CMPSCI 711: More Advanced Algorithms

Graphs 9: Set Cover and Max Coverage

Andrew McGregor

▶ A $1/2 - \epsilon$ approx for max k coverage in $\tilde{O}(k/\epsilon)$ space.

[McGregor, Vu, ICDT 17]

▶ A $2/\delta$ approx for set cover in $2/\delta$ passes and $\tilde{O}(mn^{\delta})$ space.

[Har-Peled, Indyk, Mahabadi, Vakilian, PODS 16]

▶ A $pn^{1/p}$ approx for set cover in p passes and $\tilde{O}(n)$ space.

[Chakrabarti, Wirth SODA 16]

MaxCoverage

Can use submodular maximization algorithm to get $1/2 - \epsilon$ approx for MaxCoverage with $\tilde{O}(\epsilon^{-1}\text{OPT})$ space. Will reduce this to $\tilde{O}(\epsilon^{-3}k)$ space.

- ▶ Idea: Maximize coverage of elements in random subset $R \subseteq [n]$.
- ▶ Defining R: Assume we have guess v satisfying $OPT/2 \le v \le OPT$. Let $R = \{e \in [n] : h(e) = 1\}$ where $h : [n] \to \{0,1\}$ is a 2λ -wise independent hash function such that

$$p := \mathbb{P}\left[h(e) = 1\right] = \lambda/v$$

for $\lambda = c\epsilon^{-2}k \log m$ and c a large constant.

▶ Lemma: With high probability, for any k sets S_1, \ldots, S_k ,

$$|S_1' \cup \ldots \cup S_k'| = |S_1 \cup \ldots \cup S_k| p \pm \epsilon v p$$
 where $S_i' = S_i \cap R$.

▶ If sets $A_1, ..., A_k$ α -approx max coverage in R and $O_1, ..., O_k$ give optimum coverage in [n] then

$$|\cup A_i| \ge \frac{|\cup A_i'|}{p} - \epsilon v \ge \alpha \cdot \frac{|\cup O_i'|}{p} - \epsilon v \ge \alpha \cdot |\cup O_i| - 2\epsilon v \ge (\alpha - 2\epsilon) \cdot \text{OPT}$$

Proof of Lemma

▶ Fix collection of k sets and let D be their union and let X = |D'|.

Theorem (Chernoff with Limited Independence)

Let X_1, \ldots, X_n be boolean random variables. Let $X = \sum_{i=1}^n X_i$ and $\mu = \mathbb{E}[X]$ where $\mu \leq n/2$. If X_i are $\lceil \gamma \mu \rceil$ -wise independent, then

$$\mathbb{P}\left[|X - \mu| \ge \gamma \mu\right] \le \exp\left(-\left\lfloor \min(\gamma, \gamma^2) \cdot \mu/3 \right\rfloor\right).$$

- ▶ $\mathbb{E}[X] = p|D| \le \lambda$ and using the above theorem, $\gamma = \epsilon v/|D|$, $\mathbb{P}[|X \mu| \ge \epsilon vp] = \mathbb{P}[|X \mu| \ge \gamma |D|p] \le \exp(-\lfloor \min(\gamma, \gamma^2) \cdot \mu/3\rfloor)$ since hash function is $\lceil \gamma \mu \rceil = \lceil \epsilon vp \rceil$ -wise independent.
- ▶ $|D| \le OPT \le 2v$ implies $\gamma = \epsilon v/|D| \ge \epsilon/2$ and so,

$$\begin{split} \exp\left(-\lfloor \min(\gamma, \gamma^2) \cdot \frac{\mu}{3} \rfloor\right) &= \exp\left(-\lfloor \min(1, \gamma) \cdot \frac{\epsilon v p}{3} \rfloor\right) \\ &\leq \exp\left(-\left\lfloor \frac{1}{2} \cdot \frac{c k \log m}{3} \right\rfloor\right) \leq \frac{1}{m^{10k}} \end{split}$$

▶ Lemma follows by union bound over all $\binom{m}{k}$ collections of k sets.

Set-Cover: Algorithm 1

Theorem

A $2/\delta$ -pass, $O(mn^{\delta})$ -space algorithm returning a $2/\delta$ -approximation for the minimum set cover.

Algorithm (Cover Random Subset): Assume $OPT/2 \le k \le OPT$

- 1. $U \leftarrow [n]$ tracks uncovered elements. $I \leftarrow \emptyset$ stores set IDs in cover.
- 2. Repeat $1/\delta$ times:
 - 2.1 Sample $\ell = 10kn^{\delta} \log(mn)$ elements R from U at random.
 - 2.2 In one-pass: Compute a set cover of R
 - 2.2.1 Add any set to I if it covers |R|/k uncovered elements in R. For any set S not added, temporally store set of uncovered elements in $S \cap R$.
 - 2.2.2 Add temporary stored sets that cover of uncovered elements in R.
 - 2.3 In another pass: Update U

Space is $\tilde{O}(mn^{\delta})$: storing U and R requires $\tilde{O}(n)$ bits and each of the, at most m, sets that are temporarily stored each has size $<|R|/k=\tilde{O}(n^{\delta})$.

Approximation: At most $(k + \text{OPT})/\delta \leq 2\text{OPT}/\delta$ sets at chosen. Just remains to show that chosen sets are a set cover. . .

Analysis

Lemma

Let U_i be the set of elements uncovered before the ith round of the algorithm. Then, with high probability

$$|U_{i+1}| < |U_i|/n^{\delta}$$

for all rounds. Hence, all elements covered after $1/\delta$ rounds.

Proof:

▶ Consider any collection of *k* sets whose coverage *C* satisfies

$$|U_i \setminus C| \geq |U_i|/n^{\delta}$$
.

▶ This collection of sets can't be chosen if R intersects $U_i \setminus C$ and

$$\mathbb{P}\left[R\cap (U_i\setminus C)\right] = \left(1-\frac{|U_i\setminus C|}{|U_i|}\right)^{\ell} \leq (1-n^{-\delta})^{\ell} \leq e^{-10k\log(mn)} = \frac{1}{(mn)^{10k}}$$

Hence, the lemma follows by the union bound over all (^m_k) collections of sets and (at most) n rounds of the algorithm.

Set-Cover: Algorithm 2

Theorem

A p-pass, $\tilde{O}(n)$ -space algorithm returning a pn^{1/p}-approximation for the minimum set cover.

Algorithm (Decreasing Threshold):

- 1. For i = 1 to $\log_{\alpha} n$ where $\alpha = n^{1/p}$:
 - ▶ In pass *i*: add any set that covers more than n/α^i new elements.

Space/Pass Analysis: Space is $\tilde{O}(n)$ and setting $\alpha=n^{1/p}$ gives p passes. Exercise: Can combine last two passes to get p-1 pass algorithm.

Approximation: Let U_i be the set of uncovered elements before ith pass. Then, we know $\text{OPT} \cdot n/\alpha^{i-1} \geq |U_i|$ and so in ith pass we add at most

$$\frac{|U_i|}{n/\alpha^i} \le \alpha \text{OPT}$$

sets. In total, we add $p\alpha = pn^{1/p}$ sets.