CMPSCI 611: Advanced Algorithms
 Lecture 23: Linear Programming and Duality

Andrew McGregor

Selling Chocolate

1. You run up a chocolate shop that sells "Choco" and "Choco Deluxe"

Selling Chocolate

1. You run up a chocolate shop that sells "Choco" and "Choco Deluxe"
2. You make $\$ 1$ profit from Choco and $\$ 6$ profit from Choco Deluxe

Selling Chocolate

1. You run up a chocolate shop that sells "Choco" and "Choco Deluxe"
2. You make $\$ 1$ profit from Choco and $\$ 6$ profit from Choco Deluxe
3. Daily demand is 200 bars of Choco and 300 bars of Choco Deluxe

Selling Chocolate

1. You run up a chocolate shop that sells "Choco" and "Choco Deluxe"
2. You make $\$ 1$ profit from Choco and $\$ 6$ profit from Choco Deluxe
3. Daily demand is 200 bars of Choco and 300 bars of Choco Deluxe
4. Your factory can produce at most 400 bars of chocolate a day

Selling Chocolate

1. You run up a chocolate shop that sells "Choco" and "Choco Deluxe"
2. You make $\$ 1$ profit from Choco and $\$ 6$ profit from Choco Deluxe
3. Daily demand is 200 bars of Choco and 300 bars of Choco Deluxe
4. Your factory can produce at most 400 bars of chocolate a day
5. To maximize profit, what should you order from the factory?

Selling Chocolate: Linear Program

Let

$$
x_{1}=\text { number of bars of Choco ordered }
$$

$x_{2}=$ number of bars of Choco Deluxe ordered

Selling Chocolate: Linear Program

Let

$$
\begin{gathered}
x_{1}=\text { number of bars of Choco ordered } \\
x_{2}=\text { number of bars of Choco Deluxe ordered }
\end{gathered}
$$

Objective:

$$
\max x_{1}+6 x_{2}
$$

Selling Chocolate: Linear Program

Let

$$
\begin{gathered}
x_{1}=\text { number of bars of Choco ordered } \\
x_{2}=\text { number of bars of Choco Deluxe ordered }
\end{gathered}
$$

Objective:

$$
\max x_{1}+6 x_{2}
$$

Constraints:

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Selling Chocolate: Linear Program

Let

$$
\begin{gathered}
x_{1}=\text { number of bars of Choco ordered } \\
x_{2}=\text { number of bars of Choco Deluxe ordered }
\end{gathered}
$$

Objective:

$$
\max x_{1}+6 x_{2}
$$

Constraints:

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Helpful to draw the "feasible region"...

Feasible Region

Feasible Region

Concepts

Definition

A linear program is infeasible if the constraints are so tight that it is impossible to satisfy all of them. E.g., $x \leq 1, x \geq 2$.

Concepts

Definition

A linear program is infeasible if the constraints are so tight that it is impossible to satisfy all of them. E.g., $x \leq 1, x \geq 2$.

Definition

A linear program is unbounded if the constraints are so loose that it is possible to achieve arbitrarily high objective values. E.g., $\max x_{1}+x_{2}$ subject to $x_{1}, x_{2} \geq 0$.

Concepts

Definition

A linear program is infeasible if the constraints are so tight that it is impossible to satisfy all of them. E.g., $x \leq 1, x \geq 2$.

Definition

A linear program is unbounded if the constraints are so loose that it is possible to achieve arbitrarily high objective values. E.g., $\max x_{1}+x_{2}$ subject to $x_{1}, x_{2} \geq 0$.

Theorem
If the linear program is feasible and bounded, the optimum is achieved at a vertex of the feasible region.

Concepts

Definition

A linear program is infeasible if the constraints are so tight that it is impossible to satisfy all of them. E.g., $x \leq 1, x \geq 2$.

Definition

A linear program is unbounded if the constraints are so loose that it is possible to achieve arbitrarily high objective values. E.g., $\max x_{1}+x_{2}$ subject to $x_{1}, x_{2} \geq 0$.

Theorem
If the linear program is feasible and bounded, the optimum is achieved at a vertex of the feasible region.

Algorithm (Tedious Algorithm)
Compute the objective function at each vertex...

Concepts

Definition

A linear program is infeasible if the constraints are so tight that it is impossible to satisfy all of them. E.g., $x \leq 1, x \geq 2$.

Definition

A linear program is unbounded if the constraints are so loose that it is possible to achieve arbitrarily high objective values. E.g., $\max x_{1}+x_{2}$ subject to $x_{1}, x_{2} \geq 0$.

