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Geometric Streams

I Consider a stream of points:

P = 〈p1, . . . , pn〉

where each pi ∈ Rd .

I What properties of P can we compute in sub-linear space?
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Coresets
I Goal: Minimize a function CP : Rd → R parameterized by P ⊂ Rd .

I For example, finding the minimum enclosing ball corresponds to
finding the ball’s center c = argminCp(x) and radius CP(c) where

CP(x) = max
y∈P
‖x − y‖2

I We’ll assume CP is monotone, i.e.,

∀x ∈ Rd ,Q ⊂ P ; CQ(x) ≤ CP(x) .

I Defn: We say Q ⊆ P is a α-coreset for P with respect to C if

∀x ∈ Rd ,T ⊂ Rd ; CQ∪T (x) ≤ CP∪T (x) ≤ αCQ∪T (x) .

I Hence, if we have a coreset Q for P then we can approximate the
original problem up to a factor α.

I We’ll first show that the existence of small coresets gives rise to
small-space stream algorithms. We’ll then show the small coresets
exist of the minimum enclosing ball problem.
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Properties of Coresets

I Merge Property: If Q is an α-core set for P and Q ′ is a β-coreset for
P ′ then Q ∪ Q ′ is an (αβ)-coreset of P ∪ P ′.

I Reduce Property: If Q is an α-core set for P and R is a β-coreset
for Q then R is an (αβ)-coreset of P.

I Thm: Suppose there exists an (1 + δ)-coreset of size f (δ) that is
computable in linear space. Then there’s a O(f (ε/ log n) log n)
space, (1 + O(ε))-approximation streaming algorithm.

I Proof: Via a recursive tree construction as in graph sparsification.

5/11



Minimum Enclosing Ball: Preliminaries

I For non-zero vectors u, v ∈ Rn, define angle(u, v) := arccos u.v
‖u‖2‖v‖2

I For θ > 0, we say U = {u1, . . . , ut} ⊆ Rd \ {0} is a θ-grid if,

∀x ∈ Rd , ∃u ∈ U, angle(x , u) ≤ θ

I Thm: There exists a θ-grid U of size O(1/θd−1) and we may assume
that U consists of unit vectors.
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Minimum Enclosing Ball: Coreset

I Given P, we’ll construct a coreset Q ⊆ P using a θ-grid U for some
value of θ to be determined.

I For each u ∈ U, add the following points to Q:

arg max
p∈P

(p.u) and argminp∈P(p.u)

I Need to show that for some α(θ) ≥ 1, for any T ⊂ Rd , x ∈ Rd ,

CQ∪T (x) ≤ CP∪T (x) ≤ α(θ)CQ∪T (x)

I Left inequality follows easily from the definition

CY (x) = max
y∈Y
‖x − y‖2

I Lemma: Right inequality holds with α(θ) = 1 + θ2.

I Hence, setting θ =
√
ε ensures Q is a (1 + ε) coreset for P.
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Proof of Lemma

I Consider arbitrary T ⊂ Rd , x ∈ Rd and let z be farthest point from
x in P ∪ T .

I If z ∈ T : CP∪T (x) = ‖x − z‖2 ≤ CQ∪T (x)

I If z ∈ P: There exists u ∈ U such that angle(u, z − x) ≤ θ
I Let y be point with ‖x − y‖2 = ‖x − z‖2 that maximizes u.y .
I Let z ′ be the projection of z in the direction y − x .
I By construction Q contains a point q with u.z ′ ≤ u.q.
I Hence,

CQ∪T (x) ≥ CQ(x) ≥ ‖x − z ′‖2 = ‖x − z‖2 cos θ = CP∪T (x) cos θ .

I Result follows because 1
cos θ
≤ 1 + θ2 for small θ.
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k-center

I Given a stream of distinct points P = {p1, . . . , pn}, find the set of k
points Y ⊂ X that minimizes:

max
i

min
y∈Y

d(pi , y)

where d can be ‖ · ‖2 or any metric. Let r be the optimum value.

I Can find 2 approx. in O(k) space if you know r ahead of time.
I Add a new point p to Y if miny∈Y d(y , p) > 2r .
I Can never have more than k points in Y : Otherwise we’d have k + 1

points with all pairwise distances > 2r . Each optimal center covers
at most one point in Y within radius r . Hence |Y | ≤ k.

I Can find (2 + ε) approx. in O(kε−1 log(b/a)) space if you know

a ≤ r ≤ b

I Thm: (2 + ε) approx. in O(kε−1 log ε−1) space.
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k-center: Sketch of Algorithm and Analysis

I Consider first k + 1 points: this gives a lower bound a for r .

I Instantiate basic algorithm with guesses

`1 = a, `2 = (1 + ε)a, `3 = (1 + ε)2a, . . . `1+t = O(ε−1)a

I Say instantiation goes bad if it tries to open (k + 1)-th center

I If instantiation for guess ` goes bad when processing (j + 1)-th point
I Let q1, . . . , qk be centers chosen so far.
I Then p1, . . . , pj are all at most 2` from some qi .
I Optimum for {q1, . . . , qk , pj+1, . . . , pn} is at most r + 2`.

I Hence, for an instantiation with guess 2`/ε only incurs a small error
if we use {q1, . . . , qk , pj+1, . . . , pn} rather than {p1, . . . , pn}.
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