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» Input: Weighted complete graph G = (V/, E) with positive weights
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» Goal: Find the tour (a path that visits every node exactly once and
returns to starting point) of minimum total weight.
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Definition
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Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly
once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has

even degree.
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Metric TSP Approximation Algorithm

Algorithm
1. Compute minimum spanning tree T of G
. Let D be the nodes in Ts that have odd degree
. Find minimum cost perfect matching M on nodes of D
. Find Euler tour of Tper + M

. Transform into tour by short-cutting repeated vertices.

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

The result was first proved by Christofides in 1976. In 2020, Karlin,
Klein, and Gharan designed and analyzed a 3/2 — 1073° approximation!
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Analysis

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.

» Cost of tour found is at most cost of Euler tour
cost(tour found) < cost(Euler tour) = cost( Tpnst) + cost(M)

> As before, cost( Tps:) < cost(optimal tour)
» Cost of M is at most half cost of optimal tour

cost(M) < cost(optimal tour)/2

Let D ={di,...,dk} be ordered according to optimal tour.

cost(optimal tour) > Wy .d, + Wapds + - - - + W, .y

= (Wd1-,d2 + Wdydy + - de—lvdk) +

(Wap,ds + Wayds + - - - Waly. 1)
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PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered 1,2, ..., n, where each the /-th item
has weight w; and value v;. C is the capacity of your knapsack.
(Assume each w; < C.)

2. Goal: Find a subset B of the items with maximum total value
subject to ) ;. pw; < C.
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of at least v using items 1,.
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Dynamic Programming Approach

Let vknap(i, v) be the minimum welght required to achieve a value
of at least v using items 1,.

Then
wp forv<wy

vknap(1,v) = {

oo forv>w
and
vknap(i + 1,v) = min{vknap(i, v), vknap(i, v — vit1) + w1}

where vknap(i,u) =0 if u < 0.
Let V = max;(v;) and note that max value obtainable is < Vn
Dynamic programming solution has O(n?V) complexity
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Approximation Algorithm

1. New values: Define v/ by setting k lowest order bits of v; to zero.
2. Run dynamic programming solution with the new values

Lemma
If B' be set returned and let B be the optimal set: ZZ:’EB - <1 +v

ies’ vi — n2k
Proof.

1. Since B’ is optimal for new values:

Dovizd vz vi=y (vi-29> (Zv,-) —2kn

ieB’ ieB’ ieB ieB ieB

2. Therefore

. ; . . k k
2icp Y < 2icg =1+ 2n <1+ 2 nk
ZieB’ Vi (ZIGB Vi) —2kn (ZieB v,-) —2kn V —2kn

O




Finishing off Analysis

Claim k
If k <log(eV/(2n)) and € <1 then 1 + 5= < 1+e.
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Finishing off Analysis

Claim k
If k <log(eV/(2n)) and e <1 then 1+ 22— <1+e.

1. Let k = [log(eV//(2n))]
2. Solve for v/ by solving for another set of values v"’ where

=2

3. The maximum value for v/’ satisfies:
max v/ < V/2X <2V/(eV/(2n)) = 4n/e

so the run time is O(n%/e)




Summary of Approximation Algorithms

» Algorithms:

>

2-approximation for vertex cover
2-approximation for max-cut
3/2-approximation for metric traveling salesperson

O(log n)-approximation for weighted set-cover
FPTAS for knapsack
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Summary of Approximation Algorithms

» Algorithms:

> 2-approximation for vertex cover

» 2-approximation for max-cut

» 3/2-approximation for metric traveling salesperson
» O(log n)-approximation for weighted set-cover

» FPTAS for knapsack

» A poly-time reduction may not be “approximation preserving”
» For a reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/
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Alternative Approaches to NP-hard problems

» Restrict the input:

» Assuming input graph is acyclic, of bounded degree, or planar
» Solving metric TSP where the points are in Euclidean space

» Assume a probability distribution over input: Average case analysis

» Assume all integers in the input are polynomial in the input size. ..
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Alternative Approaches to NP-hard problems

» Restrict the input:
» Assuming input graph is acyclic, of bounded degree, or planar
» Solving metric TSP where the points are in Euclidean space
» Assume a probability distribution over input: Average case analysis

» Assume all integers in the input are polynomial in the input size. ..

Definition
An algorithm runs in pseudo-polynomial time if the running time is
polynomial in the input size and any integer in the input.

Definition
A problem is strongly NP-complete if it remains NP-complete even when
all integers in an input of length n are polynomial in n
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