
CMPSCI 711: More Advanced Algorithms
Graphs 2: Linear Sketching for Graph Connectivity

Andrew McGregor

Last Compiled: February 1, 2018

1/12

Motivating Problem

I Problem: There are n machines and each has the row of an
adjacency matrix of a graph with n nodes. A single message is
communicated from each machine to a central machine. How many
bits do these messages need to be such that the central machine can
determine whether the graph is connected?

I Answer: O(polylog n) bits suffice such that the connectivity can be
determined with high probability.

I Corollary: O(n polylog n) bits suffice to determine whether a graph
defined by a stream of edge insertions/deletions is connected.

2/12

First Ingredient: Sketching for `0 Sampling

Lemma
There exists random matrix A ∈ RO(log2 N)×N such that for any x ∈ RN ,
with probability at least 1− 1/ poly(n), we can learn (i , xi) for some
xi 6= 0 from Ax .

Useful properties:

I Union Bound: Suppose we have multiple vectors x1, x2, . . . , xt , then
we can determine a non-zero element from everyone of them from

Ax1,Ax2, . . . ,Axt

with probability at least 1− δt.

I Linearity: Given Ax and Ay , we can find a non-zero entry from
z = x + y since

Az = A(x + y) = Ax +Ay

3/12

Second Ingredient: Boruvka’s algorithm

Consider the following (non-streaming) algorithm for connectivity:

I For each node, select an incident edge.

I For each connected component, select an incident edge.

I Repeat above line until process terminates.

Analysis:

I There are at most log n rounds since in each round, the size of every
connected component either stops growing or doubles size.

I The set of all edges selected includes a spanning forest of the graph.

4/12

Third Ingredient: Signed Vertex-Edge Vectors

With each vertex i of the graph, associate a length
(
n
2

)
vector that is

indexed by pairs on nodes. The only non-zero entries correspond to
incident edges {i , j} ∈ E and this entry is 1 if j > i and −1 if j < i . E.g.,

{1,2} {1,3} {1,4} {1,5} {2,3} {2,4} {2,5} {3,4} {3,5} {4,5}

x1 = (1 1 0 0 0 0 0 0 0 0)
x2 = (−1 0 0 0 1 0 0 0 0 0)
x3 = (0 −1 0 0 −1 0 0 1 0 0)
x4 = (0 0 0 0 0 0 0 −1 0 1)
x5 = (0 0 0 0 0 0 0 0 0 −1)

corresponds to a graph with edges {1, 2}, {1, 3}, {2, 3}, {3, 4}, and {4, 5}.

Lemma
Non-zero entries of

∑
i∈S ai correspond to edges between S and V \ S .

Proof.
{j , k}th entry of

∑
i∈S ai equals 0 iff j , k ∈ S or j , k 6∈ S .

5/12

The Final Recipe

I What players send: Player with node i sends A1xi , A2xi , . . . ,Alog nxi
where A1,A2, . . . are independent random matrices for `0 sampling.

I Central player emulates Boruvka’s algorithm:
I Can identify an incident edge from each node i using A1xi since can

find a non-zero entry of xi and such entries of xi are incident edges.
I In round t, suppose we need to find an incident edge from a

connected component S . Then, we can such an edge since∑
i∈S

Atxi = At

∑
i∈S

xi

and we can therefore identify of non-zero elements of
∑

i∈S xi which
gives a suitable edge.

6/12

Basic idea for how `0 sketching works

I Let S0,S1, . . . ,SlogN be random subsets of [N] where each element
is in Si with probability 1/2i .

I To sketch the vector x , for each S ∈ {S0,S1, . . . ,SlogN} compute:

a =
∑
j∈S

jxj b =
∑
j∈S

xj c =
∑
j∈S

xj r
j mod p

where r is a random value in range 1, . . . , p − 1 and p = poly(N).

I We say S passes the test if a/b ∈ [N] and c = br a/b mod p.
I If all S do not pass the test, output “fail”
I Otherwise, pick a passing S . Claim that (a/b)th entry of x is b > 0

7/12

Analysis: Part 1

Lemma
Let A = {i ∈ N : xi 6= 0} be the positions of non-zero entries.

I If |A ∩ S | = 1, then S passes the test and xa/b = b.

I If |A ∩ S | 6= 1, then S doesn’t pass the test with high probability.

Proof.

I If A ∩ S = {j} then a = jxj , b = xj , and c = bz j mod p.

I If |A ∩ S | > 1 then

f (z) =
∑
j∈S

xjz
j − bza/b mod p

is a non-zero polynomial of degree at most N. Hence, it evaluates to
0 at a random r with probability at most N/(p − 1) < 1/ poly(N).

8/12

Analysis: Part 2
Lemma
P [|A ∩ S | = 1] ≥ 1/8 for some S .

Proof.
Pick i such that 2i−2 ≤ |A| < 2i−1. Then,

P [|A ∩ Si | = 1] =
∑
j∈A

P [j ∈ Si , k 6∈ Si for all k ∈ A \ {j}]

=
∑
j∈A

1

2i

(
1− 1

2i

)|A|−1

=
|A|
2i

(
1− 1

2i

)|A|−1
>
|A|
2i

(
1− |A|

2i

)
> 1/8

Can boost the probability from 1/8 to 1− 1/ poly(n) by repeating the
process O(log n) times in parallel.

9/12

How to do it with hash functions: Part 1

Definition
We say a collection H of functions D → R is k-wise independent if for
any set of k distinct values x1, . . . , xk ∈ D and k values j1, . . . , jk when
we pick a function h uniformly at random from H,

P [h(x1) = j1, h(x2) = j2, . . . , h(xk) = jk] = 1/|R|k

For example,

H = {h(x) = akx
k+ak−1x

k−1+. . . a0 mod p : ai ∈ {0, 1, . . . , p−1} for all i}

is a family of k-wise hash functions from [n] to {0, . . . , p − 1} if p a
prime greater than n. Can store h using O(k log p) bits.

10/12

How to do it with hash functions: Part 2
I To define S0,S1,S2, . . ., pick h from a 2-wise independent family of

hash functions.

I Let Si = {x ∈ [N] : h(x) is divisible by 2i} and so

γi = P [j ∈ Si] = (
⌊
(p − 1)/2i

⌋
+ 1)/p ≈ 1/2i

I If i satisfies that 2i−2 ≤ |A| < 2i−1m then,

P [|A ∩ Si | = 1] =
∑
j∈A

P [j ∈ Si , k 6∈ Si for all k ∈ A \ {j}]

=
∑
j∈A

γiP [k 6∈ Si for all k ∈ A \ {j}|j ∈ Si]

≥
∑
j∈A

γi (1−
∑

k∈A\{j}

P [k 6∈ Si |j ∈ Si])

≥
∑
j∈A

γi (1− γi) > 1/8

11/12

From communication protocol to data stream algorithm

Assuming availability of random bits, each message can be computed in
O(polylog n) bits in the data stream model. Total of O(n polylog n) bits.

When edge {i , j} is inserted where j > i :

Atxi ← Atxi +Atei,j

Atxj ← Atxj −Atei,j

where ei,j is the length
(
n
2

)
binary vector whose only non-zero entry is in

the {i , j}th entry.

When edge {i , j} is deleted where j > i :

Atxi ← Atxi −Atei,j

Atxj ← Atxj +Atei,j

12/12

