
CMPSCI 611: Advanced Algorithms
Lecture 25: More Approximation Algorithms and Review

Andrew McGregor

Last Compiled: February 1, 2024

1/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

2/29

Formulating Vertex Cover as a Linear (?) Program

I Given graph G = (V ,E), for each node v ∈ V , create variable xv
I For each edge (u, v) ∈ E , create constraint xv + xu ≥ 1

Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

Does this mean we can solve Vertex Cover in poly-time? No, need to
constrain xv ∈ {0, 1}. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the
optimal solution will automatically be integral.

3/29

Formulating Vertex Cover as a Linear (?) Program

I Given graph G = (V ,E), for each node v ∈ V , create variable xv
I For each edge (u, v) ∈ E , create constraint xv + xu ≥ 1

Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

Does this mean we can solve Vertex Cover in poly-time?

No, need to
constrain xv ∈ {0, 1}. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the
optimal solution will automatically be integral.

3/29

Formulating Vertex Cover as a Linear (?) Program

I Given graph G = (V ,E), for each node v ∈ V , create variable xv
I For each edge (u, v) ∈ E , create constraint xv + xu ≥ 1

Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

Does this mean we can solve Vertex Cover in poly-time? No, need to
constrain xv ∈ {0, 1}. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the
optimal solution will automatically be integral.

3/29

Formulating Vertex Cover as a Linear (?) Program

I Given graph G = (V ,E), for each node v ∈ V , create variable xv
I For each edge (u, v) ∈ E , create constraint xv + xu ≥ 1

Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

Does this mean we can solve Vertex Cover in poly-time? No, need to
constrain xv ∈ {0, 1}. Program is an integer linear program (ILP).

Aside: When the graph is bipartite, something magical happens: the
optimal solution will automatically be integral.

3/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.

I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.

I Final solution is feasible for the original ILP and is a 2-approx.
I x̂v + x̂u ≥ 1 implies x ′

v + x ′
u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.

I After rounding, objective function at most doubles:∑
v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.

I After rounding, objective function at most doubles:∑
v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

LP Relaxation
I Vertex cover can be expressed as the following integer program

I Minimize
∑

v∈V xv subject to

xv + xu ≥ 1 for all (u, v) ∈ E

xv ≤ 1 for all v ∈ V

xv ≥ 0 for all v ∈ V

where each xv ∈ {0, 1}.
I Relax: Ignore xv ∈ {0, 1} constraint.

I Solve: Let x̂v be optimal solution.

I Round: Let x ′v = 1 if x̂v ≥ 1/2 and 0 otherwise.
I Final solution is feasible for the original ILP and is a 2-approx.

I x̂v + x̂u ≥ 1 implies x ′
v + x ′

u ≥ 1 since at least one of x̂v or x̂u is ≥ 1/2.
I After rounding, objective function at most doubles:∑

v∈V

x ′
v ≤ 2

∑
v∈V

x̂v = 2opt

4/29

Linear Programming: Review
Primal and Dual Linear Programs:

Primal LP Dual LP

max cTx min yTb
Ax ≤ b yTA ≥ cT

x ≥ 0 y ≥ 0

Theorem
Let optprimal be optimal solution of Primal LP and let optdual be
optimal solution of Dual LP: If both are bounded and feasible,

optprimal = optdual

and hence, any feasible solution of the dual LP upper bounds optprimal.

Applications of duality include a) max flow equals min cut and b) the
max matching size equals the min vertex cover size in a bipartite graph.

LPs can be solved in poly-time but adding integral constraints makes the
problem NP-hard.

5/29

Linear Programming: Review
Primal and Dual Linear Programs:

Primal LP Dual LP

max cTx min yTb
Ax ≤ b yTA ≥ cT

x ≥ 0 y ≥ 0

Theorem
Let optprimal be optimal solution of Primal LP and let optdual be
optimal solution of Dual LP: If both are bounded and feasible,

optprimal = optdual

and hence, any feasible solution of the dual LP upper bounds optprimal.

Applications of duality include a) max flow equals min cut and b) the
max matching size equals the min vertex cover size in a bipartite graph.

LPs can be solved in poly-time but adding integral constraints makes the
problem NP-hard. 5/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

6/29

Approximation Ratios
Definition
An algorithm for a minimization problem is an α-approximation if for all
instances,

value returned by the algorithm

optimal value
≤ α .

For a maximization problem, we want the reciprocal to be at most α.

