CMPSCI 711: More Advanced Algorithms

Section 3-1: Coresets and Clustering

Andrew McGregor

Last Compiled: April 29, 2012

Geometric Streams

- Consider a stream of points:

$$
P=\left\langle p_{1}, \ldots, p_{n}\right\rangle
$$

where each $p_{i} \in \mathbb{R}^{d}$.

- What properties of P can we compute in sub-linear space?

Outline

Coresets

Clustering

Coresets

- Goal: Minimize a function $C_{P}: \mathbb{R}^{d} \rightarrow \mathbb{R}$ parameterized by $P \subset \mathbb{R}^{d}$.
- For example, finding the minimum enclosing ball corresponds to finding the ball's center $c=\operatorname{argmin} C_{p}(x)$ and radius $C_{P}(c)$ where

$$
C_{P}(x)=\max _{y \in P}\|x-y\|_{2}
$$

- We'll assume C_{P} is monotone, i.e.,

$$
\forall x \in \mathbb{R}^{d}, Q \subset P ; \quad C_{Q}(x) \leq C_{P}(x) .
$$

- Defn: We say $Q \subseteq P$ is a α-coreset for P with respect to C if

$$
\forall x \in \mathbb{R}^{d}, T \subset \mathbb{R}^{d} ; \quad C_{Q \cup T}(x) \leq C_{P \cup T}(x) \leq \alpha C_{Q \cup T}(x) .
$$

- Hence, if we have a coreset Q for P then we can approximate the original problem up to a factor α.
- We'll first show that the existence of small coresets gives rise to small-space stream algorithms. We'll then show the small coresets exist of the minimum enclosing ball problem.

Properties of Coresets

- Merge Property: If Q is an α-core set for P and Q^{\prime} is a β-coreset for P^{\prime} then $Q \cup Q^{\prime}$ is an $(\alpha \beta)$-coreset of $P \cup P^{\prime}$.
- Reduce Property: If Q is an α-core set for P and R is a β-coreset for Q then R is an $(\alpha \beta)$-coreset of P.
- Thm: Suppose there exists an $(1+\delta)$-coreset of size $f(\delta)$ that is computable in linear space. Then there's a $O(f(\epsilon / \log n) \log n)$ space, $(1+O(\epsilon))$-approximation streaming algorithm.
- Proof: Via a recursive tree construction as in graph sparsification.

Minimum Enclosing Ball: Preliminaries

- For non-zero vectors $u, v \in \mathbb{R}^{n}$, define angle $(u, v):=\arccos \frac{u . v}{\|u\|_{2}\|v\|_{2}}$
- For $\theta>0$, we say $U=\left\{u_{1}, \ldots, u_{t}\right\} \subseteq \mathbb{R}^{d} \backslash\{0\}$ is a θ-grid if,

$$
\forall x \in \mathbb{R}^{d}, \exists u \in U, \text { angle }(x, u) \leq \theta
$$

- Thm: There exists a θ-grid U of size $O\left(1 / \theta^{d-1}\right)$ and we may assume that U consists of unit vectors.

Minimum Enclosing Ball: Coreset

- Given P, we'll construct a coreset $Q \subseteq P$ using a θ-grid U for some value of θ to be determined.
- For each $u \in U$, add the following points to Q :

$$
\underset{p \in P}{\arg \max }(p . u) \quad \text { and } \quad \operatorname{argmin}_{p \in P}(p . u)
$$

- Need to show that for some $\alpha(\theta) \geq 1$, for any $T \subset \mathbb{R}^{d}, x \in \mathbb{R}^{d}$,

$$
C_{Q \cup T}(x) \leq C_{P \cup T}(x) \leq \alpha(\theta) C_{Q \cup T}(x)
$$

- Left inequality follows easily from the definition

$$
C_{Y}(x)=\max _{y \in Y}\|x-y\|_{2}
$$

- Lemma: Right inequality holds with $\alpha(\theta)=1+\theta^{2}$.
- Hence, setting $\theta=\sqrt{\epsilon}$ ensures Q is a $(1+\epsilon)$ coreset for P.

Proof of Lemma

- Consider arbitrary $T \subset \mathbb{R}^{d}, x \in \mathbb{R}^{d}$ and let z be farthest point from x in $P \cup T$.
- If $z \in T: C_{P \cup T}(x)=\|x-z\|_{2} \leq C_{Q \cup T}(x)$
- If $z \in P$: There exists $u \in U$ such that angle $(u, z-x) \leq \theta$
- Let y be point with $\|x-y\|_{2}=\|x-z\|_{2}$ that maximizes $u . y$.
- Let z^{\prime} be the projection of z in the direction $y-x$.
- By construction Q contains a point q with $u . z^{\prime} \leq u . q$.
- Hence,

$$
C_{Q \cup T}(x) \geq C_{Q}(x) \geq\left\|x-z^{\prime}\right\|_{2}=\|x-z\|_{2} \cos \theta=C_{P \cup T}(x) \cos \theta .
$$

- Result follows because $\frac{1}{\cos \theta} \leq 1+\theta^{2}$ for small θ.

Outline

Coresets

Clustering

k-center

- Given a stream of distinct points $P=\left\{p_{1}, \ldots, p_{n}\right\}$, find the set of k points $Y \subset X$ that minimizes:

$$
\max _{i} \min _{y \in Y} d\left(p_{i}, y\right)
$$

where d can be $\|\cdot\|_{2}$ or any metric. Let r be the optimum value.

- Can find 2 approx. in $O(k)$ space if you know r ahead of time.
- Add a new point p to Y if $\min _{y \in Y} d(y, p)>2 r$.
- Can never have more than k points in Y : Otherwise we'd have $k+1$ points with all pairwise distances $>2 r$. Each optimal center covers at most one point in Y within radius r. Hence $|Y| \leq k$.
- Can find $(2+\epsilon)$ approx. in $O\left(k \epsilon^{-1} \log (b / a)\right)$ space if you know

$$
a \leq r \leq b
$$

- Thm: $(2+\epsilon)$ approx. in $O\left(k \epsilon^{-1} \log \epsilon^{-1}\right)$ space.

k-center: Sketch of Algorithm and Analysis

- Consider first $k+1$ points: this gives a lower bound a for r.
- Instantiate basic algorithm with guesses

$$
\ell_{1}=a, \ell_{2}=(1+\epsilon) a, \ell_{3}=(1+\epsilon)^{2} a, \ldots \ell_{1+t}=O\left(\epsilon^{-1}\right) a
$$

- Say instantiation goes bad if it tries to open $(k+1)$-th center
- If instantiation for guess ℓ goes bad when processing $(j+1)$-th point
- Let q_{1}, \ldots, q_{k} be centers chosen so far.
- Then p_{1}, \ldots, p_{j} are all at most 2ℓ from some q_{i}.
- Optimum for $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ is at most $r+2 \ell$.
- Hence, for an instantiation with guess $2 \ell / \epsilon$ only incurs a small error if we use $\left\{q_{1}, \ldots, q_{k}, p_{j+1}, \ldots, p_{n}\right\}$ rather than $\left\{p_{1}, \ldots, p_{n}\right\}$.

