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Outline

Lazy Select

Next Time: Balls and Bins and Birthdays and Coupons
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Lazy Select: Warm Up

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
For the sake of analysis, let v2 be the value that we need to return.

Warm-Up:

1. Assume for a moment, we are given values a, b ∈ S such that
a < v2 < b and there aren’t too many values in S between a and b.

2. An approach could be:

2.1 Take O(n) time to compute the number of elements in S that are
less than equal to a. Call this number t.

2.2 Let S ′ = {y ∈ S : a < y < b}. Return the (k − t)th smallest element
in S ′. This is easier than the original problem since |S ′| � |S |.

3. Question: How can we easily compute a and b?
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Lazy Select

Let S be set of n = 2k distinct values. Want to find k-th smallest value.
For the sake of analysis, let v2 be the value that we need to return.

Algorithm

1. Finding a and b: Sample each element in S with probabilityy
p = 1/n1/4. Call the sampled set R, sort R, and let

a = (n3/4/2− 5
√
n)th smallest element in R.

b = (n3/4/2 + 5
√
n)th smallest element in R.

2. Construct S ′ = {y ∈ S : a < y < b} and let t be the number of
values less or equal to a amongst S .

3. Sort S ′ and return (k − t)th smallest value in S ′.
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Lazy Select: Running Time

Theorem
Running time of Lazy Select is O(n) if |R| ≤ 2n3/4 and |S ′| ≤ 20n3/4

Proof.

I O(n) steps to define R.

I O(|R| log |R|) steps to sort R and find a and b.

I O(n) steps to compute S ′ and find t.

I O(|S ′| log |S ′|) steps to sort |S ′| and select element.
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Correctness Analysis
Let v1, v2, v3, v4 be the values in S of rank

r1 = n/2− 10n3/4 , r2 = n/2 , r3 = n/2 + 10n3/4 , r4 = n

where the rank of a value is the number of values less or equal to it.

Define Xi = number of values sampled in R less or equal to vi and note:

X4 < 2n3/4 ⇒ |R| < 2n3/4

X2 > n3/4/2− 5
√
n⇒ “a” is below median

X2 < n3/4/2 + 5
√
n⇒ “b” is above median

X1 < n3/4/2− 5
√
n⇒ “a” is above v1

X3 > n3/4/2 + 5
√
n⇒ “b” is below v3

If “a” is above v1 and “b” is below v3 then |S ′| < r3 − r1 = 20n3/4.
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Correctness Analysis
Each Xi is a binomial random variable and E [Xi ] = rip and
V [X ] = rip(1− p) ≤ np. Hence, by the Cheybshev Bound

P
[
|Xi − E [Xi ] | ≥

√
n
]
≤ V [Xi ] /n ≤ n−1/4

i.e.,
E [Xi ]−

√
n < Xi < E [Xi ] +

√
n

with probability at least 1− n−1/4.

In particular, with probability at least 1− 4n−1/4,

X1 <
n3/4

2
− 10
√
n +
√
n <

n3/4

2
− 5
√
n

n3/4

2
−
√
n < X2 <

n3/4

2
+
√
n

n3/4

2
+ 5
√
n <

n3/4

2
+ 10
√
n −
√
n < X3

X4 < n3/4 +
√
n < 2n3/4
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Outline

Lazy Select

Next Time: Balls and Bins and Birthdays and Coupons
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Balls and Bins

Throw m balls into n bins where each throw is independent.

I Birthday Paradox: How large can m be such that all bins have at
most one ball? Applications: Picking IDs without coordination in a
Multi-Agent System.

I Coupon Collecting: How large must m be such that all bins get at
least one ball?

I Load Balancing: What is the maximum number of balls that fall into
the same bin? Application: Assigning jobs to different machines
without overloading any machine.
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