CMPSCI 711: More Advanced Algorithms Section 5-1: : Lower Bounds and Communication Complexity

Andrew McGregor

Last Compiled: April 29, 2012

Basic Communication Complexity

► Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function P(x, y, z).

- ► To help Charlie, Alice sends a message m₁ to Bob, and then Bob sends a message m₂ to Charlie.
- Question: How large must be $|m_1| + |m_2|$ be if Charlie is to evaluate P(x, y, z) correctly in the worst case over possible x, y, z?
 - Deterministic: $m_1(x)$, $m_2(m_1, y)$, $out(m_2, z) = P(x, y, z)$
 - ▶ Random: $m_1(x, r)$, $m_2(m_1, y, r)$, $out(m_2, z, r)$ where r is public random bits. Require $\mathbb{P}[out(m_2, z) = P(x, y, z)] \ge 9/10$.

Stream Algorithms Yield Communication Protocols

Let Q be some stream problem. Suppose there's a reduction x → S₁, y → S₂, z → S₃ such that knowing Q(S₁ ∘ S₂ ∘ S₃) solves P(x, y, z).

An s-bit stream algorithm A for Q yields 2s-bit protocol for P: Alice runs A of S₁; sends memory state to Bob; Bob instantiates A with state and runs it on S₂; sends state to Charlie who finishes running A on S₃ and infers P(x, y, z) from Q(S₁ ∘ S₂ ∘ S₃).

Communication Lower Bounds imply Stream Lower Bounds

- ► Had there been t players, the s-bit stream algorithm for Q would have lead to a (t - 1)s bit protocol P.
- Hence, a lower bound of L for P implies $s = \Omega(L/t)$.

Outline

Classic Problems and Reductions

Gap-Hamming

Indexing

• Consider a binary string $x \in \{0,1\}^n$ and $j \in [n]$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
 and $j = 3$

and define $INDEX(x, j) = x_j$

- Suppose Alice knows x and Bob knows j.
- How many bits need to be sent by Alice for Bob to determine INDEX(x, j) with probability 9/10? Ω(n)

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length 2n 1 stream requires $\Omega(n)$ memory.
- ► Reduction from indexing on input x ∈ {0,1}ⁿ, j ∈ [n]: Alice generates: S₁ = {2i + x_i : i ∈ [n]}, e.g.,

$$x = \left(\begin{array}{cccccc} 0 & 1 & 0 & 1 & 1 & 0 \end{array}\right) \rightarrow \left\{2, 5, 6, 9, 11, 12\right\}$$

Bob generates: $S_2 = \{n - j \text{ copies of } 0 \text{ and } j - 1 \text{ copies of } 2n + 2\}$, e.g.,

$$j=3\longrightarrow \{0,0,0,14,14\}$$

- ▶ Then median $(S_1 \cup S_2) = 2j + x_j$ and parity determines INDEX(x, j)
- ▶ An *s*-space algorithm gives an *s*-bit protocol so

$$s = \Omega(n)$$

by the one-way communication complexity of indexing.

Multi-Party Set-Disjointness

• Consider a $t \times n$ matrix where column has weight 0, 1, or t, e.g.,

- ▶ Define DISJ_t(M) = V_j AND_t(M_{1,j},..., M_{t,j}), i.e., DISJ_t(M) = 1 iff there is an all 1's column.
- ► Consider *t* players where *P_i* knows *i*-th row of *M*.
- How many bits need to be communicated between the players to determine DISJ_t(M)? Ω(n/t)

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_k needs $\Omega(n^{1-2/k})$ space.
- ▶ Reduction from multi-party set disjointness on input M ∈ {0,1}^{t×n}:
 P_i generates set S_i = {j : M_{ij} = 1}, e.g.,

$$\left(\begin{array}{cccccc} 0 & 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 1 & 1 & 0 \\ 0 & 1 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \end{array}\right) \longrightarrow \{4, 1, 4, 5, 2, 4, 4\}$$

- If all columns have weight 0 or 1: $F_k(S) \le n$
- If there's column of weight t: $F_k(S) \ge t^k$
- If $t > 2^{1/k} n^{1/k}$ then a 2 approximation of $F_k(S)$ distinguishes cases.
- An s-space 2-approximation gives a s(t-1) bit protocol so

$$s = \Omega(n/t^2) = \Omega(n^{1-2/k})$$

by the communication complexity of set-disjointness.

