
CMPSCI 611: Advanced Algorithms
Lecture 18: Approximation Algorithms

Andrew McGregor

Last Compiled: April 16, 2024

1/15

Hard Problems

There are many computational problems where it is widely believed that
there does not exist a polynomial time algorithm, e.g.,

I Finding the vertex cover of minimum size.

I Finding the maximum cut in a graph.

I The knapsack problem.

I MAX-3-SAT: A 3-SAT formula has the following form:

(x1 ∨ x2 ∨ x3) ∧ (x4 ∨ x̄2 ∨ x9) ∧ . . . ∧ (x̄2 ∨ x̄4 ∨ x8)

where ∨ means “or”, ∧ means “and”, and ¯ means “not”. Each
term in a bracket is called a “clause”. What’s the maximum number
of clauses that can be satisfied?

2/15

Outline

Approximation Algorithms

Vertex Cover

Max Cut

Set-Cover

3/15

Approximation Ratios

Instead of finding the absolute minimum or maximum solution, can we
design a polynomial time algorithm that is guaranteed to find an
“almost” minimum or maximum solution.

Definition
The performance ratio of an algorithm is

max
x :|x|=n

Calg (x)

Copt(x)
for a minimization problem

max
x :|x|=n

Copt(x)

Calg (x)
for a maximization problem

where Calg (x) is the value of the algorithm solution on input x and
Copt(x) is the value of the optimal solution on input x .

4/15

Outline

Approximation Algorithms

Vertex Cover

Max Cut

Set-Cover

5/15

Vertex Cover

I Input: Graph G = (V ,E)

I Goal: Find the vertex cover of smallest size. Recall that U ⊆ V is a
vertex cover iff at least one end point of each edge is in U.

6/15

2-approximation for Vertex Cover
Algorithm

1. S = ∅
2. While E 6= ∅, pick an edge e = (u, v) ∈ E

I S ← S + u + v
I V ← V − u − v

3. Return S

Theorem
The above algorithm returns a 2-approximation in polynomial time.

Proof.
I Let E ′ be the set of edges chosen:

size of vertex cover found = 2|E ′|

I For any (u, v) ∈ E ′, at least one of {u, v} is in any vertex cover:

size of optimal vertex cover ≥ |E ′|

7/15

Outline

Approximation Algorithms

Vertex Cover

Max Cut

Set-Cover

8/15

Max Cut

I Input: Unweighted graph G = (V ,E)?

I Goal: Find the cut (A,B) that maximizes

|e = (u, v) ∈ E : u ∈ A, v ∈ B|

9/15

Max Cut Approximation Algorithm

Algorithm

1. Let A = ∅,B = V

2. While ∃v ∈ V such that switching side of v increases size of cut:

move v to other side of cut

3. Return (A,B)

Theorem
The algorithm is a 2-approximation and runs in polynomial time.

10/15

Max-Cut Analysis

I Number of switches is at most |E |
I When the algorithm terminates, let

a(v) = number of edges from v that cross the cut

b(v) = number of edges from v that don’t cross the cut

I Note that a(v) ≥ b(v) and so
∑

v a(v) ≥
∑

v b(v)

I But
∑

v a(v) +
∑

v b(v) = 2|E |

cut size =
∑
v

a(v)/2 ≥
∑
v

a(v)/4 +
∑
v

b(v)/4 = |E |/2

11/15

Outline

Approximation Algorithms

Vertex Cover

Max Cut

Set-Cover

12/15

Set-Cover

Problem:

I Input: A collection C = {S1,S2, . . . ,Sm} of subsets of U = ∪S∈CS
and weights w : C → R+

I Output: Find C ′ ⊂ C such that

U = ∪S∈C ′S

that minimizes |C ′|.

Greedy Algorithm: Repeatedly pick that set S that covers the maximum
number of currently uncovered elements.

13/15

Approximation Algorithm for Set Cover: Analysis
Suppose it is possible to cover all elements with k sets. Whenever you
haven’t covered all the elements, there’s a set that covers at least 1/k
fraction of the uncovered elements. To see this, suppose T1, . . . ,Tk are
the optimum sets and U ′ are the currently uncovered elements. Then,

(T1 ∩ U ′) ∪ (T2 ∩ U ′) ∪ . . . ∪ (Tk ∩ U ′) = U ′

since every element in U ′ is in some Ti . But then∑
i

|Ti ∩ U ′| ≥ |(T1 ∩ U ′) ∪ (T2 ∩ U ′) ∪ . . . ∪ (Tk ∩ U ′)| ≥ |U ′|

Hence for some i , |Ti ∩ U ′| ≥ |U ′|/k .

After t sets have been chosen the number of uncovered elements is

n(1− 1/k)t < ne−t/k

For t = dk ln ne this is less than 1, i.e., all elements have been covered.

14/15

	Approximation Algorithms
	Vertex Cover
	Max Cut
	Set-Cover

