CMPSCI 711: More Advanced Algorithms Section 3-1: Coresets and Clustering

Andrew McGregor

Last Compiled: April 29, 2012

Geometric Streams

Consider a stream of points:

$$P = \langle p_1, \ldots, p_n \rangle$$

where each $p_i \in \mathbb{R}^d$.

▶ What properties of *P* can we compute in sub-linear space?

Outline

Coresets

Clustering

3/11

Coresets

- ▶ *Goal:* Minimize a function $C_P : \mathbb{R}^d \to \mathbb{R}$ parameterized by $P \subset \mathbb{R}^d$.
- ► For example, finding the minimum enclosing ball corresponds to finding the ball's center c = argmin C_p(x) and radius C_P(c) where

$$C_P(x) = \max_{y \in P} \|x - y\|_2$$

▶ We'll assume *C_P* is monotone, i.e.,

$$\forall x \in \mathbb{R}^d, Q \subset P ; \quad C_Q(x) \leq C_P(x) .$$

• *Defn:* We say $Q \subseteq P$ is a α -coreset for P with respect to C if

$$\forall x \in \mathbb{R}^d, T \subset \mathbb{R}^d ; \quad C_{Q \cup T}(x) \leq C_{P \cup T}(x) \leq \alpha C_{Q \cup T}(x) .$$

- Hence, if we have a coreset Q for P then we can approximate the original problem up to a factor α.
- We'll first show that the existence of small coresets gives rise to small-space stream algorithms. We'll then show the small coresets exist of the minimum enclosing ball problem.

Properties of Coresets

- Merge Property: If Q is an α-core set for P and Q' is a β-coreset for P' then Q ∪ Q' is an (αβ)-coreset of P ∪ P'.
- Reduce Property: If Q is an α-core set for P and R is a β-coreset for Q then R is an (αβ)-coreset of P.
- Thm: Suppose there exists an (1 + δ)-coreset of size f(δ) that is computable in linear space. Then there's a O(f(ε/log n) log n) space, (1 + O(ε))-approximation streaming algorithm.
- *Proof:* Via a recursive tree construction as in graph sparsification.

Minimum Enclosing Ball: Preliminaries

▶ For non-zero vectors $u, v \in \mathbb{R}^n$, define $angle(u, v) := \arccos \frac{u.v}{\|u\|_2 \|v\|_2}$

• For $\theta > 0$, we say $U = \{u_1, \ldots, u_t\} \subseteq \mathbb{R}^d \setminus \{0\}$ is a θ -grid if,

$$\forall x \in \mathbb{R}^d, \ \exists u \in U, \ \text{angle}(x, u) \leq \theta$$

Thm: There exists a θ-grid U of size O(1/θ^{d-1}) and we may assume that U consists of unit vectors.

Minimum Enclosing Ball: Coreset

- Given P, we'll construct a coreset Q ⊆ P using a θ-grid U for some value of θ to be determined.
- For each $u \in U$, add the following points to Q:

$$\underset{p \in P}{\operatorname{arg\,max}}(p.u) \quad \text{and} \quad \operatorname{argmin}_{p \in P}(p.u)$$

▶ Need to show that for some $\alpha(\theta) \ge 1$, for any $T \subset \mathbb{R}^d$, $x \in \mathbb{R}^d$,

$$C_{Q\cup T}(x) \leq C_{P\cup T}(x) \leq \alpha(\theta)C_{Q\cup T}(x)$$

Left inequality follows easily from the definition

$$C_Y(x) = \max_{y \in Y} \|x - y\|_2$$

- Lemma: Right inequality holds with $\alpha(\theta) = 1 + \theta^2$.
- Hence, setting $\theta = \sqrt{\epsilon}$ ensures Q is a $(1 + \epsilon)$ coreset for P.

Proof of Lemma

- Consider arbitrary $T \subset \mathbb{R}^d$, $x \in \mathbb{R}^d$ and let z be farthest point from x in $P \cup T$.
- If $z \in T$: $C_{P \cup T}(x) = ||x z||_2 \le C_{Q \cup T}(x)$
- ▶ If $z \in P$: There exists $u \in U$ such that $angle(u, z x) \le \theta$
 - Let y be point with $||x y||_2 = ||x z||_2$ that maximizes u.y.
 - Let z' be the projection of z in the direction y x.
 - By construction Q contains a point q with $u.z' \leq u.q$.
 - Hence,

$$C_{Q\cup T}(x) \geq C_Q(x) \geq \|x-z'\|_2 = \|x-z\|_2\cos\theta = C_{P\cup T}(x)\cos\theta$$
.

• Result follows because $\frac{1}{\cos \theta} \leq 1 + \theta^2$ for small θ .

Outline

Coresets

Clustering

k-center

Given a stream of distinct points P = {p₁,..., p_n}, find the set of k points Y ⊂ X that minimizes:

$$\max_{i} \min_{y \in Y} d(p_i, y)$$

where d can be $\|\cdot\|_2$ or any metric. Let r be the optimum value.

- Can find 2 approx. in O(k) space if you know r ahead of time.
 - Add a new point p to Y if $\min_{y \in Y} d(y, p) > 2r$.
 - Can never have more than k points in Y: Otherwise we'd have k + 1 points with all pairwise distances > 2r. Each optimal center covers at most one point in Y within radius r. Hence |Y| ≤ k.

• Can find $(2 + \epsilon)$ approx. in $O(k\epsilon^{-1}\log(b/a))$ space if you know

$$a \leq r \leq b$$

• Thm:
$$(2 + \epsilon)$$
 approx. in $O(k\epsilon^{-1}\log\epsilon^{-1})$ space.

k-center: Sketch of Algorithm and Analysis

- Consider first k + 1 points: this gives a lower bound *a* for *r*.
- Instantiate basic algorithm with guesses

$$\ell_1=\mathsf{a},\ \ell_2=(1+\epsilon)\mathsf{a},\ \ell_3=(1+\epsilon)^2\mathsf{a},\ldots\ \ell_{1+t}=\mathcal{O}(\epsilon^{-1})\mathsf{a}$$

- ▶ Say instantiation goes bad if it tries to open (*k* + 1)-th center
- If instantiation for guess ℓ goes bad when processing (j+1)-th point
 - Let q_1, \ldots, q_k be centers chosen so far.
 - Then p_1, \ldots, p_j are all at most 2ℓ from some q_i .
 - Optimum for $\{q_1, \ldots, q_k, p_{j+1}, \ldots, p_n\}$ is at most $r + 2\ell$.
- ▶ Hence, for an instantiation with guess 2ℓ/ε only incurs a small error if we use {q₁,..., q_k, p_{j+1},..., p_n} rather than {p₁,..., p_n}.