Examples:
I 2-approx for max-cut (local search technique)
I 3/2-approx for metric traveling salesperson
I 2-approx for metric k-center clustering (in homework)
I O(log n)-approx for weighted set-cover (charging technique)
I 2-approx for vertex cover (LP relaxation technique)
I 1 + ε-approx for generalized knapsack running in O(n3/ε) time (via

rounding the input values).

A reference of what approximation factors are known check out:

http://www.csc.kth.se/~viggo/wwwcompendium/

7/29

http://www.csc.kth.se/~viggo/wwwcompendium/

Tight Example
The following is an example where the local search algorithm for max-cut
gets stuck at a 2-approximation.

I The max cut has size 16 but the cut indicated has size 8.

I The is no node where switching the side of the node strictly
increases the size of the cut.

8/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

9/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

10/29

Divide and Conquer Methodology
I Goal: Solve problem P on an instance I of “size” n.
I Divide & Conquer Method:

I Transform I into smaller instances I1, . . . , Ia each of “size” n/b
I Solve problem P on each of I1, . . . , Ia by recursion
I Combine the solutions to get a solution of I

I Examples: Merge Sort, Strassen’s Algorithm, Minimum Distance,
Fourier Transform.

Let T (n) be running time of algorithm on instance of size n. Then

T (1) = Θ(1),T (n) = aT (n/b) + Θ(nα)

where Θ(nα) is time to make new instances and combine solutions.

Theorem (Master Theorem)

If a, b, α are constants, then T (n) =

Θ(nα) if α > logb a

Θ(nlogb a) if α < logb a

Θ(nα log n) if α = logb a

.

11/29

Divide and Conquer Methodology
I Goal: Solve problem P on an instance I of “size” n.
I Divide & Conquer Method:

I Transform I into smaller instances I1, . . . , Ia each of “size” n/b
I Solve problem P on each of I1, . . . , Ia by recursion
I Combine the solutions to get a solution of I

I Examples: Merge Sort, Strassen’s Algorithm, Minimum Distance,
Fourier Transform.

Let T (n) be running time of algorithm on instance of size n. Then

T (1) = Θ(1),T (n) = aT (n/b) + Θ(nα)

where Θ(nα) is time to make new instances and combine solutions.

Theorem (Master Theorem)

If a, b, α are constants, then T (n) =

Θ(nα) if α > logb a

Θ(nlogb a) if α < logb a

Θ(nα log n) if α = logb a

.

11/29

Cartoon

12/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

13/29

Generic Problem and Greedy Algorithms

Definition
A subset system S = (E , I) is a finite set E with a collection I of
subsets E such that:

if B ∈ I and A ⊂ B then A ∈ I

i.e., “I is closed under inclusion”

Problem Given a subset system S = (E , I) and weight function
w : E → R+, find A ∈ I such that w(A) =

∑
e∈A w(e) is maximized.

Algorithm (Greedy)

1. A = ∅
2. Sort elements of E by non-increasing weight

3. For each e ∈ E : If A + e ∈ I then A← A + e

14/29

Matroid Definition and Theorem

Definition
A matroid is a subset system (E , I) that satisfies the exchange property:
if A,B ∈ I such that |A| < |B|, then A + e ∈ I for some e ∈ B \ A.

Theorem
For any subset system (E , I), the greedy algorithm solves the
optimization problem for (E , I) if and only if (E , I) is a matroid.

I A matroid can also be characterized by the cardinality theorem.

I Maximum bipartite matching can be expressed as intersection of two
matroids and can therefore be solved in polynomial time.

I Solving the intersection of three matroids becomes NP-hard.

15/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

16/29

Dynamic Programming and Shortest Paths

When to use dynamic programming. . .

I Optimal Substructure: The solution to the problem can be found
using solutions to smaller sub-problems.

I Overlap of Sub-Problems: By taking advantage of the fact that
many identical sub-problems are created, a dynamic programming
algorithm may be more efficient than a divide and conquer algorithm.

Shortest path algorithms. . .

I Floyd-Warshall Algorithm: O(|V |3)

I Dijkstra’s Algorithm: Positive weights! O(|E |+ |V | log |V |).

I Seidel’s Algorithm: Unweighted Graphs! O(|V |2.38) running time.

