CMPSCI 611: Advanced Algorithms

Lecture 21: Reductions and Finishing Approximation Algorithms

Andrew McGregor

Outline

Finishing Approximation Algorithms

Polynomial Time Reductions

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value $v_{i} . C$ is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value $v_{i} . C$ is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_{i} \leq C$.

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value $v_{i} . C$ is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_{i} \leq C$.

Last time we showed:

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value $v_{i} . C$ is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_{i} \leq C$.

Last time we showed:

1. Dynamic programming algorithm taking $O\left(n^{2} V\right)$ time where $V=\max _{i} v_{i}$.

PTAS for Knapsack Problem

General Knapsack Problem:

1. Input: A set of items numbered $1,2, \ldots, n$, where each the i-th item has weight w_{i} and value $v_{i} . C$ is the capacity of your knapsack. (Assume each $w_{i} \leq C$.)
2. Goal: Find a subset B of the items with maximum total value subject to $\sum_{i \in B} w_{i} \leq C$.

Last time we showed:

1. Dynamic programming algorithm taking $O\left(n^{2} V\right)$ time where $V=\max _{i} v_{i}$.
2. Define v_{i}^{\prime} by setting k lowest order bits of v_{i} to zero. Use the dynamic program to find the best set B^{\prime} with respect to the values v_{i}^{\prime}. Then,

$$
\frac{\sum_{i \in B} v_{i}}{\sum_{i \in B^{\prime}} v_{i}} \leq 1+\frac{n 2^{k}}{V-n 2^{k}}
$$

where B be the optimal set.

Finishing off Analysis

Claim
If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

Finishing off Analysis

Claim
If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$

Finishing off Analysis

Claim

If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$
2. Solve for v^{\prime} by solving for another set of values $v^{\prime \prime}$ where

$$
v_{i}^{\prime \prime}=v_{i}^{\prime} / 2^{k}
$$

Finishing off Analysis

Claim

If $k \leq \log (\epsilon V /(2 n))$ and $\epsilon \leq 1$ then $1+\frac{2^{k} n}{V-2^{k} n} \leq 1+\epsilon$.

1. Let $k=\lfloor\log (\epsilon V /(2 n))\rfloor$
2. Solve for v^{\prime} by solving for another set of values $v^{\prime \prime}$ where

$$
v_{i}^{\prime \prime}=v_{i}^{\prime} / 2^{k}
$$

3. The maximum value for $v^{\prime \prime}$ satisfies:

$$
\max v_{i}^{\prime \prime} \leq V / 2^{k} \leq 2 V /(\epsilon V /(2 n))=4 n / \epsilon
$$

so the run time is $O\left(n^{3} / \epsilon\right)$

Summary of Approximation Algorithms

- Algorithms:
- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- $O(\log n)$-approximation for weighted set-cover
- FPTAS for knapsack

Summary of Approximation Algorithms

- Algorithms:
- 2-approximation for vertex cover
- 2-approximation for max-cut
- 3/2-approximation for metric traveling salesperson
- $O(\log n)$-approximation for weighted set-cover
- FPTAS for knapsack
- For a reference of what approximation factors are known check out: http://www.csc.kth.se/~viggo/wwwcompendium/

Alternative Approaches to "hard" problems

- Restrict the input:
- Assuming input graph is acyclic, has bounded degree, is planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Alternative Approaches to "hard" problems

- Restrict the input:
- Assuming input graph is acyclic, has bounded degree, is planar
- Solving metric TSP where the points are in Euclidean space
- Assume a probability distribution over input: Average case analysis
- Assume all integers in the input are polynomial in the input size...

Definition

An algorithm runs in pseudo-polynomial time if the running time is polynomial in the input size and any integer in the input.

Outline

Finishing Approximation Algorithms

Polynomial Time Reductions

Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

Problem 1: Clique

Definition

A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- Input: Given graph $G=(V, E)$ and integer k.

Problem 1: Clique

Definition
A clique of size k in a graph G is a completely connected subgraph of G with k vertices.

- Input: Given graph $G=(V, E)$ and integer k.
- Question: Does G contain a clique of size k ?

