CMPSCI 611: Advanced Algorithms
 Lecture 20: More TSP and Knapsack PTAS

Andrew McGregor

Outline

Metric TSP 3/2 approximate

Metric Traveling Salesperson Problem

- Input: Weighted complete graph $G=(V, E)$ with positive weights such that for edges $e=(u, v), e^{\prime}=(v, w)$, and $e^{\prime \prime}=(u, w)$

$$
w_{e}+w_{e^{\prime}} \geq w_{e^{\prime \prime}}
$$

Metric Traveling Salesperson Problem

- Input: Weighted complete graph $G=(V, E)$ with positive weights such that for edges $e=(u, v), e^{\prime}=(v, w)$, and $e^{\prime \prime}=(u, w)$

$$
w_{e}+w_{e^{\prime}} \geq w_{e^{\prime \prime}}
$$

- Goal: Find the tour (a path that visits every node exactly once and returns to starting point) of minimum total weight.

Eulerian Tours

Definition

A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Eulerian Tours

Definition

A Eulerian tour is a path that traverses every edge of a graph exactly once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has even degree.

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G
2. Let D be the nodes in $T_{m s t}$ that have odd degree

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G
2. Let D be the nodes in $T_{m s t}$ that have odd degree
3. Find minimum cost perfect matching M on nodes of D

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G
2. Let D be the nodes in $T_{m s t}$ that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{m s t}+M$

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G
2. Let D be the nodes in $T_{\text {mst }}$ that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{m s t}+M$
5. Transform into tour by short-cutting repeated vertices.

Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree $T_{\text {mst }}$ of G
2. Let D be the nodes in $T_{m s t}$ that have odd degree
3. Find minimum cost perfect matching M on nodes of D
4. Find Euler tour of $T_{\text {mst }}+M$
5. Transform into tour by short-cutting repeated vertices.

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

The result was first proved by Christofides in 1976. In 2020, Karlin, Klein, and Gharan designed and analyzed a $3 / 2-10^{-36}$ approximation!

Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.
Proof.

Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

$$
\operatorname{cost}(\text { tour found }) \leq \operatorname{cost}(\text { Euler tour })=\operatorname{cost}\left(T_{m s t}\right)+\operatorname{cost}(M)
$$

Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

$$
\operatorname{cost}(\text { tour found }) \leq \operatorname{cost}(\text { Euler tour })=\operatorname{cost}\left(T_{m s t}\right)+\operatorname{cost}(M)
$$

- As before, $\operatorname{cost}\left(T_{m s t}\right) \leq \operatorname{cost}($ optimal tour $)$

Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

$$
\operatorname{cost}(\text { tour found }) \leq \operatorname{cost}(\text { Euler tour })=\operatorname{cost}\left(T_{m s t}\right)+\operatorname{cost}(M)
$$

- As before, $\operatorname{cost}\left(T_{m s t}\right) \leq \operatorname{cost}($ optimal tour $)$
- Cost of M is at most half cost of optimal tour

$$
\operatorname{cost}(M) \leq \operatorname{cost}(\text { optimal tour }) / 2
$$

Analysis

Theorem

The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

- Cost of tour found is at most cost of Euler tour

$$
\operatorname{cost}(\text { tour found }) \leq \operatorname{cost}(\text { Euler tour })=\operatorname{cost}\left(T_{m s t}\right)+\operatorname{cost}(M)
$$

- As before, $\operatorname{cost}\left(T_{m s t}\right) \leq \operatorname{cost}($ optimal tour $)$
- Cost of M is at most half cost of optimal tour

$$
\operatorname{cost}(M) \leq \operatorname{cost}(\text { optimal tour }) / 2
$$

Let $D=\left\{d_{1}, \ldots, d_{k}\right\}$ be ordered according to optimal tour.

$$
\begin{aligned}
\operatorname{cost}(\text { optimal tour }) \geq & w_{d_{1}, d_{2}}+w_{d_{2}, d_{3}}+\ldots+w_{d_{k}, d_{1}} \\
= & \left(w_{d_{1}, d_{2}}+w_{d_{3}, d_{4}}+\ldots w_{d_{k-1}, d_{k}}\right)+ \\
& \left(w_{d_{2}, d_{3}}+w_{d_{4}, d_{5}}+\ldots w_{d_{k}, d_{1}}\right)
\end{aligned}
$$

（

\square
\square

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value v_{i}. C is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_{i} \leq C$.

Dynamic Programming Approach

- Let $v k n a p(i, v)$ be the minimum weight required to achieve a value of at least v using items $1, \ldots, i$.

Dynamic Programming Approach

- Let $\operatorname{vknap}(i, v)$ be the minimum weight required to achieve a value of at least v using items $1, \ldots, i$.
- Then

$$
\operatorname{vknap}(1, v)= \begin{cases}w_{1} & \text { for } v \leq v_{1} \\ \infty & \text { for } v>v_{1}\end{cases}
$$

and

$$
\operatorname{vknap}(i+1, v)=\min \left\{v k n a p(i, v), v k n a p\left(i, v-v_{i+1}\right)+w_{i+1}\right\}
$$

where $\operatorname{vknap}(i, u)=0$ if $u<0$.

Dynamic Programming Approach

- Let $\operatorname{vknap}(i, v)$ be the minimum weight required to achieve a value of at least v using items $1, \ldots, i$.
- Then

$$
v k n a p(1, v)= \begin{cases}w_{1} & \text { for } v \leq v_{1} \\ \infty & \text { for } v>v_{1}\end{cases}
$$

and

$$
\operatorname{vknap}(i+1, v)=\min \left\{v k n a p(i, v), v k n a p\left(i, v-v_{i+1}\right)+w_{i+1}\right\}
$$

where $\operatorname{vknap}(i, u)=0$ if $u<0$.

