CMPSCI 711: More Advanced Algorithms Graphs 6: Small Matchings

Andrew McGregor

Overview:

An exact algorithm using O(k² log k) space for finding the largest cardinality matching in the insert-delete model where k is an upper bound on the largest matching size.

[Chitnis et al. SODA 16]

Last Compiled: February 20, 2018

Small Matching

Theorem

Suppose match(G) $\leq k$. There exists a $O(k^2 \log k)$ space algorithm in the insert-delete model that finds the size of the largest matching.

Algorithm:

- Let $c : [n] \rightarrow [b]$ be a 2-wise hash function where b = 1000k.
- ▶ For each $i, j \in [b]$, recover a single edge $\{x, y\}$ (if one exists) with

$$\{c(x),c(y)\}=\{i,j\}$$

Repeat O(log k) times in parallel and return the largest matching amongst the recovered edges.

Subgraphs with same size max matching

Lemma

Let $match(G) \leq k$ and G' be a subgraph of G. Let

$$U = \{u : \deg_G(u) \ge 10k\}$$
 and $F = \{e \in E : e \cap U = \emptyset\}$

Then match(G) = match(G') if $F \subseteq G'$ and $\deg_{G'}(u) \ge 5k$ for all $u \in U$. Proof.

- ▶ $|U| \le 2k$ since the min vertex cover has size $\le 2match(G) \le 2k$ and every node in U most be in the min vertex cover.
- ► G' contains a matching of size

$$match(F) + |U|$$

since even after we pick the largest matching in F, every node in U has $\geq 5k - 2k - 2k = k$ neighbors in $V \setminus (U \cup match(F))$.

• Max matching in G has size at most match(F) + |U|.

 $\mathbb{P}\left[F \subseteq G' \text{ and } \deg_{G'}(u) \geq 5k \ \forall u \in U\right] \geq 1 - \frac{1}{\operatorname{poly}(k)}.$

Let c be 2-wise independent hash function and H be a graph with one edge {x, y} with c(x) = i, c(y) = j for each i, j ∈ [b].

Claim

If $e \in F$ then $\mathbb{P}[e \in H] \ge 1/2$.

Claim

If $u \in U$ then $\mathbb{P}[\deg_H(u) \ge 5k] \ge 1/2$

- Repeat $r = \Theta(\log k)$ times, to boost probabilities to $1 \frac{1}{\operatorname{poly}(k)}$.
- ▶ Take union bound over $|F| = O(k^2)$ edges and |U| = O(k) nodes.
- The fact $|F| = O(k^2)$ follows since $k \ge match(F) \ge |F|/(10k)$.

Claim 1: $\mathbb{P}[e \in H] \ge 1/2$ for $e \in F$

- Let C be a min vertex cover of G and note |C| ≤ 2k because the endpoints of the edges in a maximum matching form a vertex cover.
- Let $e = \{x, y\}$ and consider $A = (C \cup \Gamma(x) \cup \Gamma(y)) \setminus \{x, y\}$
- ► Then G[V \ A] consists of the unique edge e. So if no vertices in A receive hash values equal to c(x) and c(y), then e is unique edge with hash values c(x) and c(y) and hence is in H.
- Since b = 1000k and $|A| \le 2k + 10k + 10k = 22k$,

$$\mathbb{P}\left[e \in H
ight] \geq 1 - \mathbb{P}\left[\exists a \in A : c(a) = c(x)
ight] - \mathbb{P}\left[\exists a \in A : c(a) = c(y)
ight] \ \geq 1 - 2|A|/b > 1/2 \;.$$

Claim 2: $\mathbb{P}[\deg_H(u) \ge 5k] \ge 1/2$ for $u \in U$

- Let A = C \ {u}. Then G[V \ A] is star with center u and ≥ 9k leaves. Let N = {v₁,..., v_{9k}} be arbitrary set of 9k such leaves.
- Let X_i = 1 if v_i has the same hash value as some other vertex in N or a vertex in C. Let X = ∑X_i.
- ▶ If $c(u) \notin c(A)$ and $X \le 4k$, then H has $\ge 5k$ edges incident to u.
- This happens with probability at least 1/2 since

Π

$$\mathbb{P}[c(u) \in c(A)] \le |A|/b < 2k/b = 1/500$$
,

and

$$\mathbb{E}[X_i] \leq \frac{|A| + |N|}{b} \leq \frac{2k + 9k}{b} \leq 1/50 \; ,$$

and so

$$\mathbb{P}\left[X \geq 4k
ight] \leq rac{\mathbb{E}\left[X
ight]}{4k} \leq rac{9k imes 1/50}{4k} < 1/20 \; .$$