CMPSCI 711: More Advanced Algorithms

Graphs 9: Set Cover and Max Coverage

Andrew McGregor

» A 1/2 — ¢ approx for max k coverage in O(k/€) space.
[McGregor, Vu, ICDT 17]

» A 2/§ approx for set cover in 2/8 passes and O(mn®) space.
[Har-Peled, Indyk, Mahabadi, Vakilian, PODS 16]
» A pn'/P approx for set cover in p passes and é(n) space.
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MaxCoverage

Can use submodular maximization algorithm to get 1/2 — € approx for
MaxCoverage with O(e~10oPT) space. Will reduce this to O(e~3k) space.

>

>

Idea: Maximize coverage of elements in random subset R C [n].

Defining R: Assume we have guess v satisfying OPT/2 < v < OPT.
Let R ={e € [n]: h(e) = 1} where h: [n] — {0,1} is a 2\-wise
independent hash function such that

p:=P[h(e)=1]=\/v

for A = ce 2k log m and ¢ a large constant.
Lemma: With high probability, for any k sets Sy,..., S,

ISfU...US | =|S1U...US|pLtevp where Si=5NR.

If sets Aq, ..., Ax c-approx max coverage in R and Os,..., O give
optimum coverage in [n] then

[UA U o

|UA;| > —L —ev >« —ev > a-|UO;|—2¢ev > (a—2€)-OPT
p



Proof of Lemma

> Fix collection of k sets and let D be their union and let X = |D’|.

Theorem (Chernoff with Limited Independence)

Let Xq,...,X, be boolean random variables. Let X = 27:1 X; and
w=E[X] where p < n/2. If X; are [yu]-wise independent, then

P[IX — pul > yp] < exp(—[min(v,7%) - 1/3]) -

» E[X] = p|D] < A and using the above theorem, v = ev/|D|,

P[IX = p| > evp] = P[|IX — p| > 4|D|p] < exp (—[min(v,7%) - 11/3])
since hash function is [yu] = [evp]-wise independent.
» |D| < opT < 2v implies v = ev/|D| > €/2 and so,

Evp

exp (—[min(,7%) - £1) = exp (~(min(1.7) - ] )

1 chong) < 1

3 10k

» Lemma follows by union bound over all (':) collections of k sets.
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Set-Cover: Algorithm 1

Theorem
A 2/5-pass, O(mn®)-space algorithm returning a 2/§-approximation for
the minimum set cover.

Algorithm (Cover Random Subset): Assume OPT/2 < k < OPT

1. U < [n] tracks uncovered elements. | < () stores set IDs in cover.
2. Repeat 1/4 times:
2.1 Sample £ = 10kn°® log(mn) elements R from U at random.
2.2 In one-pass: Compute a set cover of R
2.2.1 Add any set to [ if it covers |R|/k uncovered elements in R. For any
set S not added, temporally store set of uncovered elements in SN R.
2.2.2 Add temporary stored sets that cover of uncovered elements in R.
2.3 In another pass: Update U

Space is O(mn®): storing U and R requires O(n) bits and each of the, at
most m, sets that are temporarily stored each has size < |R|/k = O(n°).

Approximation: At most (k + OPT)/d < 20PT/J sets at chosen. Just
remains to show that chosen sets are a set cover. ..
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Analysis

Lemma
Let U; be the set of elements uncovered before the ith round of the
algorithm. Then, with high probability

|Uiga| < U] /n®

for all rounds. Hence, all elements covered after 1/4 rounds.
Proof:
» Consider any collection of k sets whose coverage C satisfies

U\ Cl > [U]/n° .

> This collection of sets can't be chosen if R intersects U; \ C and

4
]P[Rﬂ (U,\ C)] - (1 _ |U|I(>IC|) < (1_n—6)é < e—lOhog(mn) _

> Hence, the lemma follows by the union bound over all (7)
collections of sets and (at most) n rounds of the algorithm.
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Set-Cover: Algorithm 2

Theorem
A p-pass, O(n)-space algorithm returning a pn'/P-approximation for the
minimum set cover.

Algorithm (Decreasing Threshold):

1. For i =1 to log, n where o = n'/P:
> In pass i: add any set that covers more than n/a’ new elements.

Space/Pass Analysis: Space is é(n) and setting o = n'/P gives p passes.
Exercise: Can combine last two passes to get p — 1 pass algorithm.

Approximation: Let U; be the set of uncovered elements before ith pass.
Then, we know OPT - n/a’~1 > |U;| and so in ith pass we add at most
< aOPT

Uil
njod —
sets. In total, we add par = pn'/P sets.
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