Problem 2: 3-SAT

- Input: A boolean formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ in conjunctive normal form with m clauses and 3 literals per clause, e.g.,

$$
\left(x_{1} \vee \overline{x_{2}} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \bar{x}_{3}\right)
$$

where \bar{x}_{i} is "not x_{i}^{\prime} ", \wedge is "and", \vee is "or." We call x_{i} and \bar{x}_{i} literals.

Problem 2: 3-SAT

- Input: A boolean formula $\phi\left(x_{1}, \ldots, x_{n}\right)$ in conjunctive normal form with m clauses and 3 literals per clause, e.g.,

$$
\left(x_{1} \vee \bar{x}_{2} \vee x_{3}\right) \wedge\left(\overline{x_{1}} \vee x_{2} \vee \bar{x}_{3}\right)
$$

where \bar{x}_{i} is "not x_{i}^{\prime} ", \wedge is "and", \vee is "or." We call x_{i} and \bar{x}_{i} literals.

- Question: Is there a setting of each x_{i} to TRUE or FALSE such that the formula is satisfied.

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

$$
\phi=\left(I_{1,1} \vee I_{1,2} \vee I_{1,3}\right) \wedge\left(I_{2,1} \vee I_{2,2} \vee I_{2,3}\right) \wedge \ldots \wedge\left(I_{m, 1} \vee I_{m, 2} \vee I_{m, 3}\right)
$$

in poly-time, we can construct $G_{\phi}=\left(V_{\phi}, E_{\phi}\right)$:

$$
\begin{gathered}
V_{\phi}=\left\{I_{i, j}: i \in[m], j \in[3]\right\} \\
E_{\phi}=\left\{\left(I_{i, j}, l_{k, l}\right): i, k \in[m], j \in[3], i \neq k, I_{i, j} \neq \bar{I}_{k, l}\right\}
\end{gathered}
$$

A Polynomial Time Reduction for 3-SAT to Clique

We'll show that if you have a polynomial time algorithm for Clique, then you also have a polynomial time algorithm for 3-SAT.

Given formula 3-SAT

$$
\phi=\left(I_{1,1} \vee I_{1,2} \vee I_{1,3}\right) \wedge\left(I_{2,1} \vee I_{2,2} \vee I_{2,3}\right) \wedge \ldots \wedge\left(I_{m, 1} \vee I_{m, 2} \vee I_{m, 3}\right)
$$

in poly-time, we can construct $G_{\phi}=\left(V_{\phi}, E_{\phi}\right)$:

$$
\begin{gathered}
V_{\phi}=\left\{I_{i, j}: i \in[m], j \in[3]\right\} \\
E_{\phi}=\left\{\left(l_{i, j}, l_{k, l}\right): i, k \in[m], j \in[3], i \neq k, l_{i, j} \neq \bar{I}_{k, l}\right\}
\end{gathered}
$$

We'll show ϕ is satisfiable iff G_{ϕ} has a clique of size m
ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes
3. $G_{\phi}[Y]$ is a clique because x_{k} and \bar{x}_{k} can't both be in Y for any k

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes
3. $G_{\phi}[Y]$ is a clique because x_{k} and \bar{x}_{k} can't both be in Y for any k

Suppose G_{ϕ} has a clique of size m :

1. Let Y be the clique of size m

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes
3. $G_{\phi}[Y]$ is a clique because x_{k} and \bar{x}_{k} can't both be in Y for any k

Suppose G_{ϕ} has a clique of size m :

1. Let Y be the clique of size m
2. For each clause:

- Exactly one node I from i-th clause is in Y

ϕ is satisfiable iff G_{ϕ} has a clique of size m

Suppose ϕ is satisfiable:

1. In a satisfying assignment, at least one literal is true in each clause
2. Pick one true literal per clause: let Y be set of corresponding nodes
3. $G_{\phi}[Y]$ is a clique because x_{k} and \bar{x}_{k} can't both be in Y for any k

Suppose G_{ϕ} has a clique of size m :

1. Let Y be the clique of size m
2. For each clause:

- Exactly one node I from i-th clause is in Y
- Set $x_{k}=$ TRUE if $I=x_{k}$ and set $x_{k}=$ FALSE if $I=\bar{x}_{k}$

3. We can't set x_{k} to be true and false because literals x_{k} and \bar{x}_{k} can't both be in Y
