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Finishing Approximation Algorithms
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has weight w; and value v;. C is the capacity of your knapsack.
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PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered 1,2, ..., n, where each the i-th item
has weight w; and value v;. C is the capacity of your knapsack.
(Assume each w; < C.)

2. Goal: Find a subset B of the items with maximum total value
subject to ;. pw; < C.

Last time we showed:
1. Dynamic programming algorithm taking O(n?V) time where
V = max; v;.
. Define v/ by setting k lowest order bits of v; to zero. Use the
dynamic program to find the best set B’ with respect to the values
/!
v;. Then,

>icg Vi <1+ n2*
Yicp Vi V — n2k

where B be the optimal set.




Finishing off Analysis

Claim k
If k <log(eV/(2n)) and € <1 then 1 + 5= < 1+e.
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Finishing off Analysis

Claim k
If k <log(eV/(2n)) and e <1 then 1+ 22— <1+e.

1. Let k = [log(eV//(2n))]
2. Solve for v/ by solving for another set of values v"’ where

=2

3. The maximum value for v/’ satisfies:
max v/ < V/2X <2V/(eV/(2n)) = 4n/e

so the run time is O(n%/e)




Summary of Approximation Algorithms

» Algorithms:

>

2-approximation for vertex cover

2-approximation for max-cut

3/2-approximation for metric traveling salesperson
O(log n)-approximation for weighted set-cover
FPTAS for knapsack
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Summary of Approximation Algorithms

» Algorithms:
> 2-approximation for vertex cover
» 2-approximation for max-cut
» 3/2-approximation for metric traveling salesperson
» O(log n)-approximation for weighted set-cover
» FPTAS for knapsack

» For a reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/
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Alternative Approaches to “hard” problems

» Restrict the input:

» Assuming input graph is acyclic, has bounded degree, is planar
» Solving metric TSP where the points are in Euclidean space

> Assume a probability distribution over input: Average case analysis
» Assume all integers in the input are polynomial in the input size. . .




Alternative Approaches to “hard” problems

» Restrict the input:

» Assuming input graph is acyclic, has bounded degree, is planar
» Solving metric TSP where the points are in Euclidean space

> Assume a probability distribution over input: Average case analysis
» Assume all integers in the input are polynomial in the input size. . .
Definition
An algorithm runs in pseudo-polynomial time if the running time is
polynomial in the input size and any integer in the input.
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Polynomial Time Reductions




Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G
with k vertices.
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Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G
with k vertices.

» Input: Given graph G = (V, E) and integer k.

» Question: Does G contain a clique of size k?




Problem 2: 3-SAT

» Input: A boolean formula ¢(xi, ..., X,) in conjunctive normal form
with m clauses and 3 literals per clause, e.g.,
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where X; is “not x;", Ais “and”, V is “or.” We call x; and X; literals.




Problem 2: 3-SAT

» Input: A boolean formula ¢(xi, ..., X,) in conjunctive normal form
with m clauses and 3 literals per clause, e.g.,

(X1\/)?2\/X3)/\()?1 V Xo \/)?3)

where X; is “not x;", Ais “and”, V is “or.” We call x; and X; literals.

» Question: Is there a setting of each x; to TRUE or FALSE such that
the formula is satisfied.




A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then
you also have a polynomial time algorithm for 3-SAT.
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¢ is satisfiable iff G4 has a clique of size m

Suppose ¢ is satisfiable:
1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes

3. Gy[Y] is a clique because x, and Xi can’t both be in Y for any k

Suppose Gy has a clique of size m:
1. Let Y be the clique of size m

2. For each clause:

» Exactly one node / from i-th clause is in Y
» Set xx = TRUE if | = x, and set xx = FALSE if | = X

3. We can't set x, to be true and false because literals x, and xx can’t
both be in Y
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