Hamming Distance

• Consider 2 binary vectors $x, y \in \{0, 1\}^n$, e.g.,

$$x = (0 \ 1 \ 0 \ 1 \ 1 \ 0)$$
$$y = (1 \ 1 \ 0 \ 0 \ 1 \ 1)$$

- Define the Hamming distance $\Delta(x, y) = |\{i : x_i \neq y_i\}|.$
- Suppose Alice knows x and Bob knows y.
- How many bits need to be communicated to estimate Δ(x, y) up to an additive √n error? Ω(n) bits.

Application: Distinct Elements

- Thm: A $(1 + \epsilon)$ -approximation algorithm for F_0 needs $\Omega(\epsilon^{-2})$ space.
- ► Reduction from Hamming Distance on input x, y ∈ {0,1}ⁿ: Alice and Bob generate sets S₁ = {j : x_j = 1} and S₂ = {j : y_j = 1}, e.g.,

- Note that $2F_0(S) = |x| + |y| + \Delta(x, y)$.
- We may assume |x| and |y| are known Bob. Hence, a (1 + ϵ) approximation of F₀ yields an additive approximation to Δ(x, y) of

$$\epsilon(|x|+|y|+\Delta(x,y))/2 \le n\epsilon$$

- \blacktriangleright This is less than \sqrt{n} if $\epsilon < 1/\sqrt{n}$
- An s-space $(1 + \epsilon)$ -approximation gives a s bit protocol so

$$s = \Omega(n) = \Omega(1/\epsilon^2)$$

by communication complexity of approximating Hamming distance.

Outline

Classic Problems and Reductions

Gap-Hamming

Some communication results can be proved via a reduction from other communication results.

Theorem

Alice and Bob have $x \in \{0,1\}^n$ and $y \in \{0,1\}^n$ respectively. If Bob wants to determine $\Delta(x, y)$ up to $\pm \sqrt{n}$ with probability 9/10 then Alice must send $\Omega(n)$ bits.

Hamming Distance Lower Bound

- ▶ Reduction from INDEX problem: Alice knows z ∈ {0,1}^t and Bob knows j ∈ [t]. Let's assume |z| = t/2 and this is odd.
- Alice and Bob pick $r \in_R \{-1, 1\}^t$ using public random bits.
- Alice computes sign(r.z) and Bob computes sign(r_j)

• Lemma: For some constant c > 0,

$$\mathbb{P}\left[\operatorname{sign}(r.z) = \operatorname{sign}(r_j)
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$

• Repeat $n = 25t/c^2$ times to construct

$$x_i = I[sign(r.z) = +]$$
 and $y_i = I[sign(r_j) = +]$

Note that

$$z_j = 0 \Rightarrow \mathbb{E} [\Delta(x, y)] = n/2$$

 $z_j = 1 \Rightarrow \mathbb{E} [\Delta(x, y)] = n/2 - 5\sqrt{n}$

and by Chernoff bounds $\mathbb{P}\left[|\Delta(x, y) - \mathbb{E}[\Delta(x, y)]| \ge 2\sqrt{n}\right] < 1/10.$ • Hence, a $\pm \sqrt{n}$ approx. of $\Delta(x, y)$ determines z_j with prob. > 9/10.

Proof of Lemma

Claim

Let A be the event $A = {sign(r.z) = r_j}$. For some constant c > 0,

$$\mathbb{P}\left[\mathcal{A}
ight] = \left\{egin{array}{cc} 1/2 & ext{if } z_j = 0 \ 1/2 + c/\sqrt{t} & ext{if } z_j = 1 \end{array}
ight.$$