CMPSCI 711: More Advanced Algorithms

Graphs 6: Small Matchings

Andrew McGregor

Overview:

- An exact algorithm using $O\left(k^{2} \log k\right)$ space for finding the largest cardinality matching in the insert-delete model where k is an upper bound on the largest matching size.
[Chitnis et al. SODA 16]

Small Matching

Theorem
Suppose match $(G) \leq k$. There exists a $O\left(k^{2} \log k\right)$ space algorithm in the insert-delete model that finds the size of the largest matching.

Algorithm:

- Let $c:[n] \rightarrow[b]$ be a 2-wise hash function where $b=1000 k$.
- For each $i, j \in[b]$, recover a single edge $\{x, y\}$ (if one exists) with

$$
\{c(x), c(y)\}=\{i, j\}
$$

- Repeat $O(\log k)$ times in parallel and return the largest matching amongst the recovered edges.

Subgraphs with same size max matching

Lemma

Let match $(G) \leq k$ and G^{\prime} be a subgraph of G. Let

$$
U=\left\{u: \operatorname{deg}_{G}(u) \geq 10 k\right\} \text { and } F=\{e \in E: e \cap U=\emptyset\}
$$

Then $\operatorname{match}(G)=\operatorname{match}\left(G^{\prime}\right)$ if $F \subseteq G^{\prime}$ and $\operatorname{deg}_{G^{\prime}}(u) \geq 5 k$ for all $u \in U$.

Proof.

- $|U| \leq 2 k$ since the min vertex cover has size $\leq 2 m a t c h(G) \leq 2 k$ and every node in U most be in the min vertex cover.
- G^{\prime} contains a matching of size

$$
\operatorname{match}(F)+|U|
$$

since even after we pick the largest matching in F, every node in U has $\geq 5 k-2 k-2 k=k$ neighbors in $V \backslash(U \cup \operatorname{match}(F))$.

- Max matching in G has size at most match $(F)+|U|$.

$\mathbb{P}\left[F \subseteq G^{\prime}\right.$ and $\left.\operatorname{deg}_{G^{\prime}}(u) \geq 5 k \forall u \in U\right] \geq 1-\frac{1}{\text { poly }(k)}$.

- Let c be 2 -wise independent hash function and H be a graph with one edge $\{x, y\}$ with $c(x)=i, c(y)=j$ for each $i, j \in[b]$.
Claim
If $e \in F$ then $\mathbb{P}[e \in H] \geq 1 / 2$.
Claim
If $u \in U$ then $\mathbb{P}\left[\operatorname{deg}_{H}(u) \geq 5 k\right] \geq 1 / 2$
- Repeat $r=\Theta(\log k)$ times, to boost probabilities to $1-\frac{1}{\text { poly }(k)}$.
- Take union bound over $|F|=O\left(k^{2}\right)$ edges and $|U|=O(k)$ nodes.
- The fact $|F|=O\left(k^{2}\right)$ follows since $k \geq \operatorname{match}(F) \geq|F| /(10 k)$.

Claim 1: $\mathbb{P}[e \in H] \geq 1 / 2$ for $e \in F$

- Let C be a min vertex cover of G and note $|C| \leq 2 k$ because the endpoints of the edges in a maximum matching form a vertex cover.
- Let $e=\{x, y\}$ and consider $A=(C \cup \Gamma(x) \cup \Gamma(y)) \backslash\{x, y\}$
- Then $G[V \backslash A]$ consists of the unique edge e. So if no vertices in A receive hash values equal to $c(x)$ and $c(y)$, then e is unique edge with hash values $c(x)$ and $c(y)$ and hence is in H.
- Since $b=1000 k$ and $|A| \leq 2 k+10 k+10 k=22 k$,

$$
\begin{aligned}
\mathbb{P}[e \in H] & \geq 1-\mathbb{P}[\exists a \in A: c(a)=c(x)]-\mathbb{P}[\exists a \in A: c(a)=c(y)] \\
& \geq 1-2|A| / b>1 / 2 .
\end{aligned}
$$

Claim 2: $\mathbb{P}\left[\operatorname{deg}_{H}(u) \geq 5 k\right] \geq 1 / 2$ for $u \in U$

- Let $A=C \backslash\{u\}$. Then $G[V \backslash A]$ is star with center u and $\geq 9 k$ leaves. Let $N=\left\{v_{1}, \ldots, v_{9 k}\right\}$ be arbitrary set of $9 k$ such leaves.
- Let $X_{i}=1$ if v_{i} has the same hash value as some other vertex in N or a vertex in C. Let $X=\sum X_{i}$.
- If $c(u) \notin c(A)$ and $X \leq 4 k$, then H has $\geq 5 k$ edges incident to u.
- This happens with probability at least $1 / 2$ since

$$
\mathbb{P}[c(u) \in c(A)] \leq|A| / b<2 k / b=1 / 500
$$

and

$$
\mathbb{E}\left[X_{i}\right] \leq \frac{|A|+|N|}{b} \leq \frac{2 k+9 k}{b} \leq 1 / 50
$$

and so

$$
\mathbb{P}[X \geq 4 k] \leq \frac{\mathbb{E}[X]}{4 k} \leq \frac{9 k \times 1 / 50}{4 k}<1 / 20 .
$$

