CMPSCI 711: More Advanced Algorithms Graphs 3: Linear Sketching for Graph Sparsification

Andrew McGregor

Overview:

- Probabilistic algorithm for constructing a cut sparsifier.
- ► O(e⁻²n polylog n) space algorithm for constructing cut sparsifier in insert/delete model.

[Guha, McGregor, Tench SODA 16]

Last Compiled: February 13, 2018

Sparsification

Fact (Karger)

G has at most $cn^{2t/\lambda}$ cuts of size t where λ is the size of the min-cut and c is some large constant.

Lemma

Let G be an unweighted graph G with minimum cut of size

$$\lambda > \lambda^* = 24\epsilon^{-2}\ln(2n^2c)$$
.

Construct G' by sampling each edge with probability 1/2. Then,

$$\lambda_{\mathcal{A}}(\mathcal{G}') = (1 \pm \epsilon) rac{\lambda_{\mathcal{A}}(\mathcal{G})}{2} \quad orall \mathcal{A} \subset \mathcal{V}$$

where $\lambda_A(\cdot)$ is the number of edges between A and $V \setminus A$ in the graph.

Proof of Lemma

- Consider A with $\lambda_A(G) = t$ and let $X = \lambda_A(G')$.
- ▶ Then $\mathbb{E}[X] = t/2$ and by an application of the Chernoff Bound,

$$P(|X - \mathbb{E}[X]| \ge \epsilon \mathbb{E}[X]) \le 2 \exp(-\epsilon^2 t/6)$$

Taking the union bound over all cuts gives,

$$\mathbb{P} [\lambda_A(G') \neq (1 \pm \epsilon) \lambda_A(G)/2 \text{ for some } A]$$

$$\leq \sum_{t \ge \lambda} \mathbb{P} [\lambda_A(G') \neq (1 \pm \epsilon) \lambda_A(G)/2 \text{ for some } A \text{ with } \lambda_A(G) = t]$$

$$\leq \sum_{t \ge \lambda} 2 \exp(-\epsilon^2 t/6) \cdot cn^{2t/\lambda}$$

$$= \sum_{t \ge \lambda} 2c \exp\left(\frac{2t \ln n}{\lambda} - \frac{\epsilon^2 t}{6}\right)$$

$$\leq \sum_{t \ge \lambda} 2c \exp\left(-\frac{\epsilon^2 t}{12}\right) \le 2cn^2 \exp\left(-\frac{\epsilon^2 \lambda}{12}\right) \le 1/n$$

Sparsification Algorithm

Find "light" edges L₀ in G where a set of edges is light if it's removal leaves components with min-cut ≥ λ*. Let G₁ be formed by removing L₀ and sampling each remaining edge with probability 1/2.

$$\lambda_A(G) =_{(1+\epsilon)} 2\lambda_A(G_1) + \lambda_A(L_0)$$

▶ Find light edges L₁ in G₁. Let G₂ be formed by removing L₁ and sampling each remaining edge with probability 1/2.

$$\lambda_{A}(G_{1}) =_{(1+\epsilon)} 2\lambda_{A}(G_{2}) + \lambda_{A}(L_{1})$$

and so

$$\lambda_{\mathcal{A}}(\mathcal{G}) =_{(1+\epsilon)^2} 4\lambda_{\mathcal{A}}(\mathcal{G}_2) + 2\lambda_{\mathcal{A}}(\mathcal{L}_1) + \lambda_{\mathcal{A}}(\mathcal{L}_0)$$

Next iteration,

$$\lambda_{\mathcal{A}}(G) =_{(1+\epsilon)^3} 8\lambda_{\mathcal{A}}(G_3) + 4\lambda_{\mathcal{A}}(L_2) + 2\lambda_{\mathcal{A}}(L_1) + \lambda_{\mathcal{A}}(L_0)$$

▶ Repeat $t = 2 \log n$ times: With high probability $G_t = \emptyset$ and so

$$\lambda_{\mathcal{A}}(G) =_{(1+\epsilon)^{t}} 2^{t} \lambda_{\mathcal{A}}(L_{t}) + \ldots + 2\lambda_{\mathcal{A}}(L_{1}) + \lambda_{\mathcal{A}}(L_{0})$$

k-Edge Connectivity via Sketches

- ▶ We designed a sketch A such that for any graph G, we can find a spanning forest F from A(G) with high probability.
- Construct k independent spanning sketches $A_1(G), \ldots, A_k(G)$:
 - $\mathcal{A}_1(G)$ gives a spanning forest F_1 of G.
 - $\mathcal{A}_2(G) \mathcal{A}_2(F_1) = \mathcal{A}_2(G F_1)$ gives a spanning forest F_2 of $G F_1$.
 - A₃(G) − A₃(F₁) − A₃(F₂) = A₃(G − F₁ − F₂) gives a spanning forest F₃ of G − F₁ − F₂.
 - ▶ Continue until we've found spanning forests *F*₁,...,*F*_k.
- ▶ Note that $F_1 \cup \ldots \cup F_k$ is *k*-connected iff *G* is *k*-connected.
- Furthermore, an edge e is in a cut of size ≤ k − 1 in F₁ ∪ ... ∪ F_k iff it is in a cut of size ≤ k − 1 in G.
- Let's call the overall sketch \mathcal{B} .

Finding Light Edges via k connectivity sketch

• Define sets of edges E_1, E_2, \ldots where

 $E_1=$ all edges in G in a cut of size at most λ^*-1

 $E_i = \text{ all edges in } G - E_1 - E_2 - \ldots - E_i \text{ in a cut of size at most } \lambda^* - 1$

When the process terminates, $L = E_1 + E_2 + ...$ is set of light edges.

- We can find E_1, E_2, \ldots from a λ^* edge connectivity sketch $\mathcal{B}(G)$:
 - ▶ B(G) gives you E₁
 - $\mathcal{B}(G) \mathcal{B}(E_1) = \mathcal{B}(G E_1)$ gives you E_2 .
 - ▶ $\mathcal{B}(G) \mathcal{B}(E_1) \mathcal{B}(E_2) = \mathcal{B}(G E_1 E_2)$ gives you E_3 etc.
 - Continue until you've found L.

Putting it all together

- Let S_i be a sketches that samples each edge with probability 1/2ⁱ where an edge is sampled using S_i only if it is sampled using S_{i-1}.
- Sketch the data:

$$\mathcal{BS}_0(G), \mathcal{BS}_1(G), \ldots, \mathcal{BS}_{2\log n}(G)$$

- Post-processing:
 - 1. $\mathcal{BS}_0(G)$ gives L_0
 - 2. $\mathcal{BS}_1(G)$ gives L_1 (ignore any edges already in L_0)
 - 3. $\mathcal{BS}_2(G)$ gives L_2 (ignore any edges already in L_0 , L_1)

4. gives
$$L_t$$
 for $t = 2 \log n$

Return

$$L_0 + 2L_1 + 4L_2 + \ldots + 2^t L_t$$

► This is a $(1 + \epsilon)^{2 \log n}$ sparsifier and the size of the sketches is $O(\epsilon^{-2}n \operatorname{polylog} n)$. Setting $\epsilon = \frac{\gamma}{2 \log n}$ gives a $1 + \gamma$ sparsifier.