CMPSCI 611: Advanced Algorithms Lecture 22: NP-Completeness

Andrew McGregor

Last Compiled: February 1, 2024

Polynomial Time Reduction

Definition

 Π is a decision problem if it only has a "yes" or "no" answer.

Definition

Given two decision problems Π_1, Π_2 we say Π_2 is polynomial time reducible to Π_1 iff there exists a polynomial time algorithm f that transforms any instance X of Π_2 to an instance f(X) of Π_1 such that:

(X is a "yes" instance of
$$\Pi_2$$
) \iff ($f(X)$ is a "yes" instance of Π_1)

We write $\Pi_2 \leq_p \Pi_1$ to denote " Π_2 is polynomial time reducible to Π_1 ".

Some Examples

▶ 3-SAT \leq_p CLIQUE

- We saw a reduction in the last lecture.
- ► INDEPENDENT-SET \leq_p CLIQUE
 - A graph G has an independent set of size k iff the complement of the graph G has a clique of size k.
- ▶ VERTEX-COVER \leq_p SET-COVER
 - A graph has a vertex cover of size k iff (S₁, S₂,..., S_n) has a set cover of size k where S_i is all edge incident to node i.
- ► VERTEX-COVER \leq_p INDEPENDENT-SET
 - ► A graph G has a vertex cover of size k iff G has an independent set of size n - k. (This follows because all the nodes not in a vertex cover form an independent set.)

Outline

NP Completeness

P and NP Definitions

Definition (P) $\Pi \in P$ iff there exists a polynomial time algorithm A such that:

$$(X \text{ is a "yes" instance of } \Pi) \iff (A(X) = "yes")$$

Definition (NP)

 $\Pi \in NP$ iff there exists a polynomial time algorithm A whose input has two parts, the input to Π and some extra "advice" (also known as a "certificate" or "witness"), such that:

(X is a "yes" instance of Π) \Longrightarrow ($\exists Y : |Y| = \text{poly}(|X|), A(X, Y) =$ "yes") (X is a "no" instance of Π) \Longrightarrow ($\exists Y : |Y| = \text{poly}(|X|), A(X, Y) =$ "yes")

Example: Clique

- Input: Given graph G = (V, E) and integer k.
- Question: Does G contain a clique of size k?

Lemma Clique is in NP.

Proof.

- 1. Suppose the witness Y encodes a set of k nodes in V and A(G, Y) checks if the induced graph on Y, G[Y] is a clique.
- 2. A is a polynomial time algorithm.
- 3. If there exists a clique of size k, there exists Y of size k such that A(G, Y) outputs "yes"
- If there doesn't exist a clique of size k, there doesn't exist Y of size k such that A(G, Y) outputs "yes"

Example for a problem that is not known to be in NP: Is a quantified boolean formula, e.g., $\forall x \exists y \exists z$, $((x \lor z) \land y)$, true?

NP-Completeness

Definition

A decision problem Π is NP-Hard iff for all $\Pi' \in NP$, $\Pi' \leq_P \Pi$.

Definition

A decision problem Π is NP-Complete iff it is both NP-Hard and in NP.

Remark 1: If Π is NP-Complete and $\Pi \in P$ then P = NP

Remark 2: In 1971, Cook showed 3-SAT is NP-Complete. Because

 $CLIQUE \in NP$ and $3-SAT \leq_P CLIQUE$

we now know CLIQUE is NP-Complete.

Summary of NP Completeness and Reductions

- 1. Decision problem Π is in P if there is a polynomial time algorithm that correctly answers Π
- 2. Decision problem Π is in *NP* if there is a polynomial time algorithm that takes advice:
 - If the answer should be "yes", then there exists advice that leads the algorithm to output "yes"
 - If the answer is "no", then there doesn't exist advice that would lead the algorithm to output "yes"
- 3. A problem Π is NP-hard if for any $\Pi' \in NP$: $\Pi' \leq_P \Pi$
- 4. A problem Π is NP-complete if $\Pi \in NP$ and Π is NP-hard
- 5. To show Π is NP-complete it suffices to show that
 - Π is in NP
 - ▶ $\Pi' \leq_P \Pi$ for some Π' that is already known to be NP-hard
- 6. It's widely believed the $P \neq NP$ but finding a polynomial time algorithm for any NP-hard problem would prove P = NP.