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PTAS for Knapsack Problem
General Knapsack Problem:

1. Input: A set of items numbered 1, 2, . . . , n, where each the i-th item
has weight wi and value vi . C is the capacity of your knapsack.
(Assume each wi ≤ C .)

2. Goal: Find a subset B of the items with maximum total value
subject to

∑
i∈B wi ≤ C .

Last time we showed:

1. Dynamic programming algorithm taking O(n2V ) time where
V = maxi vi .

2. Define v ′i by setting k lowest order bits of vi to zero. Use the
dynamic program to find the best set B ′ with respect to the values
v ′i . Then, ∑

i∈B vi∑
i∈B′ vi

≤ 1 +
n2k

V − n2k

where B be the optimal set.
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Finishing off Analysis

Claim
If k ≤ log(εV /(2n)) and ε ≤ 1 then 1 + 2kn

V−2kn ≤ 1 + ε.

1. Let k = blog(εV /(2n))c
2. Solve for v ′ by solving for another set of values v ′′ where

v ′′i = v ′i /2k

3. The maximum value for v ′′ satisfies:

max v ′′i ≤ V /2k ≤ 2V /(εV /(2n)) = 4n/ε

so the run time is O(n3/ε)
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Summary of Approximation Algorithms

I Algorithms:
I 2-approximation for vertex cover
I 2-approximation for max-cut
I 3/2-approximation for metric traveling salesperson
I O(log n)-approximation for weighted set-cover
I FPTAS for knapsack

I For a reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/
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Alternative Approaches to “hard” problems

I Restrict the input:
I Assuming input graph is acyclic, has bounded degree, is planar
I Solving metric TSP where the points are in Euclidean space

I Assume a probability distribution over input: Average case analysis

I Assume all integers in the input are polynomial in the input size. . .

Definition
An algorithm runs in pseudo-polynomial time if the running time is
polynomial in the input size and any integer in the input.
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Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G
with k vertices.

I Input: Given graph G = (V ,E ) and integer k.

I Question: Does G contain a clique of size k?
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Problem 2: 3-SAT

I Input: A boolean formula φ(x1, . . . , xn) in conjunctive normal form
with m clauses and 3 literals per clause, e.g.,

(x1 ∨ x̄2 ∨ x3) ∧ (x̄1 ∨ x2 ∨ x̄3)

where x̄i is “not xi”, ∧ is “and”, ∨ is “or.” We call xi and x̄i literals.

I Question: Is there a setting of each xi to TRUE or FALSE such that
the formula is satisfied.
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A Polynomial Time Reduction for 3-SAT to Clique

We’ll show that if you have a polynomial time algorithm for Clique, then
you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

φ = (l1,1 ∨ l1,2 ∨ l1,3) ∧ (l2,1 ∨ l2,2 ∨ l2,3) ∧ . . . ∧ (lm,1 ∨ lm,2 ∨ lm,3)

in poly-time, we can construct Gφ = (Vφ,Eφ):

Vφ = {li,j : i ∈ [m], j ∈ [3]}

Eφ = {(li,j , lk,l) : i , k ∈ [m], j ∈ [3], i 6= k, li,j 6= l̄k,l}

We’ll show φ is satisfiable iff Gφ has a clique of size m
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φ is satisfiable iff Gφ has a clique of size m

Suppose φ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause

2. Pick one true literal per clause: let Y be set of corresponding nodes

3. Gφ[Y ] is a clique because xk and x̄k can’t both be in Y for any k

Suppose Gφ has a clique of size m:

1. Let Y be the clique of size m

2. For each clause:
I Exactly one node l from i-th clause is in Y
I Set xk = TRUE if l = xk and set xk = FALSE if l = x̄k

3. We can’t set xk to be true and false because literals xk and x̄k can’t
both be in Y
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