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Outline

Balls and Bins and Birthdays and Coupons

Schwartz-Zippel
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Balls and Bins

Throw m balls into n bins where each throw is independent.

I Birthday Paradox: How large can m be such that all bins have at
most one ball? Applications: Picking IDs without coordination in a
Multi-Agent System.

I Coupon Collecting: How large must m be such that all bins get at
least one ball?

I Load Balancing: What is the maximum number of balls that fall into
the same bin? Application: Assigning jobs to different machines
without overloading any machine.
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Birthday Paradox

Lemma
P [first m balls fall in distinct bins] ≤ e−m(m−1)/(2n).

Proof.

I Let Ai be event that the i-th ball lands in a bin not containing any
of the first i − 1 balls.

I P [∩1≤i≤mAi ] = P [A1]P [A2|A1] . . .P [Am| ∩1≤i≤m−1 Ai ]

I P [Ai | ∩1≤j≤i−1 Aj ] = 1− (i − 1)/n

I Putting it together and using
∑

1≤i≤a i = (a + 1)a/2:

P [∩1≤i≤mAi ] =
∏

1≤i≤m

(
1− i − 1

n

)
≤ e−

∑m
i=1

i−1
n = e−m(m−1)/(2n)

With n = 365 and m = 29, probability < e−1. Tighter analysis possible.
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Coupon Collecting

Suppose you throw r balls into n bins. If each ball is equally likely to land
in each bin, how large does r need to be such that a ball lands in every
bin with probability at least 1− 1/n.

We’ll show r = 2n ln n are sufficient.

I Let Ai be the event that the ith bin is empty after r balls are
thrown. Then,

P [Ai ] = (1− 1/n)r = (1− 1/n)2n ln n ≤ e−2 ln n = 1/n2

I Then A1 ∪ A2 ∪ . . . ∪ An is the event that there is an empty bin:

P [A1 ∪ A2 ∪ . . . ∪ An] ≤ P [A1]+P [A2]+. . .+P [An] = n×1/n2 = 1/n
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Load Balancing

Throw m balls into n bins where each throw is independent.

I How full is the fullest bin? This has applications to load balancing.

I What’s the probability that k or more items land in bin 1?

I If X1 is the number of balls that land in bin 1 then X1 is a binomial
distribution with m trials and p = 1/n.

I Lemma: P(X1 ≥ k) ≤
(
m
k

)
pk .

I If m/n = 1 and k = 2 log n,

P(X1 ≥ k) ≤
(
m

k

)
pk ≤ mk

k!
·
(

1

n

)k

=
(m
n

)k
/k! = 1/k! ≤ 1/2k = 1/n2

I Same analysis applies to X2,X3, . . ., i.e., the number of balls in bins
2, 3, . . . . Hence, no bin has more than k = 2 log n balls in it with
probability at least 1− 1/n.
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Missing Lemma

Lemma
Let X be the number of heads observed when we toss m coins each with
probability of heads equal to p. Then P [X ≥ k] ≤

(
m
k

)
pk .

I Let S1,S2, . . .S(m
k) be all subsets of [m] with exactly k elements.

P(ASj ) = pk

where AS is the event that for all i ∈ S , the ith coin toss is heads.

I Then AS1 ∪ AS2 ∪ . . . ∪ AS
(m
k)

is the event you get k or more heads.

I Hence,

P(k or more heads) = P(AS1∪AS2∪. . .∪AS
(m
k)

) ≤
(m
k)∑

j=1

P(ASj ) =

(
m

k

)
pk
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Checking Polynomial Multiplication via Schwartz-Zippel

Problem
Given three n variable polynomials P1,P2,P3. Can you test if

P1(x1, . . . , xn)× P2(x1, . . . , xn) = P3(x1, . . . , xn)

faster than multiplying the polynomials?

Equivalently, is

Q(x1, . . . , xn) = P1(x1, . . . , xn)× P2(x1, . . . , xn)− P3(x1, . . . , xn)

zero for all x1, . . . , xn?

Theorem (Schwartz-Zippel)
Let Q(x1, . . . , xn) be a non-zero multivariate polynomial of total degree
d . Fix any finite set of values S and let r1, . . . , rn be chosen
independently and uniformly at random from S . Then,

P [Q(r1, . . . , rn) = 0] ≤ d/|S |
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Schwartz-Zippel Proof
I Induction on n: For n = 1, because Q has at most d roots,

P [Q(r1) = 0] ≤ d/|S |

I For induction step define Qi for 0 ≤ i ≤ k:

Q(x1, . . . , xn) =
k∑

i=0

x i1Qi (x2, . . . , xn)

where k is maximum such that Qk(x2, . . . , xn) 6≡ 0
I Since total degree of Qk is at most d − k,

P [Qk(r2, . . . , rn) = 0] ≤ (d − k)/|S |
I Consider q(x) = Q(x , r2, . . . , rn),

P [q(r1) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k/|S |
I Putting together gives P [Q(r1, . . . , rn) = 0] at most

P [Qk(r2, . . . , rn) = 0] + P [q(r1) = 0|Qk(r2, . . . , rn) 6= 0] ≤ d/|S |

where we used P [A] = P [A ∩ B] + P [A ∩ Bc ] ≤ P [B] + P [A|Bc ]
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P [q(r1) = 0|Qk(r2, . . . , rn) 6= 0] ≤ k/|S |
I Putting together gives P [Q(r1, . . . , rn) = 0] at most

P [Qk(r2, . . . , rn) = 0] + P [q(r1) = 0|Qk(r2, . . . , rn) 6= 0] ≤ d/|S |

where we used P [A] = P [A ∩ B] + P [A ∩ Bc ] ≤ P [B] + P [A|Bc ]
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