CMPSCI 611: Advanced Algorithms
 Lecture 17: Balls and Bins and Schwartz-Zippel

Andrew McGregor

Outline

Balls and Bins and Birthdays and Coupons

Schwartz-Zippel

Balls and Bins

Throw m balls into n bins where each throw is independent.

Balls and Bins

Throw m balls into n bins where each throw is independent.

- Birthday Paradox: How large can m be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.

Balls and Bins

Throw m balls into n bins where each throw is independent.

- Birthday Paradox: How large can m be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.
- Coupon Collecting: How large must m be such that all bins get at least one ball?

Balls and Bins

Throw m balls into n bins where each throw is independent.

- Birthday Paradox: How large can m be such that all bins have at most one ball? Applications: Picking IDs without coordination in a Multi-Agent System.
- Coupon Collecting: How large must m be such that all bins get at least one ball?
- Load Balancing: What is the maximum number of balls that fall into the same bin? Application: Assigning jobs to different machines without overloading any machine.

Birthday Paradox

Lemma
$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.

Birthday Paradox

Lemma
$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.
Proof.

- Let A_{i} be event that the i-th ball lands in a bin not containing any of the first $i-1$ balls.

Birthday Paradox

Lemma
$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.

Proof.

- Let A_{i} be event that the i-th ball lands in a bin not containing any of the first $i-1$ balls.
- $\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{m} \mid \cap_{1 \leq i \leq m-1} A_{i}\right]$

Birthday Paradox

Lemma
$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.

Proof.

- Let A_{i} be event that the i-th ball lands in a bin not containing any of the first $i-1$ balls.
- $\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{m} \mid \cap_{1 \leq i \leq m-1} A_{i}\right]$
- $\mathbb{P}\left[A_{i} \mid \cap_{1 \leq j \leq i-1} A_{j}\right]=1-(i-1) / n$

Birthday Paradox

Lemma

$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.

Proof.

- Let A_{i} be event that the i-th ball lands in a bin not containing any of the first $i-1$ balls.
- $\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{m} \mid \cap_{1 \leq i \leq m-1} A_{i}\right]$
- $\mathbb{P}\left[A_{i} \mid \cap_{1 \leq j \leq i-1} A_{j}\right]=1-(i-1) / n$
- Putting it together and using $\sum_{1 \leq i \leq a} i=(a+1) a / 2$:

$$
\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\prod_{1 \leq i \leq m}\left(1-\frac{i-1}{n}\right) \leq e^{-\sum_{i=1}^{m} \frac{i-1}{n}}=e^{-m(m-1) /(2 n)}
$$

Birthday Paradox

Lemma

$\mathbb{P}[$ first m balls fall in distinct bins $] \leq e^{-m(m-1) /(2 n)}$.

Proof.

- Let A_{i} be event that the i-th ball lands in a bin not containing any of the first $i-1$ balls.
- $\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\mathbb{P}\left[A_{1}\right] \mathbb{P}\left[A_{2} \mid A_{1}\right] \ldots \mathbb{P}\left[A_{m} \mid \cap_{1 \leq i \leq m-1} A_{i}\right]$
- $\mathbb{P}\left[A_{i} \mid \cap_{1 \leq j \leq i-1} A_{j}\right]=1-(i-1) / n$
- Putting it together and using $\sum_{1 \leq i \leq a} i=(a+1) a / 2$:

$$
\mathbb{P}\left[\cap_{1 \leq i \leq m} A_{i}\right]=\prod_{1 \leq i \leq m}\left(1-\frac{i-1}{n}\right) \leq e^{-\sum_{i=1}^{m} \frac{i-1}{n}}=e^{-m(m-1) /(2 n)}
$$

With $n=365$ and $m=29$, probability $<e^{-1}$. Tighter analysis possible.

Coupon Collecting

Suppose you throw r balls into n bins. If each ball is equally likely to land in each bin, how large does r need to be such that a ball lands in every bin with probability at least $1-1 / n$.

