CMPSCI 711: More Advanced Algorithms

Graphs 8: Submodular Maximization

Andrew McGregor

- A $1 / 2-\epsilon$ approx for monotone submodular maximization.
[Badanidiyuru et al., KDD 14]
- A $1 / 3-\epsilon$ approx for non-monotone submodular maximization.
[Chekuri, Gupta, Quanrud, ICALP 15]

Last Compiled: March 8, 2018

Submodularity

Definition

A function f from subsets of U is submodular if $\forall A \subset B$ and $u \in U \backslash B$,

$$
f_{A}(u) \geq f_{B}(u) \text { where } \quad f_{X}(Y)=f(X \cup Y)-f(X)
$$

i.e., there are "diminishing returns". Assume $f(\emptyset)=0$. For example,

- Coverage: If $U=\left\{S_{1}, S_{2}, \ldots\right\}$ where each $S_{i} \subseteq[n]$ and for $A \subseteq U$

$$
f(A)=\left|\cup_{i \in A} S_{i}\right|
$$

- Cuts: If U is the vertices of a graph $G=(U, E)$ and for $A \subseteq U$,

$$
f(A)=\delta(A)
$$

where $\delta(A)$ is size of cut $(A, U \backslash A)$. Submodular because for $u \notin B$,

$$
f_{A}(u)=|\Gamma(u) \backslash A|-|\Gamma(u) \cap A| \geq|\Gamma(u) \backslash B|-|\Gamma(u) \cap B|=f_{B}(u)
$$

$(1 / 2-\epsilon)$-Approx for Monotone Submodular Functions

Problem: Find A the maximizes $f(A)$ subject to $|A| \leq k$.

Algorithm:

- Make guesses $z=1,(1+\epsilon),(1+\epsilon)^{2}, \ldots$ for opt $=\max _{A:|A| \leq k} f(A)$
- For guess z : Let $A=\emptyset$ and then add each $u \in U$ to A if

$$
f_{A}(u) \geq \frac{z}{2 k} \quad \text { and } \quad|A|<k
$$

Theorem
Algorithm returns a $(1-\epsilon) / 2$ approximation if f is monotone, i.e.,

$$
f(A) \leq f(B) \text { for any } A \subseteq B
$$

Analysis

- Let $O=\left\{o_{1}, o_{2}, \ldots\right\}=\arg \max _{A:|A| \leq k} f(|A|)$. Consider guess z

$$
f(O) \leq z \leq(1+\epsilon) f(O)
$$

- If $|A|=k$ and $A=\left\{u_{1}, \ldots, u_{k}\right\}$ then,

$$
f(A)=\sum_{i=1}^{k}\left(f\left(\left\{u_{i}, u_{i-1}, \ldots, u_{1}\right\}\right)-f\left(\left\{u_{i-1}, \ldots, u_{1}\right\}\right)\right) \geq \frac{z}{2} \geq \frac{f(O)}{2}
$$

- If $|A|<k$. Suppose $o_{i} \notin A$ and we'd picked A^{\prime} when o_{i} arrived. Then,

$$
f\left(A \cup\left\{o_{i}\right\}\right)-f(A) \leq f\left(A^{\prime} \cup\left\{o_{i}\right\}\right)-f\left(A^{\prime}\right)<\frac{z}{2 k}
$$

and so

$$
f(O) \leq f(O \cup A) \leq k \times \frac{z}{2 k}+f(A)=z / 2+f(A)
$$

and therefore $f(A) \geq f(O)-z / 2 \geq \frac{(1-\epsilon)}{2} \times f(O)$.

$(1 / 3-\epsilon)$-Approx for Non-monotone Submodular Functions

Problem: Find A the maximizes $f(A)$ subject to $|A| \leq k$ where f.

Algorithm:

- Assume we have guess z such that OPT $\leq z \leq(1+\epsilon)$ OPT
- $S_{1} \leftarrow \emptyset, B \leftarrow \emptyset$
- For each element e in the stream:
- If $\left|S_{1}\right|<k$ and $f_{S_{1}}(e)>\frac{z}{3 k}$ then $B \leftarrow B \cup\{e\}$
- If $|B|=k / \epsilon$:
- Remove a random element from B and add it to S_{1}
- Remove any element f from B such that $f_{S_{1}}(f) \leq \frac{Z}{3 k}$
- Post-Processing: Return $S=\arg \max _{Z \in\left\{S_{1}, S_{2}\right\}} f(Z)$ where S_{2} is the best solution from B.

Theorem
Algorithm returns a $(1-\epsilon) / 3$ approximation in expectation.

