CMPSCI 711: More Advanced Algorithms
 Graphs 2: Linear Sketching for Graph Connectivity

Andrew McGregor

Last Compiled: February 1, 2018

Motivating Problem

- Problem: There are n machines and each has the row of an adjacency matrix of a graph with n nodes. A single message is communicated from each machine to a central machine. How many bits do these messages need to be such that the central machine can determine whether the graph is connected?
- Answer: O (polylog n) bits suffice such that the connectivity can be determined with high probability.
- Corollary: O (n polylog n) bits suffice to determine whether a graph defined by a stream of edge insertions/deletions is connected.

First Ingredient: Sketching for ℓ_{0} Sampling

Lemma

There exists random matrix $\mathcal{A} \in \mathbb{R}^{O\left(\log ^{2} N\right) \times N}$ such that for any $x \in \mathbb{R}^{N}$, with probability at least $1-1 / \operatorname{poly}(n)$, we can learn $\left(i, x_{i}\right)$ for some $x_{i} \neq 0$ from $\mathcal{A} x$.

Useful properties:

- Union Bound: Suppose we have multiple vectors $x_{1}, x_{2}, \ldots, x_{t}$, then we can determine a non-zero element from everyone of them from

$$
\mathcal{A} x_{1}, \mathcal{A} x_{2}, \ldots, \mathcal{A} x_{t}
$$

with probability at least $1-\delta t$.

- Linearity: Given $\mathcal{A} x$ and $\mathcal{A} y$, we can find a non-zero entry from $z=x+y$ since

$$
\mathcal{A} z=\mathcal{A}(x+y)=\mathcal{A} x+\mathcal{A} y
$$

Second Ingredient: Boruvka's algorithm

Consider the following (non-streaming) algorithm for connectivity:

- For each node, select an incident edge.
- For each connected component, select an incident edge.
- Repeat above line until process terminates.

Analysis:

- There are at most $\log n$ rounds since in each round, the size of every connected component either stops growing or doubles size.
- The set of all edges selected includes a spanning forest of the graph.

Third Ingredient: Signed Vertex-Edge Vectors

With each vertex i of the graph, associate a length $\binom{n}{2}$ vector that is indexed by pairs on nodes. The only non-zero entries correspond to incident edges $\{i, j\} \in E$ and this entry is 1 if $j>i$ and -1 if $j<i$. E.g.,

	\{1,2\}	\{1,3\}	\{1,4\}	\{1,5\}	\{2,3\}	\{2,4\}	\{2,5\}	\{3,4\}	\{3,5\}	\{4,5\}
$x_{1}=($	1	1	0	0	0	0	0	0	0	0
$x_{2}=($	-1	0	0	0	1	0	0	0	0	0
$x_{3}=($	0	-1	0	0	-1	0	0	1	0	0
$x_{4}=($	0	0	0	0	0	0	0	-1	0	1
$x_{5}=($	0	0	0	0	0	0	0	0	0	-1

corresponds to a graph with edges $\{1,2\},\{1,3\},\{2,3\},\{3,4\}$, and $\{4,5\}$.
Lemma
Non-zero entries of $\sum_{i \in S} a_{i}$ correspond to edges between S and $V \backslash S$.
Proof.
$\{j, k\}$ th entry of $\sum_{i \in S} a_{i}$ equals 0 iff $j, k \in S$ or $j, k \notin S$.

The Final Recipe

- What players send: Player with node i sends $\mathcal{A}_{1} x_{i}, \mathcal{A}_{2} x_{i}, \ldots, \mathcal{A}_{\log n} x_{i}$ where $\mathcal{A}_{1}, \mathcal{A}_{2}, \ldots$ are independent random matrices for ℓ_{0} sampling.
- Central player emulates Boruvka's algorithm:
- Can identify an incident edge from each node i using $\mathcal{A}_{1} x_{i}$ since can find a non-zero entry of x_{i} and such entries of x_{i} are incident edges.
- In round t, suppose we need to find an incident edge from a connected component S. Then, we can such an edge since

$$
\sum_{i \in S} \mathcal{A}_{t} x_{i}=\mathcal{A}_{t} \sum_{i \in S} x_{i}
$$

and we can therefore identify of non-zero elements of $\sum_{i \in S} x_{i}$ which gives a suitable edge.

Basic idea for how ℓ_{0} sketching works

- Let $S_{0}, S_{1}, \ldots, S_{\log N}$ be random subsets of $[N]$ where each element is in S_{i} with probability $1 / 2^{i}$.
- To sketch the vector x, for each $S \in\left\{S_{0}, S_{1}, \ldots, S_{\log N}\right\}$ compute:

$$
a=\sum_{j \in S} j x_{j} \quad b=\sum_{j \in S} x_{j} \quad c=\sum_{j \in S} x_{j} r^{j} \bmod p
$$

where r is a random value in range $1, \ldots, p-1$ and $p=\operatorname{poly}(N)$.

- We say S passes the test if $a / b \in[N]$ and $c=b r^{a / b} \bmod p$.
- If all S do not pass the test, output "fail"
- Otherwise, pick a passing S. Claim that (a / b) th entry of x is $b>0$

Analysis: Part 1

Lemma

Let $A=\left\{i \in N: x_{i} \neq 0\right\}$ be the positions of non-zero entries.

