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Metric Traveling Salesperson Problem

I Input: Weighted complete graph G = (V ,E ) with positive weights
such that for edges e = (u, v), e′ = (v ,w), and e′′ = (u,w)

we + we′ ≥ we′′

I Goal: Find the tour (a path that visits every node exactly once and
returns to starting point) of minimum total weight.
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Eulerian Tours

Definition
A Eulerian tour is a path that traverses every edge of a graph exactly
once and returns back to the initial vertex.

Lemma
A graph contains an Eulerian tour iff G is connected and every vertex has
even degree.
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Metric TSP Approximation Algorithm

Algorithm

1. Compute minimum spanning tree Tmst of G

2. Let D be the nodes in Tmst that have odd degree

3. Find minimum cost perfect matching M on nodes of D

4. Find Euler tour of Tmst + M

5. Transform into tour by short-cutting repeated vertices.

Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

The result was first proved by Christofides in 1976. In 2020, Karlin,
Klein, and Gharan designed and analyzed a 3/2− 10−36 approximation!
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Analysis
Theorem
The algorithm is a 3/2-approximation and runs in polynomial time.

Proof.
I Cost of tour found is at most cost of Euler tour

cost(tour found) ≤ cost(Euler tour) = cost(Tmst) + cost(M)

I As before, cost(Tmst) ≤ cost(optimal tour)

I Cost of M is at most half cost of optimal tour

cost(M) ≤ cost(optimal tour)/2

Let D = {d1, . . . , dk} be ordered according to optimal tour.

cost(optimal tour) ≥ wd1,d2 + wd2,d3 + . . .+ wdk ,d1

= (wd1,d2 + wd3,d4 + . . .wdk−1,dk ) +

(wd2,d3 + wd4,d5 + . . .wdk ,d1)
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PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered 1, 2, . . . , n, where each the i-th item
has weight wi and value vi . C is the capacity of your knapsack.
(Assume each wi ≤ C .)

2. Goal: Find a subset B of the items with maximum total value
subject to

∑
i∈B wi ≤ C .
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Dynamic Programming Approach

I Let vknap(i , v) be the minimum weight required to achieve a value
of at least v using items 1, . . . , i .

I Then

vknap(1, v) =

{
w1 for v ≤ v1

∞ for v > v1

and

vknap(i + 1, v) = min{vknap(i , v), vknap(i , v − vi+1) + wi+1}

where vknap(i , u) = 0 if u < 0.

I Let V = maxi (vi ) and note that max value obtainable is ≤ Vn

I Dynamic programming solution has O(n2V ) complexity
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Approximation Algorithm
1. New values: Define v ′i by setting k lowest order bits of vi to zero.

2. Run dynamic programming solution with the new values

Lemma
If B ′ be set returned and let B be the optimal set:

∑
i∈B vi∑
i∈B′ vi

≤ 1 + n2k

V−n2k

Proof.
1. Since B ′ is optimal for new values:

∑
i∈B′

vi ≥
∑
i∈B′

v ′i ≥
∑
i∈B

v ′i ≥
∑
i∈B

(vi − 2k) ≥

(∑
i∈B

vi

)
− 2kn

2. Therefore∑
i∈B vi∑
i∈B′ vi

≤
∑

i∈B vi(∑
i∈B vi

)
− 2kn

= 1+
2kn(∑

i∈B vi
)
− 2kn

≤ 1+
2kn

V − 2kn
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Finishing off Analysis

Claim
If k ≤ log(εV /(2n)) and ε ≤ 1 then 1 + 2kn

V−2kn ≤ 1 + ε.

1. Let k = blog(εV /(2n))c
2. Solve for v ′ by solving for another set of values v ′′ where

v ′′i = v ′i /2k

3. The maximum value for v ′′ satisfies:

max v ′′i ≤ V /2k ≤ 2V /(εV /(2n)) = 4n/ε

so the run time is O(n3/ε)
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Summary of Approximation Algorithms

I Algorithms:
I 2-approximation for vertex cover
I 2-approximation for max-cut
I 3/2-approximation for metric traveling salesperson
I O(log n)-approximation for weighted set-cover
I FPTAS for knapsack

I A poly-time reduction may not be “approximation preserving”

I For a reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/
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Alternative Approaches to NP-hard problems

I Restrict the input:
I Assuming input graph is acyclic, of bounded degree, or planar
I Solving metric TSP where the points are in Euclidean space

I Assume a probability distribution over input: Average case analysis

I Assume all integers in the input are polynomial in the input size. . .

Definition
An algorithm runs in pseudo-polynomial time if the running time is
polynomial in the input size and any integer in the input.

Definition
A problem is strongly NP-complete if it remains NP-complete even when
all integers in an input of length n are polynomial in n
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