CMPSCI 611: Advanced Algorithms Lecture 21: Reductions and Finishing Approximation Algorithms

Andrew McGregor

Last Compiled: February 1, 2024

Outline

Finishing Approximation Algorithms

Polynomial Time Reductions

General Knapsack Problem:

Input: A set of items numbered 1, 2, ..., n, where each the *i*-th item has weight w_i and value v_i. C is the capacity of your knapsack. (Assume each w_i ≤ C.)

General Knapsack Problem:

- Input: A set of items numbered 1, 2, ..., n, where each the *i*-th item has weight w_i and value v_i. C is the capacity of your knapsack. (Assume each w_i ≤ C.)
- 2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

General Knapsack Problem:

- Input: A set of items numbered 1, 2, ..., n, where each the *i*-th item has weight w_i and value v_i. C is the capacity of your knapsack. (Assume each w_i ≤ C.)
- 2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

Last time we showed:

General Knapsack Problem:

- Input: A set of items numbered 1, 2, ..., n, where each the *i*-th item has weight w_i and value v_i. C is the capacity of your knapsack. (Assume each w_i ≤ C.)
- 2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

Last time we showed:

1. Dynamic programming algorithm taking $O(n^2V)$ time where $V = \max_i v_i$.

General Knapsack Problem:

- Input: A set of items numbered 1, 2, ..., n, where each the *i*-th item has weight w_i and value v_i. C is the capacity of your knapsack. (Assume each w_i ≤ C.)
- 2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_i \leq C$.

Last time we showed:

- 1. Dynamic programming algorithm taking $O(n^2V)$ time where $V = \max_i v_i$.
- Define v'_i by setting k lowest order bits of v_i to zero. Use the dynamic program to find the best set B' with respect to the values v'_i. Then,

$$\frac{\sum_{i\in B} v_i}{\sum_{i\in B'} v_i} \le 1 + \frac{n2^k}{V - n2^k}$$

where B be the optimal set.

Claim If $k \leq \log(\epsilon V/(2n))$ and $\epsilon \leq 1$ then $1 + \frac{2^k n}{V - 2^k n} \leq 1 + \epsilon$.

Claim
If
$$k \leq \log(\epsilon V/(2n))$$
 and $\epsilon \leq 1$ then $1 + \frac{2^k n}{V - 2^k n} \leq 1 + \epsilon$.
1. Let $k = \lfloor \log(\epsilon V/(2n)) \rfloor$

Claim If $k \leq \log(\epsilon V/(2n))$ and $\epsilon \leq 1$ then $1 + \frac{2^k n}{V-2^k n} \leq 1 + \epsilon$.

- 1. Let $k = \lfloor \log(\epsilon V/(2n)) \rfloor$
- 2. Solve for v' by solving for another set of values v'' where

$$v_i^{\prime\prime} = v_i^{\prime}/2^k$$

Claim
If
$$k \leq \log(\epsilon V/(2n))$$
 and $\epsilon \leq 1$ then $1 + \frac{2^k n}{V-2^k n} \leq 1 + \epsilon$.

- 1. Let $k = \lfloor \log(\epsilon V/(2n)) \rfloor$
- 2. Solve for v' by solving for another set of values v'' where

$$v_i'' = v_i'/2^k$$

3. The maximum value for v'' satisfies:

$$\max v_i'' \le V/2^k \le 2V/(\epsilon V/(2n)) = 4n/\epsilon$$

so the run time is $O(n^3/\epsilon)$

Summary of Approximation Algorithms

Algorithms:

- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- O(log n)-approximation for weighted set-cover
- FPTAS for knapsack

Summary of Approximation Algorithms

Algorithms:

- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- O(log n)-approximation for weighted set-cover
- FPTAS for knapsack

▶ For a reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/

Alternative Approaches to "hard" problems

Restrict the input:

- Assuming input graph is acyclic, has bounded degree, is planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Alternative Approaches to "hard" problems

Restrict the input:

- Assuming input graph is acyclic, has bounded degree, is planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Definition

An algorithm runs in *pseudo-polynomial time* if the running time is polynomial in the input size and any integer in the input.

Outline

Finishing Approximation Algorithms

Polynomial Time Reductions

Problem 1: Clique

Definition

A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

Problem 1: Clique

Definition

A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

▶ Input: Given graph G = (V, E) and integer k.