17/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

18/29

Definitions

Input:

I Directed Graph G = (V ,E)

I Capacities C (u, v) > 0 for (u, v) ∈ E and C (u, v) = 0 for (u, v) 6∈ E

I A source node s, and sink node t

Output: A flow f from s to t where f : V × V → R satisfies

I Skew-symmetry: ∀u, v ∈ V , f (u, v) = −f (v , u)

I Conservation of Flow: ∀v ∈ V − {s, t},
∑

u∈V f (u, v) = 0

I Capacity Constraints: ∀u, v ∈ V , f (u, v) ≤ C (u, v)

Goal: Maximize “size of the flow”, i.e., the total flow coming leaving s:

|f | =
∑
v∈V

f (s, v)

19/29

Capacity

v1 v2

v3 v4

ts

16

13

14

9

12

410
7

20

4

20/29

Capacity/Flow

v1 v2

v3 v4

ts

16/11

13/8

14/11

9/4

12/12

4/110/0
7/7

20/15

4/4

21/29

Cut Definitions

Definition
An s − t cut of G is a partition of the vertices into two sets A and B
such that s ∈ A and t ∈ B.

Definition
The capacity of a cut (A,B) is C (A,B) =

∑
u∈A,v∈B C (u, v)

Definition
The flow across a cut (A,B) is f (A,B) =

∑
u∈A,v∈B f (u, v)

Theorem (Max-Flow Min-Cut)
For any flow network and flow f , the following statements are equivalent:

1. f is a maximum flow.

2. There exists an s − t cut (A,B) such that |f | = C (A,B)

Went over Ford-Fulkerson Algorithm with Edmonds-Karp Heuristic to
find max-flow.

22/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

23/29

Probability and Examples

I For arbitrary events A and B,

P [A and B] = P [A given B]P [B]

and A and B are independent if P [A and B] = P [A]P [B].

I Union Bound: P [A or B] ≤ P [A] + P [B]

I Expectation: E [X] =
∑

r rP [X = r]

I Linearity of expectation: E [X + Y] = E [X] + E [Y]

I Variance random variable: V [X] = σ2
X = E

[
(X − E [X])2

]
I Linearity of variance if X and Y are independent:

V [X + Y] = V [X] + V [Y]

Examples: Quicksort, Karger’s Randomized Min-Cut Algorithm,
Schwartz-Zippel, Lazy Select, Balls and Bins. . .

24/29

Tail Bounds

Theorem (Markov)
Let Y be a non-negative random variable. Then, for any t > 0,

P [Y ≥ tE (X)] ≤ 1/t .

Theorem (Chebyshev)
Let X be any random variable. Then, for any t > 0,

P [|X − E (X)| ≥ t] ≤ Var(X)/t2 .

Theorem
Let X1, . . . ,Xn be independent boolean random variables and X =

∑
i Xi .

Then for any δ > 0,

P [X > (1 + δ)µ] < e−δ
2µ/3 and P [X < (1− δ)µ] < e−δ

2µ/2

25/29

Outline

Linear Programs

Approximation Algorithms

Divide and Conquer

Greedy Algorithms

Dynamic Programming and Shortest Paths

Network Flows

Randomized Algorithms

NP Completeness

26/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm

3. NP: Problems with a poly-time algorithm taking advice:
I If the answer should be “yes”, then there exists advice that leads the

algorithm to output “yes”
I If the answer is “no”, then there doesn’t exist advice that would lead

the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π

5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

NP Completeness
1. Given decision problems Π and Π′, then Π ≤p Π′ means you can, in

polynomial time, transform any instance I of Π into an instance f (I)
of Π′ such that the answer for f (I) is the same as the answer for I .

2. P: Problems with a poly-time algorithm
3. NP: Problems with a poly-time algorithm taking advice:

I If the answer should be “yes”, then there exists advice that leads the
algorithm to output “yes”

I If the answer is “no”, then there doesn’t exist advice that would lead
the algorithm to output “yes”

4. A problem Π is NP-hard if for any Π′ ∈ NP: Π′ ≤P Π
5. A problem Π is NP-complete if Π ∈ NP and Π is NP-hard

Theorem
3-SAT, CLIQUE, VERTEX-COVER. . . are NP-Complete.

Can sometimes show that a problem is hard to approximate within a
certain factor. For example, in the homework question about locating
stores in various towns you essentially showed that beating a factor 2
approximation for the problem would solve DOMINATING-SET.

27/29

Approx Algorithms and Reductions: Cautionary Tale!
Suppose Π′ ≤P Π and we have an polynomial time α-approximation for a
Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
I Input: An undirected graph G = (V ,E).
I Output: A set U ⊂ V of maximum size such that no two vertices in

U are connected by a single edge.