- If $|A \cap S|=1$, then S passes the test and $x_{a / b}=b$.
- If $|A \cap S| \neq 1$, then S doesn't pass the test with high probability.

Proof.

- If $A \cap S=\{j\}$ then $a=j x_{j}, b=x_{j}$, and $c=b z^{j} \bmod p$.
- If $|A \cap S|>1$ then

$$
f(z)=\sum_{j \in S} x_{j} z^{j}-b z^{a / b} \bmod p
$$

is a non-zero polynomial of degree at most N. Hence, it evaluates to 0 at a random r with probability at most $N /(p-1)<1 / \operatorname{poly}(N)$.

Analysis: Part 2

Lemma
$\mathbb{P}[|A \cap S|=1] \geq 1 / 8$ for some S.
Proof.
Pick i such that $2^{i-2} \leq|A|<2^{i-1}$. Then,

$$
\begin{aligned}
\mathbb{P}\left[\left|A \cap S_{i}\right|=1\right] & =\sum_{j \in A} \mathbb{P}\left[j \in S_{i}, k \notin S_{i} \text { for all } k \in A \backslash\{j\}\right] \\
& =\sum_{j \in A} \frac{1}{2^{i}}\left(1-\frac{1}{2^{i}}\right)^{|A|-1} \\
& =\frac{|A|}{2^{i}}\left(1-\frac{1}{2^{i}}\right)^{|A|-1} \\
& >\frac{|A|}{2^{i}}\left(1-\frac{|A|}{2^{i}}\right)>1 / 8
\end{aligned}
$$

Can boost the probability from $1 / 8$ to $1-1 / \operatorname{poly}(n)$ by repeating the process $O(\log n)$ times in parallel.

How to do it with hash functions: Part 1

Definition

We say a collection \mathcal{H} of functions $D \rightarrow R$ is k-wise independent if for any set of k distinct values $x_{1}, \ldots, x_{k} \in D$ and k values j_{1}, \ldots, j_{k} when we pick a function h uniformly at random from \mathcal{H},

$$
\mathbb{P}\left[h\left(x_{1}\right)=j_{1}, h\left(x_{2}\right)=j_{2}, \ldots, h\left(x_{k}\right)=j_{k}\right]=1 /|R|^{k}
$$

For example,
$\mathcal{H}=\left\{h(x)=a_{k} x^{k}+a_{k-1} x^{k-1}+\ldots a_{0} \bmod p: a_{i} \in\{0,1, \ldots, p-1\}\right.$ for all $\left.i\right\}$
is a family of k-wise hash functions from $[n]$ to $\{0, \ldots, p-1\}$ if p a prime greater than n. Can store h using $O(k \log p)$ bits.

How to do it with hash functions: Part 2

- To define $S_{0}, S_{1}, S_{2}, \ldots$, pick h from a 2 -wise independent family of hash functions.
- Let $S_{i}=\left\{x \in[N]: h(x)\right.$ is divisible by $\left.2^{i}\right\}$ and so

$$
\gamma_{i}=\mathbb{P}\left[j \in S_{i}\right]=\left(\left\lfloor(p-1) / 2^{i}\right\rfloor+1\right) / p \approx 1 / 2^{i}
$$

- If i satisfies that $2^{i-2} \leq|A|<2^{i-1} \mathrm{~m}$ then,

$$
\begin{aligned}
\mathbb{P}\left[\left|A \cap S_{i}\right|=1\right] & =\sum_{j \in A} \mathbb{P}\left[j \in S_{i}, k \notin S_{i} \text { for all } k \in A \backslash\{j\}\right] \\
& =\sum_{j \in A} \gamma_{i} \mathbb{P}\left[k \notin S_{i} \text { for all } k \in A \backslash\{j\} \mid j \in S_{i}\right] \\
& \geq \sum_{j \in A} \gamma_{i}\left(1-\sum_{k \in A \backslash\{j\}} \mathbb{P}\left[k \notin S_{i} \mid j \in S_{i}\right]\right) \\
& \geq \sum_{j \in A} \gamma_{i}\left(1-\gamma_{i}\right)>1 / 8
\end{aligned}
$$

From communication protocol to data stream algorithm

Assuming availability of random bits, each message can be computed in O (polylog n) bits in the data stream model. Total of $O(n$ polylog n) bits.

When edge $\{i, j\}$ is inserted where $j>i$:

$$
\begin{aligned}
& \mathcal{A}_{t} x_{i} \leftarrow \mathcal{A}_{t} x_{i}+\mathcal{A}_{t} e_{i, j} \\
& \mathcal{A}_{t} x_{j} \leftarrow \mathcal{A}_{t} x_{j}-\mathcal{A}_{t} e_{i, j}
\end{aligned}
$$

where $e_{i, j}$ is the length $\binom{n}{2}$ binary vector whose only non-zero entry is in the $\{i, j\}$ th entry.

When edge $\{i, j\}$ is deleted where $j>i$:

$$
\begin{aligned}
& \mathcal{A}_{t} x_{i} \leftarrow \mathcal{A}_{t} x_{i}-\mathcal{A}_{t} e_{i, j} \\
& \mathcal{A}_{t} x_{j} \leftarrow \mathcal{A}_{t} x_{j}+\mathcal{A}_{t} e_{i, j}
\end{aligned}
$$

