CMPSCI 711: More Advanced Algorithms
 Graphs 10: Correlation Clustering

Andrew McGregor

- A 3 approximation for correlation clustering in complete graphs.
[Ailon, Charikar, Newman, J.ACM 08]
- Emulating algorithm in small space and limited number of passes.
[Ahn, Cormode, Guha, McGregor, Wirth ICML 16]

Last Compiled: March 20, 2018

Correlation Clustering

- Let G be a complete graph on n nodes where edges are colored red or blue. Given a clustering, say an edge e is unhappy if
(e is red and endpoints in different clusters) or (e is blue and endpoints in same clusters)
- Problem: Find clustering minimizing number of unhappy edges.
- Say a triangle with exactly two red edges is bad. Let \mathcal{B} be set of bad triangles. Minimum number of unhappy edges is at least

$$
\min \left\{\sum_{e \in E} x_{e}: x_{e} \in\{0,1\} \text { and } \sum_{e \in T} x_{e} \geq 1 \text { for all } T \in \mathcal{B}\right\}
$$

since, if we interpret $x_{e}=1$ as making e unhappy, we need to disappoint at least one edge in each bad triangle.

Correlation Clustering Algorithm

We say node u is a friend of node v is the edge $\{u, v\}$ is red.
Non-Streaming Version:

- Randomly order nodes: $v_{1}, v_{2}, \ldots, v_{n}$. Mark each as uncovered.
- For $i=1$ to n : If v_{i} uncovered, let v_{i} and it's uncovered friends be a cluster. Cover these nodes and say " v_{i} was chosen as a pivot."

Emulating in the Streaming Model:

- Preprocess: Randomly order nodes: $v_{1}, v_{2}, \ldots, v_{n}$.
- First Pass: Store all red edges incident to $\left\{v_{1}, \ldots, v_{\sqrt{n}}\right\}$. Emulate the first \sqrt{n} steps of the algorithm.
- Second Pass: Store all red edges that have both endpoints uncovered at end of first pass. Emulate remaining steps of the algorithm.

Will show a) achieves factor 3 approx and b) the streaming algorithm uses $\tilde{O}\left(n^{1.5}\right)$ space. Can also get a $O(\log \log n)$ pass, $\tilde{O}(n)$ space algorithm.

Analyzing Approximation Ratio: Part 1

- Let $T \in \mathcal{B}$ with nodes $\{a, b, c\}$. Define events
$B_{T}=$ node in T chosen as a pivot and other nodes uncovered at time

$$
B_{b, c}^{a}=B_{T} \cap\{\text { pivot }=a\} \quad B_{a, c}^{b}=B_{T} \cap\{\text { pivot }=b\} \quad B_{a, b}^{c}=B_{T} \cap\{\text { pivot }=c\}
$$

- Charge an unhappy edge to bad triangle formed by it and the pivot when it was made unhappy. Each $T \in \mathcal{B}$ charged at most once.
- Let $z_{T}=\mathbb{P}\left[B_{T}\right] / 3$. Expected cost is $\sum_{t \in \mathcal{B}} \mathbb{P}\left[B_{T}\right]=3 \sum_{t \in \mathcal{B}} z_{T}$.
- $\mathbb{P}\left[B_{b, c}^{a}\right]=\mathbb{P}\left[B_{a, c}^{b}\right]=\mathbb{P}\left[B_{a, b}^{c}\right]=z_{T}$, e.g.,

$$
\mathbb{P}\left[B_{b, c}^{a}\right]=\mathbb{P}\left[B_{b, c}^{a} \mid B_{T}\right] \mathbb{P}\left[B_{T}\right]=\mathbb{P}\left[B_{T}\right] / 3=z_{T} .
$$

- Since $B_{b, c}^{a} \cap B_{b, c}^{a^{\prime}}=\emptyset$ for $\{a, b, c\},\left\{a^{\prime}, b, c\right\} \in \mathcal{B}$,

$$
\sum_{a:\{a, b, c\} \in \mathcal{B}} \mathbb{P}\left[B_{b, c}^{a}\right] \leq 1
$$

- And so for any $e=\{b, c\}$

$$
\sum_{T \in \mathcal{B}: e \in T} z_{T}=\sum_{a:\{a, b, c\} \in \mathcal{B}} \mathbb{P}\left[B_{b, c}^{a}\right] \leq 1
$$

Analyzing Approximation Ratio: Part 2

- Using LP duality:

$$
\begin{aligned}
\text { OPT } & \geq \min \left\{\sum_{e \in E} x_{e}: x_{e} \in\{0,1\} \text { and } \sum_{e \in T} x_{e} \geq 1 \text { for all } T \in \mathcal{B}\right\} \\
& \geq \min \left\{\sum_{e \in E} x_{e}: x_{e} \geq 0 \text { and } \sum_{e \in T} x_{e} \geq 1 \text { for all } T \in \mathcal{B}\right\} \\
& =\max \left\{\sum_{T \in \mathcal{B}} y_{T}: y_{T} \geq 0 \text { and } \sum_{T \in \mathcal{B}: e \in T} y_{T} \leq 1 \text { for all } e \in E\right\} \\
& \geq \sum_{T \in \mathcal{B}} z_{T}
\end{aligned}
$$

where the last line follows since $\sum_{T \in \mathcal{B}: e \in T} z_{T} \leq 1$.

- Hence, expected cost is

$$
\sum_{t \in \mathcal{B}} \mathbb{P}\left[B_{T}\right]=3 \sum_{t \in \mathcal{B}} z_{T} \leq 3 \mathrm{OPT}
$$

Space Analysis

Algorithm stores $\sqrt{n} \times n$ edges in first pass. Next lemma implies every uncovered node has $\tilde{O}\left(n^{0.5}\right)$ friends after first pass with high probability. Hence, $\tilde{O}\left(n^{1.5}\right)$ edges are stored in the second pass.
Lemma
After r iterations, every uncovered node has $<10(\log n) n / r$ friends whp.

- Let $\alpha=10(\log n) n / r$. Fix a node v and define event,
$B_{i}=" v$ uncovered and has at least α uncovered friends after i iterations"
- Note that $\mathbb{P}\left[B_{i} \mid B_{i-1} \cap \ldots B_{1}\right] \leq 1-\frac{\alpha}{n-i+1} \leq \exp (-\alpha / n)$ and so,

$$
\mathbb{P}\left[B_{r}\right]=\mathbb{P}\left[B_{r} \cap B_{r-1} \cap \ldots \cap B_{1}\right] \leq \exp (-\alpha / n)^{r} \leq 1 / n^{10}
$$

- Hence, the union bound implies that with probability at least $1-1 / n^{9}$, every uncovered node has less than α friends.