Theorem
If the linear program is feasible and bounded, the optimum is achieved at a vertex of the feasible region.

Algorithm (Tedious Algorithm)

Compute the objective function at each vertex. . . but this may take exponential time.

Feasible Region with "Contour Lines"

Feasible Region with "Contour Lines"

Better Algorithm: Simplex Algorithm

Simplex Algorithm was devised by George Dantzig in 1947...

Better Algorithm: Simplex Algorithm

Simplex Algorithm was devised by George Dantzig in 1947...

Algorithm
Pick arbitrary vertex of the feasible region. Move to adjacent vertex with better objective value. If no such vertex exists, terminate.

Better Algorithm: Simplex Algorithm

Simplex Algorithm was devised by George Dantzig in 1947...

Algorithm

Pick arbitrary vertex of the feasible region. Move to adjacent vertex with better objective value. If no such vertex exists, terminate.

Not known to be polynomial time but very quick in practice. Polynomial time algorithms do exist but are less used in practice.

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar
- Let x_{3} be the number of bars of Supreme manufactured

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar
- Let x_{3} be the number of bars of Supreme manufactured
- Deluxe and Supreme use same packaging machine: $x_{2}+3 x_{3} \leq 600$

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar
- Let x_{3} be the number of bars of Supreme manufactured
- Deluxe and Supreme use same packaging machine: $x_{2}+3 x_{3} \leq 600$

Objective:

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar
- Let x_{3} be the number of bars of Supreme manufactured
- Deluxe and Supreme use same packaging machine: $x_{2}+3 x_{3} \leq 600$

Objective:

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

Constraints:

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Selling Chocolate Again

- You chocolate shop launches a new product "Choco Supreme" that gives $\$ 13$ profit per bar
- Let x_{3} be the number of bars of Supreme manufactured
- Deluxe and Supreme use same packaging machine: $x_{2}+3 x_{3} \leq 600$

Objective:

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

Constraints:

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600 \\
x_{1}, x_{2}, x_{3} & \geq 0
\end{aligned}
$$

Need to visualize in 3D...

How do we know that a solution is optimal?

1. Suppose you friend claims that $\$ 3100$ is the optimum for

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

and that this is achieved with $x_{1}=0, x_{2}=300, x_{3}=100$.

How do we know that a solution is optimal?

1. Suppose you friend claims that $\$ 3100$ is the optimum for

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

and that this is achieved with $x_{1}=0, x_{2}=300, x_{3}=100$.
2. Revisit constraints to certify that solution if optimal:

$$
\begin{align*}
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \tag{2}\\
x_{1}+x_{2}+x_{3} & \leq 400 \tag{3}\\
x_{2}+3 x_{3} & \leq 600 \tag{4}
\end{align*}
$$

How do we know that a solution is optimal?

1. Suppose you friend claims that $\$ 3100$ is the optimum for

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

and that this is achieved with $x_{1}=0, x_{2}=300, x_{3}=100$.
2. Revisit constraints to certify that solution if optimal:

$$
\begin{align*}
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600
\end{align*}
$$

3. Note that $0 \cdot$ Eq. (1) $+1 \cdot$ Eq. (2) $+1 \cdot$ Eq. (3) $+4 \cdot$ Eq. (4) is

$$
x_{1}+6 x_{2}+13 x_{3} \leq 3100
$$

How do we know that a solution is optimal?

1. Suppose you friend claims that $\$ 3100$ is the optimum for

$$
\max x_{1}+6 x_{2}+13 x_{3}
$$

and that this is achieved with $x_{1}=0, x_{2}=300, x_{3}=100$.
2. Revisit constraints to certify that solution if optimal:

$$
\begin{align*}
x_{1} & \leq 200 \tag{1}\\
x_{2} & \leq 300 \\
x_{1}+x_{2}+x_{3} & \leq 400 \\
x_{2}+3 x_{3} & \leq 600
\end{align*}
$$

3. Note that $0 \cdot$ Eq. (1) $+1 \cdot$ Eq. (2) $+1 \cdot$ Eq. (3) $+4 \cdot$ Eq. (4) is

$$
x_{1}+6 x_{2}+13 x_{3} \leq 3100
$$

4. But how did we come up with the coefficients $(0,1,1,4)$?

Duality

- Back to simpler example: $\max x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

Duality

- Back to simpler example: $\max x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim that optimal solution has value 1900 where $x_{1}=100, x_{2}=300$