Problem 1: Clique

Definition

A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- Input: Given graph G = (V, E) and integer k.
- Question: Does G contain a clique of size k?

▶ Input: A boolean formula $\phi(x_1, ..., x_n)$ in conjunctive normal form with *m* clauses and 3 literals per clause, e.g.,

 $(x_1 \lor \bar{x_2} \lor x_3) \land (\bar{x_1} \lor x_2 \lor \bar{x_3})$

where \bar{x}_i is "not x_i ", \wedge is "and", \vee is "or." We call x_i and \bar{x}_i *literals*.

▶ Input: A boolean formula $\phi(x_1, ..., x_n)$ in *conjunctive normal form* with *m* clauses and 3 literals per clause, e.g.,

 $(x_1 \lor \bar{x_2} \lor x_3) \land (\bar{x_1} \lor x_2 \lor \bar{x_3})$

where \bar{x}_i is "not x_i ", \wedge is "and", \vee is "or." We call x_i and \bar{x}_i *literals*.

Question: Is there a setting of each x_i to TRUE or FALSE such that the formula is satisfied.

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

 $\phi = (I_{1,1} \lor I_{1,2} \lor I_{1,3}) \land (I_{2,1} \lor I_{2,2} \lor I_{2,3}) \land \ldots \land (I_{m,1} \lor I_{m,2} \lor I_{m,3})$

in poly-time, we can construct $G_{\phi} = (V_{\phi}, E_{\phi})$:

 $V_{\phi} = \{l_{i,j} : i \in [m], j \in [3]\}$ $E_{\phi} = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \bar{l}_{k,l}\}$

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

 $\phi = (I_{1,1} \lor I_{1,2} \lor I_{1,3}) \land (I_{2,1} \lor I_{2,2} \lor I_{2,3}) \land \ldots \land (I_{m,1} \lor I_{m,2} \lor I_{m,3})$

in poly-time, we can construct $G_{\phi} = (V_{\phi}, E_{\phi})$:

$$V_{\phi} = \{l_{i,j} : i \in [m], j \in [3]\}$$
$$E_{\phi} = \{(l_{i,j}, l_{k,l}) : i, k \in [m], j \in [3], i \neq k, l_{i,j} \neq \overline{l}_{k,l}\}$$

We'll show ϕ is satisfiable iff G_{ϕ} has a clique of size m

11/12

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

 $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause$

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

- $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause }$
- 2. Pick one true literal per clause: let Y be set of corresponding nodes

ϕ is satisfiable iff \mathcal{G}_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

- $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause }$
- 2. Pick one true literal per clause: let Y be set of corresponding nodes
- 3. $G_{\phi}[Y]$ is a clique because x_k and \bar{x}_k can't both be in Y for any k

 ϕ is satisfiable iff \mathcal{G}_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

 $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause }$

- 2. Pick one true literal per clause: let Y be set of corresponding nodes
- 3. $G_{\phi}[Y]$ is a clique because x_k and \bar{x}_k can't both be in Y for any k

Suppose G_{ϕ} has a clique of size *m*:

1. Let Y be the clique of size m

 ϕ is satisfiable iff \mathcal{G}_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

- $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause }$
- 2. Pick one true literal per clause: let Y be set of corresponding nodes
- 3. $G_{\phi}[Y]$ is a clique because x_k and \bar{x}_k can't both be in Y for any k

Suppose G_{ϕ} has a clique of size *m*:

- 1. Let Y be the clique of size m
- 2. For each clause:
 - Exactly one node I from i-th clause is in Y

 ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

- $1. \ \mbox{In a satisfying assignment, at least one literal is true in each clause }$
- 2. Pick one true literal per clause: let Y be set of corresponding nodes
- 3. $G_{\phi}[Y]$ is a clique because x_k and \bar{x}_k can't both be in Y for any k

Suppose G_{ϕ} has a clique of size *m*:

- 1. Let Y be the clique of size m
- 2. For each clause:
 - Exactly one node I from i-th clause is in Y
 - Set x_k = TRUE if $I = x_k$ and set x_k = FALSE if $I = \bar{x}_k$
- 3. We can't set x_k to be true and false because literals x_k and \bar{x}_k can't both be in Y