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Selling Chocolate

1. You run up a chocolate shop that sells “Choco” and ”Choco Deluxe”

2. You make $1 profit from Choco and $6 profit from Choco Deluxe

3. Daily demand is 200 bars of Choco and 300 bars of Choco Deluxe

4. Your factory can produce at most 400 bars of chocolate a day

5. To maximize profit, what should you order from the factory?
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Selling Chocolate: Linear Program
Let

x1 = number of bars of Choco ordered

x2 = number of bars of Choco Deluxe ordered

Objective:
max x1 + 6x2

Constraints:

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

Helpful to draw the “feasible region”. . .
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Concepts

Definition
A linear program is infeasible if the constraints are so tight that it is
impossible to satisfy all of them. E.g., x ≤ 1, x ≥ 2.

Definition
A linear program is unbounded if the constraints are so loose that it is
possible to achieve arbitrarily high objective values. E.g., max x1 + x2
subject to x1, x2 ≥ 0.

Theorem
If the linear program is feasible and bounded, the optimum is achieved at
a vertex of the feasible region.

Algorithm (Tedious Algorithm)
Compute the objective function at each vertex. . . but this may take
exponential time.
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Feasible Region with “Contour Lines”
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Better Algorithm: Simplex Algorithm
Simplex Algorithm was devised by George Dantzig in 1947. . .

Algorithm
Pick arbitrary vertex of the feasible region. Move to adjacent vertex with
better objective value. If no such vertex exists, terminate.

Not known to be polynomial time but very quick in practice. Polynomial
time algorithms do exist but are less used in practice.
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Selling Chocolate Again
I You chocolate shop launches a new product “Choco Supreme” that

gives $13 profit per bar

I Let x3 be the number of bars of Supreme manufactured
I Deluxe and Supreme use same packaging machine: x2 + 3x3 ≤ 600

Objective:
max x1 + 6x2 + 13x3

Constraints:

x1 ≤ 200

x2 ≤ 300

x1 + x2 + x3 ≤ 400

x2 + 3x3 ≤ 600

x1, x2, x3 ≥ 0

Need to visualize in 3D. . .
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How do we know that a solution is optimal?

1. Suppose you friend claims that $3100 is the optimum for

max x1 + 6x2 + 13x3

and that this is achieved with x1 = 0, x2 = 300, x3 = 100.

2. Revisit constraints to certify that solution if optimal:

x1 ≤ 200 (1)

x2 ≤ 300 (2)

x1 + x2 + x3 ≤ 400 (3)

x2 + 3x3 ≤ 600 (4)

3. Note that 0 · Eq. (1) + 1 · Eq. (2) + 1 · Eq. (3) + 4 · Eq. (4) is

x1 + 6x2 + 13x3 ≤ 3100

4. But how did we come up with the coefficients (0, 1, 1, 4)?
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Duality

I Back to simpler example: max x1 + 6x2 subject to

x1 ≤ 200

x2 ≤ 300

x1 + x2 ≤ 400

x1, x2 ≥ 0

I Claim that optimal solution has value 1900 where x1 = 100, x2 = 300

I Adding one copy of Eq. (1) and seven copies of Eq. (2) gives

x1 + 7x2 ≤ 2300

and so x1 + 6x2 ≤ 2300 because x1, x2 ≥ 0

I Adding five copies of Eq. (2) and one copy of Eq. (3) gives

x1 + 6x2 ≤ 1900
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More Duality
1. Trying to find multipliers that give good upper bound:

Multiplier Constraint
y1 x1 ≤ 200
y2 x2 ≤ 300
y3 x1 + x2 ≤ 400

gives inequality (y1 + y3)x1 + (y2 + y3)x2 ≤ 200y1 + 300y2 + 400y3.

2. If y1 + y3 ≥ 1, y2 + y3 ≥ 6, y1, y2, y3 ≥ 0, then an upper bound is

200y1 + 300y2 + 400y3

3. Finding best such upper bound is new LP!

Minimize: 200y1 + 300y2 + 400y3

subject to

y1 + y3 ≥ 1, y2 + y3 ≥ 6, y1, y2, y3 ≥ 0
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Duality in General

Primal and Dual Linear Programs:

Primal LP Dual LP

max cTx min yTb
Ax ≤ b yTA ≥ cT

x ≥ 0 y ≥ 0

Theorem
Let optprimal be optimal solution of Primal LP and let optdual be
optimal solution of Dual LP:

optprimal = optdual

and hence, any feasible solution of the dual LP upper bounds optprimal.
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