Coupon Collecting

Suppose you throw r balls into n bins. If each ball is equally likely to land in each bin, how large does r need to be such that a ball lands in every bin with probability at least $1-1 / n$. We'll show $r=2 n \ln n$ are sufficient.

Coupon Collecting

Suppose you throw r balls into n bins. If each ball is equally likely to land in each bin, how large does r need to be such that a ball lands in every bin with probability at least $1-1 / n$. We'll show $r=2 n \ln n$ are sufficient.

- Let A_{i} be the event that the i th bin is empty after r balls are thrown. Then,

$$
\mathbb{P}\left[A_{i}\right]=(1-1 / n)^{r}=(1-1 / n)^{2 n \ln n} \leq e^{-2 \ln n}=1 / n^{2}
$$

Coupon Collecting

Suppose you throw r balls into n bins. If each ball is equally likely to land in each bin, how large does r need to be such that a ball lands in every bin with probability at least $1-1 / n$. We'll show $r=2 n \ln n$ are sufficient.

- Let A_{i} be the event that the i th bin is empty after r balls are thrown. Then,

$$
\mathbb{P}\left[A_{i}\right]=(1-1 / n)^{r}=(1-1 / n)^{2 n \ln n} \leq e^{-2 \ln n}=1 / n^{2}
$$

- Then $A_{1} \cup A_{2} \cup \ldots \cup A_{n}$ is the event that there is an empty bin:

$$
\mathbb{P}\left[A_{1} \cup A_{2} \cup \ldots \cup A_{n}\right] \leq \mathbb{P}\left[A_{1}\right]+\mathbb{P}\left[A_{2}\right]+\ldots+\mathbb{P}\left[A_{n}\right]=n \times 1 / n^{2}=1 / n
$$

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.
- What's the probability that k or more items land in bin 1 ?

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.
- What's the probability that k or more items land in bin 1 ?
- If X_{1} is the number of balls that land in bin 1 then X_{1} is a binomial distribution with m trials and $p=1 / n$.

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.
- What's the probability that k or more items land in bin 1 ?
- If X_{1} is the number of balls that land in bin 1 then X_{1} is a binomial distribution with m trials and $p=1 / n$.
- Lemma: $P\left(X_{1} \geq k\right) \leq\binom{ m}{k} p^{k}$.

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.
- What's the probability that k or more items land in bin 1 ?
- If X_{1} is the number of balls that land in bin 1 then X_{1} is a binomial distribution with m trials and $p=1 / n$.
- Lemma: $P\left(X_{1} \geq k\right) \leq\binom{ m}{k} p^{k}$.
- If $m / n=1$ and $k=2 \log n$,

$$
P\left(X_{1} \geq k\right) \leq\binom{ m}{k} p^{k} \leq \frac{m^{k}}{k!} \cdot\left(\frac{1}{n}\right)^{k}=\left(\frac{m}{n}\right)^{k} / k!=1 / k!\leq 1 / 2^{k}=1 / n^{2}
$$

Load Balancing

Throw m balls into n bins where each throw is independent.

- How full is the fullest bin? This has applications to load balancing.
- What's the probability that k or more items land in bin 1 ?
- If X_{1} is the number of balls that land in bin 1 then X_{1} is a binomial distribution with m trials and $p=1 / n$.
- Lemma: $P\left(X_{1} \geq k\right) \leq\binom{ m}{k} p^{k}$.
- If $m / n=1$ and $k=2 \log n$,

$$
P\left(X_{1} \geq k\right) \leq\binom{ m}{k} p^{k} \leq \frac{m^{k}}{k!} \cdot\left(\frac{1}{n}\right)^{k}=\left(\frac{m}{n}\right)^{k} / k!=1 / k!\leq 1 / 2^{k}=1 / n^{2}
$$

- Same analysis applies to X_{2}, X_{3}, \ldots, i.e., the number of balls in bins $2,3, \ldots$. Hence, no bin has more than $k=2 \log n$ balls in it with probability at least $1-1 / n$.

Missing Lemma

Lemma
Let X be the number of heads observed when we toss m coins each with probability of heads equal to p. Then $\mathbb{P}[X \geq k] \leq\binom{ m}{k} p^{k}$.