Duality

- Back to simpler example: $\max x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim that optimal solution has value 1900 where $x_{1}=100, x_{2}=300$
- Adding one copy of Eq. (1) and seven copies of Eq. (2) gives

$$
x_{1}+7 x_{2} \leq 2300
$$

Duality

- Back to simpler example: $\max x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim that optimal solution has value 1900 where $x_{1}=100, x_{2}=300$
- Adding one copy of Eq. (1) and seven copies of Eq. (2) gives

$$
x_{1}+7 x_{2} \leq 2300
$$

and so $x_{1}+6 x_{2} \leq 2300$ because $x_{1}, x_{2} \geq 0$

Duality

- Back to simpler example: $\max x_{1}+6 x_{2}$ subject to

$$
\begin{aligned}
x_{1} & \leq 200 \\
x_{2} & \leq 300 \\
x_{1}+x_{2} & \leq 400 \\
x_{1}, x_{2} & \geq 0
\end{aligned}
$$

- Claim that optimal solution has value 1900 where $x_{1}=100, x_{2}=300$
- Adding one copy of Eq. (1) and seven copies of Eq. (2) gives

$$
x_{1}+7 x_{2} \leq 2300
$$

and so $x_{1}+6 x_{2} \leq 2300$ because $x_{1}, x_{2} \geq 0$

- Adding five copies of Eq. (2) and one copy of Eq. (3) gives

$$
x_{1}+6 x_{2} \leq 1900
$$

More Duality

1. Trying to find multipliers that give good upper bound:

Multiplier	Constraint
y_{1}	$x_{1} \leq 200$
y_{2}	$x_{2} \leq 300$
y_{3}	$x_{1}+x_{2} \leq 400$

gives inequality $\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}$.

More Duality

1. Trying to find multipliers that give good upper bound:

Multiplier	Constraint
y_{1}	$x_{1} \leq 200$
y_{2}	$x_{2} \leq 300$
y_{3}	$x_{1}+x_{2} \leq 400$

gives inequality $\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}$.
2. If $y_{1}+y_{3} \geq 1, y_{2}+y_{3} \geq 6, y_{1}, y_{2}, y_{3} \geq 0$, then an upper bound is

$$
200 y_{1}+300 y_{2}+400 y_{3}
$$

More Duality

1. Trying to find multipliers that give good upper bound:

Multiplier	Constraint
y_{1}	$x_{1} \leq 200$
y_{2}	$x_{2} \leq 300$
y_{3}	$x_{1}+x_{2} \leq 400$

gives inequality $\left(y_{1}+y_{3}\right) x_{1}+\left(y_{2}+y_{3}\right) x_{2} \leq 200 y_{1}+300 y_{2}+400 y_{3}$.
2. If $y_{1}+y_{3} \geq 1, y_{2}+y_{3} \geq 6, y_{1}, y_{2}, y_{3} \geq 0$, then an upper bound is

$$
200 y_{1}+300 y_{2}+400 y_{3}
$$

3. Finding best such upper bound is new LP!

Minimize: $200 y_{1}+300 y_{2}+400 y_{3}$
subject to

$$
y_{1}+y_{3} \geq 1, \quad y_{2}+y_{3} \geq 6, \quad y_{1}, y_{2}, y_{3} \geq 0
$$

Duality in General

Primal and Dual Linear Programs:

Primal LP	Dual LP
$\max ^{T} \mathbf{c}^{T} \mathbf{x}$	$\min \mathbf{y}^{T} \mathbf{b}$
$\mathbf{A} \mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T}$
$\mathbf{x} \geq \mathbf{0}$	$\mathbf{y} \geq \mathbf{0}$

Duality in General

Primal and Dual Linear Programs:

Primal LP	Dual LP
$\max \mathbf{c}^{T} \mathbf{x}$	$\min \mathbf{y}^{T} \mathbf{b}$
$\mathbf{A} \mathbf{x} \leq \mathbf{b}$	$\mathbf{y}^{T} \mathbf{A} \geq \mathbf{c}^{T}$
$\mathbf{x} \geq \mathbf{0}$	$\mathbf{y} \geq \mathbf{0}$

Theorem
Let $\mathrm{OPT}_{\text {primal }}$ be optimal solution of Primal LP and let $\mathrm{OPT}_{\text {dual }}$ be optimal solution of Dual LP:

$$
\mathrm{OPT}_{\text {primal }}=\mathrm{OPT}_{\text {dual }}
$$

and hence, any feasible solution of the dual LP upper bounds OPT primal .

