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Basic Communication Complexity
I Three friends Alice, Bob, and Charlie each have some information

x , y , z and Charlie wants to compute some function P(x , y , z).

x y z

m1 m2 out

I To help Charlie, Alice sends a message m1 to Bob, and then Bob
sends a message m2 to Charlie.

I Question: How large must be |m1|+ |m2| be if Charlie is to evaluate
P(x , y , z) correctly in the worst case over possible x , y , z?

I Deterministic: m1(x), m2(m1, y), out(m2, z) = P(x , y , z)
I Random: m1(x , r), m2(m1, y , r), out(m2, z , r) where r is public

random bits. Require P [out(m2, z) = P(x , y , z)] ≥ 9/10.
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Stream Algorithms Yield Communication Protocols
I Let Q be some stream problem. Suppose there’s a reduction x → S1,

y → S2, z → S3 such that knowing Q(S1 ◦ S2 ◦ S3) solves P(x , y , z).

x y z

m1 m2 out

S1 S2 S3

I An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice
runs A of S1; sends memory state to Bob; Bob instantiates A with
state and runs it on S2; sends state to Charlie who finishes running
A on S3 and infers P(x , y , z) from Q(S1 ◦ S2 ◦ S3).
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Communication Lower Bounds imply Stream Lower Bounds

I Had there been t players, the s-bit stream algorithm for Q would
have lead to a (t − 1)s bit protocol P.

I Hence, a lower bound of L for P implies s = Ω(L/t).
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Outline

Classic Problems and Reductions

Gap-Hamming
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Indexing

I Consider a binary string x ∈ {0, 1}n and j ∈ [n], e.g.,

x =
(

0 1 0 1 1 0
)

and j = 3

and define Index(x , j) = xj
I Suppose Alice knows x and Bob knows j .

I How many bits need to be sent by Alice for Bob to determine
Index(x , j) with probability 9/10? Ω(n)
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Application: Median Finding

I Thm: Any algorithm that returns the exact median of length 2n − 1
stream requires Ω(n) memory.

I Reduction from indexing on input x ∈ {0, 1}n, j ∈ [n]: Alice
generates: S1 = {2i + xi : i ∈ [n]}, e.g.,

x =
(

0 1 0 1 1 0
)
→ {2, 5, 6, 9, 11, 12}

Bob generates: S2 = {n − j copies of 0 and j − 1 copies of 2n + 2},
e.g.,

j = 3 −→ {0, 0, 0, 14, 14}
I Then median(S1 ∪ S2) = 2j + xj and parity determines Index(x , j)

I An s-space algorithm gives an s-bit protocol so

s = Ω(n)

by the one-way communication complexity of indexing.
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Multi-Party Set-Disjointness

I Consider a t × n matrix where column has weight 0, 1, or t, e.g.,

M =


0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0


I Define disjt(M) =

∨
j andt(M1,j , . . . ,Mt,j), i.e., disjt(M) = 1 iff

there is an all 1’s column.

I Consider t players where Pi knows i-th row of M.

I How many bits need to be communicated between the players to
determine disjt(M)? Ω(n/t)
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Application: Frequency Moments

I Thm: A 2-approximation algorithm for Fk needs Ω(n1−2/k) space.

I Reduction from multi-party set disjointness on input M ∈ {0, 1}t×n:
Pi generates set Si = {j : Mij = 1}, e.g.,

0 0 0 1 0 0
1 0 0 1 1 0
0 1 0 1 0 0
0 0 0 1 0 0

 −→ {4, 1, 4, 5, 2, 4, 4}
I If all columns have weight 0 or 1: Fk(S) ≤ n

I If there’s column of weight t: Fk(S) ≥ tk

I If t > 21/kn1/k then a 2 approximation of Fk(S) distinguishes cases.

I An s-space 2-approximation gives a s(t − 1) bit protocol so

s = Ω(n/t2) = Ω(n1−2/k)

by the communication complexity of set-disjointness.
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Hamming Distance

I Consider 2 binary vectors x , y ∈ {0, 1}n, e.g.,

x =
(

0 1 0 1 1 0
)

y =
(

1 1 0 0 1 1
)

I Define the Hamming distance ∆(x , y) = |{i : xi 6= yi}|.
I Suppose Alice knows x and Bob knows y .

I How many bits need to be communicated to estimate ∆(x , y) up to
an additive

√
n error? Ω(n) bits.
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Application: Distinct Elements
I Thm: A (1 + ε)-approximation algorithm for F0 needs Ω(ε−2) space.

I Reduction from Hamming Distance on input x , y ∈ {0, 1}n: Alice
and Bob generate sets S1 = {j : xj = 1} and S2 = {j : yj = 1}, e.g.,(

0 1 0 1 1 0
)
,
(

1 1 0 0 1 1
)
−→ {2, 4, 5, 1, 2, 5, 6}

I Note that 2F0(S) = |x |+ |y |+ ∆(x , y).

I We may assume |x | and |y | are known Bob. Hence, a (1 + ε)
approximation of F0 yields an additive approximation to ∆(x , y) of

ε(|x |+ |y |+ ∆(x , y))/2 ≤ nε

I This is less than
√
n if ε < 1/

√
n

I An s-space (1 + ε)-approximation gives a s bit protocol so

s = Ω(n) = Ω(1/ε2)

by communication complexity of approximating Hamming distance.
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Hamming Distance Lower Bound

Some communication results can be proved via a reduction from other
communication results.

Theorem
Alice and Bob have x ∈ {0, 1}n and y ∈ {0, 1}n respectively. If Bob
wants to determine ∆(x , y) up to ±

√
n with probability 9/10 then Alice

must send Ω(n) bits.
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Hamming Distance Lower Bound
I Reduction from index problem: Alice knows z ∈ {0, 1}t and Bob

knows j ∈ [t]. Let’s assume |z | = t/2 and this is odd.
I Alice and Bob pick r ∈R {−1, 1}t using public random bits.
I Alice computes sign(r .z) and Bob computes sign(rj)
I Lemma: For some constant c > 0,

P [sign(r .z) = sign(rj)] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I Repeat n = 25t/c2 times to construct

xi = I [sign(r .z) = +] and yi = I [sign(rj) = +]

I Note that
zj = 0⇒ E [∆(x , y)] = n/2

zj = 1⇒ E [∆(x , y)] = n/2− 5
√
n

and by Chernoff bounds P
[
|∆(x , y)− E [∆(x , y)] | ≥ 2

√
n
]
< 1/10.

I Hence, a ±
√
n approx. of ∆(x , y) determines zj with prob. > 9/10.

14/15



Proof of Lemma

Claim
Let A be the event A = {sign(r .z) = rj}. For some constant c > 0,

P [A] =

{
1/2 if zj = 0
1/2 + c/

√
t if zj = 1

I If zj = 0: sign(r .z) and rj are independent. So P [A] = 1/2.

I If zj = 1: Let s = r .z − rj which is the sum of an even number
(` = t/2− 1) of independent {−1, 1} values. Then,

I P [A] = P [A|s = 0]P [s = 0] + P [A|s 6= 0]P [s 6= 0]
I P [A|s = 0] = 1 since s = 0⇒ r .z = rj ⇒ A
I P [A|s 6= 0] = 1/2 since s 6= 0⇒ s = {. . . ,−4,−2, 2, 4, . . .}. Hence,

sign(r .z) = sign(s) which is independent of rj .
I P [s = 0] =

(
`

`/2

)
/2` = 2c/

√
t for some constant c > 0

I So P [A] = P [s = 0] + P[s 6=0]
2 = 1

2 + P[s=0]
2 = 1

2 + c√
t
.
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