Missing Lemma

Lemma

Let X be the number of heads observed when we toss m coins each with probability of heads equal to p. Then $\mathbb{P}[X \geq k] \leq\binom{ m}{k} p^{k}$.

- Let $S_{1}, S_{2}, \ldots S_{\binom{m}{k}}$ be all subsets of $[m]$ with exactly k elements.

$$
P\left(A_{S_{j}}\right)=p^{k}
$$

where A_{S} is the event that for all $i \in S$, the i th coin toss is heads.

Missing Lemma

Lemma

Let X be the number of heads observed when we toss m coins each with probability of heads equal to p. Then $\mathbb{P}[X \geq k] \leq\binom{ m}{k} p^{k}$.

- Let $S_{1}, S_{2}, \ldots S_{\binom{m}{k}}$ be all subsets of $[m]$ with exactly k elements.

$$
P\left(A_{S_{j}}\right)=p^{k}
$$

where A_{S} is the event that for all $i \in S$, the i th coin toss is heads.

- Then $A_{S_{1}} \cup A_{S_{2}} \cup \ldots \cup A_{\binom{m}{k}}$ is the event you get k or more heads.

Missing Lemma

Lemma

Let X be the number of heads observed when we toss m coins each with probability of heads equal to p. Then $\mathbb{P}[X \geq k] \leq\binom{ m}{k} p^{k}$.

- Let $S_{1}, S_{2}, \ldots S_{\binom{m}{k}}$ be all subsets of $[m]$ with exactly k elements.

$$
P\left(A_{S_{j}}\right)=p^{k}
$$

where A_{S} is the event that for all $i \in S$, the i th coin toss is heads.

- Then $A_{S_{1}} \cup A_{S_{2}} \cup \ldots \cup A_{S_{\binom{m}{k}}}$ is the event you get k or more heads.
- Hence,

$$
P(k \text { or more heads })=P\left(A_{S_{1}} \cup A_{S_{2}} \cup \ldots \cup A_{\binom{m}{k}}\right) \leq \sum_{j=1}^{\binom{m}{k}} P\left(A_{S_{j}}\right)=\binom{m}{k} p^{k}
$$

Outline

Balls and Bins and Birthdays and Coupons

Schwartz-Zippel

Checking Polynomial Multiplication via Schwartz-Zippel

Problem
Given three n variable polynomials P_{1}, P_{2}, P_{3}. Can you test if

$$
P_{1}\left(x_{1}, \ldots, x_{n}\right) \times P_{2}\left(x_{1}, \ldots, x_{n}\right)=P_{3}\left(x_{1}, \ldots, x_{n}\right)
$$

faster than multiplying the polynomials?

Checking Polynomial Multiplication via Schwartz-Zippel

Problem
Given three n variable polynomials P_{1}, P_{2}, P_{3}. Can you test if

$$
P_{1}\left(x_{1}, \ldots, x_{n}\right) \times P_{2}\left(x_{1}, \ldots, x_{n}\right)=P_{3}\left(x_{1}, \ldots, x_{n}\right)
$$

faster than multiplying the polynomials? Equivalently, is

$$
Q\left(x_{1}, \ldots, x_{n}\right)=P_{1}\left(x_{1}, \ldots, x_{n}\right) \times P_{2}\left(x_{1}, \ldots, x_{n}\right)-P_{3}\left(x_{1}, \ldots, x_{n}\right)
$$

zero for all x_{1}, \ldots, x_{n} ?

