^{3 / 4}$ and $\left|S^{\prime}\right| \leq 20 n^{3 / 4}$
Proof.

- $O(n)$ steps to define $R$.
- $O(|R| \log |R|)$ steps to sort $R$ and find $a$ and $b$.
- $O(n)$ steps to compute $S^{\prime}$ and find $t$.


## Lazy Select: Running Time

Theorem
Running time of Lazy Select is $O(n)$ if $|R| \leq 2 n^{3 / 4}$ and $\left|S^{\prime}\right| \leq 20 n^{3 / 4}$
Proof.

- $O(n)$ steps to define $R$.
- $O(|R| \log |R|)$ steps to sort $R$ and find $a$ and $b$.
- $O(n)$ steps to compute $S^{\prime}$ and find $t$.
- $O\left(\left|S^{\prime}\right| \log \left|S^{\prime}\right|\right)$ steps to sort $\left|S^{\prime}\right|$ and select element.


## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4}, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4}, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4}, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4} \quad, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4}
$$

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4}, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4}, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4}
$$

$$
X_{2}>n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is below median }
$$

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4} \quad, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4} \quad, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4}
$$

$$
\begin{aligned}
& X_{2}>n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is below median } \\
& X_{2}<n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow \text { " } b \text { " is above median }
\end{aligned}
$$

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4} \quad, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4} \quad, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4}
$$

$$
\begin{gathered}
X_{2}>n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is below median } \\
X_{2}<n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow \text { " } b \text { " is above median } \\
X_{1}<n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is above } v_{1}
\end{gathered}
$$

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4} \quad, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4} \quad, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4}
$$

$$
\begin{gathered}
X_{2}>n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow " a \text { " is below median } \\
X_{2}<n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow " b \text { " is above median } \\
X_{1}<n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow " a \text { " is above } v_{1} \\
X_{3}>n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow " b \text { " is below } v_{3}
\end{gathered}
$$

## Correctness Analysis

Let $v_{1}, v_{2}, v_{3}, v_{4}$ be the values in $S$ of rank

$$
r_{1}=n / 2-10 n^{3 / 4}, \quad r_{2}=n / 2, \quad r_{3}=n / 2+10 n^{3 / 4}, \quad r_{4}=n
$$

where the rank of a value is the number of values less or equal to it.
Define $X_{i}=$ number of values sampled in $R$ less or equal to $v_{i}$ and note:

$$
\begin{gathered}
X_{4}<2 n^{3 / 4} \Rightarrow|R|<2 n^{3 / 4} \\
X_{2}>n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is below median } \\
X_{2}<n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow \text { " } b \text { " is above median } \\
X_{1}<n^{3 / 4} / 2-5 \sqrt{n} \Rightarrow \text { " } a \text { " is above } v_{1} \\
X_{3}>n^{3 / 4} / 2+5 \sqrt{n} \Rightarrow " b \text { " is below } v_{3}
\end{gathered}
$$

If " $a$ " is above $v_{1}$ and " $b$ " is below $v_{3}$ then $\left|S^{\prime}\right|<r_{3}-r_{1}=20 n^{3 / 4}$.

## Correctness Analysis

Each $X_{i}$ is a binomial random variable and $E\left[X_{i}\right]=r_{i} p$ and $\mathbb{V}[X]=r_{i} p(1-p) \leq n p$. Hence, by the Cheybshev Bound

$$
\mathbb{P}\left[\left|X_{i}-\mathbb{E}\left[X_{i}\right]\right| \geq \sqrt{n}\right] \leq \mathbb{V}\left[X_{i}\right] / n \leq n^{-1 / 4}
$$

## Correctness Analysis

Each $X_{i}$ is a binomial random variable and $E\left[X_{i}\right]=r_{i} p$ and $\mathbb{V}[X]=r_{i} p(1-p) \leq n p$. Hence, by the Cheybshev Bound

$$
\mathbb{P}\left[\left|X_{i}-\mathbb{E}\left[X_{i}\right]\right| \geq \sqrt{n}\right] \leq \mathbb{V}\left[X_{i}\right] / n \leq n^{-1 / 4}
$$

i.e.,

$$
\mathbb{E}\left[X_{i}\right]-\sqrt{n}<X_{i}<\mathbb{E}\left[X_{i}\right]+\sqrt{n}
$$

with probability at least $1-n^{-1 / 4}$.

## Correctness Analysis

Each $X_{i}$ is a binomial random variable and $E\left[X_{i}\right]=r_{i} p$ and $\mathbb{V}[X]=r_{i} p(1-p) \leq n p$. Hence, by the Cheybshev Bound

$$
\mathbb{P}\left[\left|X_{i}-\mathbb{E}\left[X_{i}\right]\right| \geq \sqrt{n}\right] \leq \mathbb{V}\left[X_{i}\right] / n \leq n^{-1 / 4}
$$

i.e.,

$$
\mathbb{E}\left[X_{i}\right]-\sqrt{n}<X_{i}<\mathbb{E}\left[X_{i}\right]+\sqrt{n}
$$

with probability at least $1-n^{-1 / 4}$.
In particular, with probability at least $1-4 n^{-1 / 4}$,

$$
\begin{aligned}
& X_{1}<\frac{n^{3 / 4}}{2}-10 \sqrt{n}+\sqrt{n}<\frac{n^{3 / 4}}{2}-5 \sqrt{n} \\
\frac{n^{3 / 4}}{2}-\sqrt{n}< & X_{2}<\frac{n^{3 / 4}}{2}+\sqrt{n} \\
\frac{n^{3 / 4}}{2}+5 \sqrt{n}<\frac{n^{3 / 4}}{2}+10 \sqrt{n}-\sqrt{n}< & X_{3} \\
& X_{4}<n^{3 / 4}+\sqrt{n}<2 n^{3 / 4}
\end{aligned}
$$

## Outline

## Lazy Select

Next Time: Balls and Bins and Birthdays and Coupons

## Balls and Bins

Throw $m$ balls into $n$ bins where each throw is independent.

## Balls and Bins

Throw $m$ balls into $n$ bins where each throw is independent.

- Birthday Paradox: How large can $m$ be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.


## Balls and Bins

Throw $m$ balls into $n$ bins where each throw is independent.

- Birthday Paradox: How large can $m$ be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.
- Coupon Collecting: How large must $m$ be such that all bins get at least one ball?


## Balls and Bins

Throw $m$ balls into $n$ bins where each throw is independent.

- Birthday Paradox: How large can $m$ be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.
- Coupon Collecting: How large must $m$ be such that all bins get at least one ball?
- Load Balancing: What is the maximum number of balls that fall into the same bin? Application: Assigning jobs to different machines without overloading any machine.