Analysis: Preliminary Lemmas

Lemma
If $\left|S_{1}\right|=k$, then $f\left(S_{1}\right) \geq z / 3 \geq \mathrm{OPT} / 3$.
Proof: Immediate from sub-modularity since each element added increases f by $z /(3 k)$.
Lemma
If $\left|S_{1}\right|<k$, then for the optimum set O.

$$
f\left(S_{1} \cup O\right) \leq f\left(S_{1}\right)+f(O \cap B)+z / 3
$$

Proof:

- For each element $o \in O \backslash B$,

$$
f_{S_{1}}(o) \leq z /(3 k)
$$

and so $f_{S_{1}}(O \backslash B) \leq|O \backslash B| \times z /(3 k) \leq z / 3$.

- By submodularity

$$
\begin{aligned}
f\left(S_{1} \cup O\right)=f\left(S_{1}\right)+f_{S_{1}}(O) & \leq f\left(S_{1}\right)+f_{S_{1}}(O \backslash B)+f_{S_{1}}(O \cap B) \\
& \leq f\left(S_{1}\right)+z / 3+f(O \cap B)
\end{aligned}
$$

Analysis: A General Technical Lemma

Lemma (Buchbinder et al. SODA 2014)
Given sets $A=\left\{a_{1}, a_{2}, \ldots\right\}$ and B, let A^{\prime} be random subset of A where $a_{i} \in A^{\prime}$ with probability p_{i}. Sampling need not be independent. Then,

$$
\mathbb{E}\left[f\left(A^{\prime} \cup B\right)\right] \geq(1-p) f(B) \text { where } p=\max p_{i}
$$

Proof:

- Assume $p_{1} \geq p_{2} \geq \ldots$. Let $A_{i}=\left\{a_{1}, \ldots, a_{i}\right\}$ and $A_{i}^{\prime}=A_{i} \cap A^{\prime}$.
- Let $X_{i}=1$ if $a_{i} \in A$ and $X_{i}=0$ otherwise. Then $\mathbb{E}\left[f_{B}\left(A^{\prime}\right)\right]=$

$$
\begin{aligned}
& =\mathbb{E}\left[\sum_{i=1}^{|A|} X_{i} f_{B \cup A_{i-1}^{\prime}}\left(a_{i}\right)\right] \geq \mathbb{E}\left[\sum_{i=1}^{|A|} X_{i} f_{B \cup A_{i-1}}\left(a_{i}\right)\right]=\sum_{i=1}^{|A|} p_{i} f_{B \cup A_{i-1}}\left(a_{i}\right) \\
& =\sum_{i=1}^{|A|} p_{i}\left(f_{B}\left(A_{i}\right)-f_{B}\left(A_{i-1}\right)\right)=p_{|A|} f_{B}(A)+\sum_{i=1}^{|A|-1}\left(p_{i}-p_{i+1}\right) f_{B}\left(A_{i}\right) \\
& =p_{|A|}(f(B \cup A)-f(B))+\sum_{i=1}^{|A|-1}\left(p_{i}-p_{i+1}\right)\left(f\left(B \cup A_{i}\right)-f(B)\right) \leq-p f(B)
\end{aligned}
$$

Analysis: Algorithm Returns a $1 / 3-\epsilon$ approximation

- If $\left|S_{1}\right|=k$, we're done. Hence assume,

$$
f\left(S_{1} \cup O\right) \leq f\left(S_{1}\right)+f(O \cap B)+z / 3
$$

- $f\left(S_{2}\right) \geq f(O \cap B)$ since we find opt solution amongst buffer. Hence,

$$
f\left(S_{1} \cup O\right) \leq f\left(S_{1}\right)+f\left(S_{2}\right)+z / 3 \leq 2 f(S)+z / 3
$$

- Since the probability an element in U gets added to S_{1} is at most,

$$
1-\left(1-\frac{1}{k / \epsilon}\right)^{k}
$$

the technical lemma gives

$$
\mathbb{E}\left[f\left(S_{1} \cup O\right)\right] \geq\left(1-\frac{1}{k / \epsilon}\right)^{k} f(O) \geq(1-\epsilon) \mathrm{OPT}
$$

- Therefore

$$
\begin{aligned}
\mathbb{E}[f(S)] & =\mathbb{E}\left[f\left(S_{1} \cup O\right)\right] / 2-z / 6 \\
& =(1-\epsilon) f(O) / 2-(1+\epsilon) f(O) / 6=f(O)(1-2 \epsilon) / 3
\end{aligned}
$$