Checking Polynomial Multiplication via Schwartz-Zippel

Problem

Given three n variable polynomials P_{1}, P_{2}, P_{3}. Can you test if

$$
P_{1}\left(x_{1}, \ldots, x_{n}\right) \times P_{2}\left(x_{1}, \ldots, x_{n}\right)=P_{3}\left(x_{1}, \ldots, x_{n}\right)
$$

faster than multiplying the polynomials? Equivalently, is

$$
Q\left(x_{1}, \ldots, x_{n}\right)=P_{1}\left(x_{1}, \ldots, x_{n}\right) \times P_{2}\left(x_{1}, \ldots, x_{n}\right)-P_{3}\left(x_{1}, \ldots, x_{n}\right)
$$

zero for all x_{1}, \ldots, x_{n} ?
Theorem (Schwartz-Zippel)
Let $Q\left(x_{1}, \ldots, x_{n}\right)$ be a non-zero multivariate polynomial of total degree d. Fix any finite set of values S and let r_{1}, \ldots, r_{n} be chosen independently and uniformly at random from S. Then,

$$
\mathbb{P}\left[Q\left(r_{1}, \ldots, r_{n}\right)=0\right] \leq d /|S|
$$

Schwartz-Zippel Proof

- Induction on n : For $n=1$, because Q has at most d roots,

$$
\mathbb{P}\left[Q\left(r_{1}\right)=0\right] \leq d /|S|
$$

Schwartz-Zippel Proof

- Induction on n : For $n=1$, because Q has at most d roots,

$$
\mathbb{P}\left[Q\left(r_{1}\right)=0\right] \leq d /|S|
$$

- For induction step define Q_{i} for $0 \leq i \leq k$:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where k is maximum such that $Q_{k}\left(x_{2}, \ldots, x_{n}\right) \not \equiv 0$

Schwartz-Zippel Proof

- Induction on n : For $n=1$, because Q has at most d roots,

$$
\mathbb{P}\left[Q\left(r_{1}\right)=0\right] \leq d /|S|
$$

- For induction step define Q_{i} for $0 \leq i \leq k$:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where k is maximum such that $Q_{k}\left(x_{2}, \ldots, x_{n}\right) \not \equiv 0$

- Since total degree of Q_{k} is at most $d-k$,

$$
\mathbb{P}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|
$$

Schwartz-Zippel Proof

- Induction on n : For $n=1$, because Q has at most d roots,

$$
\mathbb{P}\left[Q\left(r_{1}\right)=0\right] \leq d /|S|
$$

- For induction step define Q_{i} for $0 \leq i \leq k$:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where k is maximum such that $Q_{k}\left(x_{2}, \ldots, x_{n}\right) \not \equiv 0$

- Since total degree of Q_{k} is at most $d-k$,

$$
\mathbb{P}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|
$$

- Consider $q(x)=Q\left(x, r_{2}, \ldots, r_{n}\right)$,

$$
\mathbb{P}\left[q\left(r_{1}\right)=0 \mid Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k /|S|
$$

Schwartz-Zippel Proof

- Induction on n : For $n=1$, because Q has at most d roots,

$$
\mathbb{P}\left[Q\left(r_{1}\right)=0\right] \leq d /|S|
$$

- For induction step define Q_{i} for $0 \leq i \leq k$:

$$
Q\left(x_{1}, \ldots, x_{n}\right)=\sum_{i=0}^{k} x_{1}^{i} Q_{i}\left(x_{2}, \ldots, x_{n}\right)
$$

where k is maximum such that $Q_{k}\left(x_{2}, \ldots, x_{n}\right) \not \equiv 0$

- Since total degree of Q_{k} is at most $d-k$,

$$
\mathbb{P}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right] \leq(d-k) /|S|
$$

- Consider $q(x)=Q\left(x, r_{2}, \ldots, r_{n}\right)$,

$$
\mathbb{P}\left[q\left(r_{1}\right)=0 \mid Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq k /|S|
$$

- Putting together gives $\mathbb{P}\left[Q\left(r_{1}, \ldots, r_{n}\right)=0\right]$ at most

$$
\mathbb{P}\left[Q_{k}\left(r_{2}, \ldots, r_{n}\right)=0\right]+\mathbb{P}\left[q\left(r_{1}\right)=0 \mid Q_{k}\left(r_{2}, \ldots, r_{n}\right) \neq 0\right] \leq d /|S|
$$

where we used $\mathbb{P}[A]=\mathbb{P}[A \cap B]+\mathbb{P}\left[A \cap B^{c}\right] \leq \mathbb{P}[B]+\mathbb{P}\left[A \mid B^{c}\right]$