- Let $V=\max _{i}\left(v_{i}\right)$ and note that max value obtainable is $\leq V n$

Dynamic Programming Approach

- Let $\operatorname{vknap}(i, v)$ be the minimum weight required to achieve a value of at least v using items $1, \ldots, i$.
- Then

$$
v k n a p(1, v)= \begin{cases}w_{1} & \text { for } v \leq v_{1} \\ \infty & \text { for } v>v_{1}\end{cases}
$$

and

$$
\operatorname{vknap}(i+1, v)=\min \left\{v k n a p(i, v), v k n a p\left(i, v-v_{i+1}\right)+w_{i+1}\right\}
$$

where $\operatorname{vknap}(i, u)=0$ if $u<0$.

- Let $V=\max _{i}\left(v_{i}\right)$ and note that max value obtainable is $\leq V n$
- Dynamic programming solution has $O\left(n^{2} V\right)$ complexity

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime}
$$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime} \geq \sum_{i \in B} v_{i}^{\prime}
$$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime} \geq \sum_{i \in B} v_{i}^{\prime} \geq \sum_{i \in B}\left(v_{i}-2^{k}\right) \geq\left(\sum_{i \in B} v_{i}\right)-2^{k} n
$$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime} \geq \sum_{i \in B} v_{i}^{\prime} \geq \sum_{i \in B}\left(v_{i}-2^{k}\right) \geq\left(\sum_{i \in B} v_{i}\right)-2^{k} n
$$

2. Therefore

$$
\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq \frac{\sum_{i \in B} v_{i}}{\left(\sum_{i \in B} v_{i}\right)-2^{k} n}
$$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime} \geq \sum_{i \in B} v_{i}^{\prime} \geq \sum_{i \in B}\left(v_{i}-2^{k}\right) \geq\left(\sum_{i \in B} v_{i}\right)-2^{k} n
$$

2. Therefore

$$
\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq \frac{\sum_{i \in B} v_{i}}{\left(\sum_{i \in B} v_{i}\right)-2^{k} n}=1+\frac{2^{k} n}{\left(\sum_{i \in B} v_{i}\right)-2^{k} n}
$$

Approximation Algorithm

1. New values: Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero.
2. Run dynamic programming solution with the new values

Lemma
If B^{\prime} be set returned and let B be the optimal set: $\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}$
Proof.

1. Since B^{\prime} is optimal for new values:

$$
\sum_{i \in B^{\prime}} v_{i} \geq \sum_{i \in B^{\prime}} v_{i}^{\prime} \geq \sum_{i \in B} v_{i}^{\prime} \geq \sum_{i \in B}\left(v_{i}-2^{k}\right) \geq\left(\sum_{i \in B} v_{i}\right)-2^{k} n
$$

2. Therefore

$$
\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq \frac{\sum_{i \in B} v_{i}}{\left(\sum_{i \in B} v_{i}\right)-2^{k} n}=1+\frac{2^{k} n}{\left(\sum_{i \in B} v_{i}\right)-2^{k} n} \leq 1+\frac{2^{k} n}{V-2^{k} n}
$$

Finishing off Analysis

Claim
If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

Finishing off Analysis

Claim
If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$

Finishing off Analysis

Claim

If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$
2. Solve for v^{\prime} by solving for another set of values $v^{\prime \prime}$ where

$$
v_{i}^{\prime \prime}=v_{i}^{\prime} / 2^{k}
$$

Finishing off Analysis

Claim

If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$
2. Solve for v^{\prime} by solving for another set of values $v^{\prime \prime}$ where

$$
v_{i}^{\prime \prime}=v_{i}^{\prime} / 2^{k}
$$

3. The maximum value for $v^{\prime \prime}$ satisfies:

$$
\max v_{i}^{\prime \prime} \leq V / 2^{k} \leq 2 V /(\epsilon V /(2 n))=4 n / \epsilon
$$

so the run time is $O\left(n^{3} / \epsilon\right)$

Summary of Approximation Algorithms

- Algorithms:
- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- $O(\log n)$-approximation for weighted set-cover
- FPTAS for knapsack

Summary of Approximation Algorithms

- Algorithms:
- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- $O(\log n)$-approximation for weighted set-cover
- FPTAS for knapsack
- A poly-time reduction may not be "approximation preserving"

Summary of Approximation Algorithms

- Algorithms:
- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- $O(\log n)$-approximation for weighted set-cover
- FPTAS for knapsack
- A poly-time reduction may not be "approximation preserving"
- For a reference of what approximation factors are known check out: http://www.csc.kth.se/~viggo/wwwcompendium/

Alternative Approaches to NP-hard problems

- Restrict the input:
- Assuming input graph is acyclic, of bounded degree, or planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Alternative Approaches to NP-hard problems

- Restrict the input:
- Assuming input graph is acyclic, of bounded degree, or planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Definition

An algorithm runs in pseudo-polynomial time if the running time is polynomial in the input size and any integer in the input.

Alternative Approaches to NP-hard problems

- Restrict the input:
- Assuming input graph is acyclic, of bounded degree, or planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Definition

An algorithm runs in pseudo-polynomial time if the running time is polynomial in the input size and any integer in the input.

Definition

A problem is strongly NP-complete if it remains NP-complete even when all integers in an input of length n are polynomial in n