Lemma
INDEPENDENT-SET ≤P VERTEX-COVER

Proof.
U ⊂ V is an independent set iff V − U is a vertex cover. So an instance
of (G , k) of INDEPENDENT-SET is a “yes” instance iff the instance
(G , n − k) of VERTEX-COVER is a “yes” instance.

But using a factor 2-approx for Vertex-Cover may give a factor Ω(n)
approximation for Independent-Set. E.g., in a perfect matching, picking
U = V is a 2-approx to min vertex cover and V − U is an independent
set of size 0. However, there’s an independent set of size |V |/2.

28/29

Approx Algorithms and Reductions: Cautionary Tale!
Suppose Π′ ≤P Π and we have an polynomial time α-approximation for a
Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
I Input: An undirected graph G = (V ,E).
I Output: A set U ⊂ V of maximum size such that no two vertices in

U are connected by a single edge.

Lemma
INDEPENDENT-SET ≤P VERTEX-COVER

Proof.
U ⊂ V is an independent set iff V − U is a vertex cover. So an instance
of (G , k) of INDEPENDENT-SET is a “yes” instance iff the instance
(G , n − k) of VERTEX-COVER is a “yes” instance.

But using a factor 2-approx for Vertex-Cover may give a factor Ω(n)
approximation for Independent-Set. E.g., in a perfect matching, picking
U = V is a 2-approx to min vertex cover and V − U is an independent
set of size 0. However, there’s an independent set of size |V |/2.

28/29

Approx Algorithms and Reductions: Cautionary Tale!
Suppose Π′ ≤P Π and we have an polynomial time α-approximation for a
Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
I Input: An undirected graph G = (V ,E).
I Output: A set U ⊂ V of maximum size such that no two vertices in

U are connected by a single edge.

Lemma
INDEPENDENT-SET ≤P VERTEX-COVER

Proof.
U ⊂ V is an independent set iff V − U is a vertex cover. So an instance
of (G , k) of INDEPENDENT-SET is a “yes” instance iff the instance
(G , n − k) of VERTEX-COVER is a “yes” instance.

But using a factor 2-approx for Vertex-Cover may give a factor Ω(n)
approximation for Independent-Set. E.g., in a perfect matching, picking
U = V is a 2-approx to min vertex cover and V − U is an independent
set of size 0. However, there’s an independent set of size |V |/2.

28/29

Approx Algorithms and Reductions: Cautionary Tale!
Suppose Π′ ≤P Π and we have an polynomial time α-approximation for a
Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
I Input: An undirected graph G = (V ,E).
I Output: A set U ⊂ V of maximum size such that no two vertices in

U are connected by a single edge.

Lemma
INDEPENDENT-SET ≤P VERTEX-COVER

Proof.
U ⊂ V is an independent set iff V − U is a vertex cover. So an instance
of (G , k) of INDEPENDENT-SET is a “yes” instance iff the instance
(G , n − k) of VERTEX-COVER is a “yes” instance.

But using a factor 2-approx for Vertex-Cover may give a factor Ω(n)
approximation for Independent-Set. E.g., in a perfect matching, picking
U = V is a 2-approx to min vertex cover and V − U is an independent
set of size 0. However, there’s an independent set of size |V |/2.

28/29

Approx Algorithms and Reductions: Cautionary Tale!
Suppose Π′ ≤P Π and we have an polynomial time α-approximation for a
Π, do we necessarily have an α approximation for Π?

Problem: INDEPENDENT-SET
I Input: An undirected graph G = (V ,E).
I Output: A set U ⊂ V of maximum size such that no two vertices in

U are connected by a single edge.

Lemma
INDEPENDENT-SET ≤P VERTEX-COVER

Proof.
U ⊂ V is an independent set iff V − U is a vertex cover. So an instance
of (G , k) of INDEPENDENT-SET is a “yes” instance iff the instance
(G , n − k) of VERTEX-COVER is a “yes” instance.

But using a factor 2-approx for Vertex-Cover may give a factor Ω(n)
approximation for Independent-Set. E.g., in a perfect matching, picking
U = V is a 2-approx to min vertex cover and V − U is an independent
set of size 0. However, there’s an independent set of size |V |/2.

28/29

And finally. . .

Good luck with the exam!

29/29

	Linear Programs
	Approximation Algorithms
	Divide and Conquer
	Greedy Algorithms
	Dynamic Programming and Shortest Paths
	Network Flows
	Randomized Algorithms
	NP Completeness

