
CMPSCI 711: More Advanced Algorithms
Graphs 9: Set Cover and Max Coverage

Andrew McGregor

I A 1/2− ε approx for max k coverage in Õ(k/ε) space.

[McGregor, Vu, ICDT 17]

I A 2/δ approx for set cover in 2/δ passes and Õ(mnδ) space.

[Har-Peled, Indyk, Mahabadi, Vakilian, PODS 16]

I A pn1/p approx for set cover in p passes and Õ(n) space.

[Chakrabarti, Wirth SODA 16]
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MaxCoverage
Can use submodular maximization algorithm to get 1/2− ε approx for
MaxCoverage with Õ(ε−1opt) space. Will reduce this to Õ(ε−3k) space.

I Idea: Maximize coverage of elements in random subset R ⊆ [n].
I Defining R: Assume we have guess v satisfying opt/2 ≤ v ≤ opt.

Let R = {e ∈ [n] : h(e) = 1} where h : [n]→ {0, 1} is a 2λ-wise
independent hash function such that

p := P [h(e) = 1] = λ/v

for λ = cε−2k logm and c a large constant.
I Lemma: With high probability, for any k sets S1, . . . ,Sk ,

|S ′1 ∪ . . . ∪ S ′k | = |S1 ∪ . . . ∪ Sk |p ± εvp where S ′i = Si ∩ R .

I If sets A1, . . . ,Ak α-approx max coverage in R and O1, . . . ,Ok give
optimum coverage in [n] then

|∪Ai | ≥
| ∪ A′i |

p
−εv ≥ α· | ∪ O ′i |

p
−εv ≥ α·|∪Oi |−2εv ≥ (α−2ε)·opt
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Proof of Lemma
I Fix collection of k sets and let D be their union and let X = |D ′|.

Theorem (Chernoff with Limited Independence)
Let X1, . . . ,Xn be boolean random variables. Let X =

∑n
i=1 Xi and

µ = E [X ] where µ ≤ n/2. If Xi are dγµe-wise independent, then

P [|X − µ| ≥ γµ] ≤ exp(−bmin(γ, γ2) · µ/3c) .

I E [X ] = p|D| ≤ λ and using the above theorem, γ = εv/|D|,
P [|X − µ| ≥ εvp] = P [|X − µ| ≥ γ|D|p] ≤ exp

(
−bmin(γ, γ2) · µ/3

⌋
)

since hash function is dγµe = dεvpe-wise independent.
I |D| ≤ opt ≤ 2v implies γ = εv/|D| ≥ ε/2 and so,

exp
(
−bmin(γ, γ2) · µ

3
c
)

= exp
(
−bmin(1, γ) · εvp

3
c
)

≤ exp

(
−
⌊

1

2
· ck logm

3

⌋)
≤ 1

m10k

I Lemma follows by union bound over all
(
m
k

)
collections of k sets.
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Set-Cover: Algorithm 1
Theorem
A 2/δ-pass, O(mnδ)-space algorithm returning a 2/δ-approximation for
the minimum set cover.

Algorithm (Cover Random Subset): Assume opt/2 ≤ k ≤ opt

1. U ← [n] tracks uncovered elements. I ← ∅ stores set IDs in cover.
2. Repeat 1/δ times:

2.1 Sample ` = 10knδ log(mn) elements R from U at random.
2.2 In one-pass: Compute a set cover of R

2.2.1 Add any set to I if it covers |R|/k uncovered elements in R. For any
set S not added, temporally store set of uncovered elements in S ∩R.

2.2.2 Add temporary stored sets that cover of uncovered elements in R.

2.3 In another pass: Update U

Space is Õ(mnδ): storing U and R requires Õ(n) bits and each of the, at
most m, sets that are temporarily stored each has size < |R|/k = Õ(nδ).

Approximation: At most (k + opt)/δ ≤ 2opt/δ sets at chosen. Just
remains to show that chosen sets are a set cover. . .
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Analysis

Lemma
Let Ui be the set of elements uncovered before the ith round of the
algorithm. Then, with high probability

|Ui+1| < |Ui |/nδ

for all rounds. Hence, all elements covered after 1/δ rounds.

Proof:

I Consider any collection of k sets whose coverage C satisfies

|Ui \ C | ≥ |Ui |/nδ .

I This collection of sets can’t be chosen if R intersects Ui \ C and

P [R ∩ (Ui \ C )] =

(
1− |Ui \ C |

|Ui |

)`
≤ (1−n−δ)` ≤ e−10k log(mn) =

1

(mn)10k
.

I Hence, the lemma follows by the union bound over all
(
m
k

)
collections of sets and (at most) n rounds of the algorithm.
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Set-Cover: Algorithm 2

Theorem
A p-pass, Õ(n)-space algorithm returning a pn1/p-approximation for the
minimum set cover.

Algorithm (Decreasing Threshold):

1. For i = 1 to logα n where α = n1/p:
I In pass i : add any set that covers more than n/αi new elements.

Space/Pass Analysis: Space is Õ(n) and setting α = n1/p gives p passes.
Exercise: Can combine last two passes to get p − 1 pass algorithm.

Approximation: Let Ui be the set of uncovered elements before ith pass.
Then, we know opt · n/αi−1 ≥ |Ui | and so in ith pass we add at most

|Ui |
n/αi

≤ αopt

sets. In total, we add pα = pn1/p sets.
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