CMPSCI 711: More Advanced Algorithms
 Lower Bounds 1: : Lower Bounds and Communication Complexity

Andrew McGregor

Last Compiled: March 27, 2018

Basic Communication Complexity

- Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function $P(x, y, z)$.

Basic Communication Complexity

- Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function $P(x, y, z)$.

- To help Charlie, Alice sends a message m_{1} to Bob, and then Bob sends a message m_{2} to Charlie.

Basic Communication Complexity

- Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function $P(x, y, z)$.

- To help Charlie, Alice sends a message m_{1} to Bob, and then Bob sends a message m_{2} to Charlie.
- Question: How large must be $\left|m_{1}\right|+\left|m_{2}\right|$ be if Charlie is to evaluate $P(x, y, z)$ correctly in the worst case over possible x, y, z ?

Basic Communication Complexity

- Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function $P(x, y, z)$.

X

y

Z

- To help Charlie, Alice sends a message m_{1} to Bob, and then Bob sends a message m_{2} to Charlie.
- Question: How large must be $\left|m_{1}\right|+\left|m_{2}\right|$ be if Charlie is to evaluate $P(x, y, z)$ correctly in the worst case over possible x, y, z ?
- Deterministic: $m_{1}(x), m_{2}\left(m_{1}, y\right)$, out $\left(m_{2}, z\right)=P(x, y, z)$

Basic Communication Complexity

- Three friends Alice, Bob, and Charlie each have some information x, y, z and Charlie wants to compute some function $P(x, y, z)$.

- To help Charlie, Alice sends a message m_{1} to Bob, and then Bob sends a message m_{2} to Charlie.
- Question: How large must be $\left|m_{1}\right|+\left|m_{2}\right|$ be if Charlie is to evaluate $P(x, y, z)$ correctly in the worst case over possible x, y, z ?
- Deterministic: $m_{1}(x), m_{2}\left(m_{1}, y\right)$, out $\left(m_{2}, z\right)=P(x, y, z)$
- Random: $m_{1}(x, r), m_{2}\left(m_{1}, y, r\right)$, out $\left(m_{2}, z, r\right)$ where r is public random bits. Require $\mathbb{P}\left[\operatorname{out}\left(m_{2}, z\right)=P(x, y, z)\right] \geq 9 / 10$.

Stream Algorithms Yield Communication Protocols

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

- An s-bit stream algorithm \mathcal{A} for Q yields $2 s$-bit protocol for P :

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

- An s-bit stream algorithm \mathcal{A} for Q yields $2 s$-bit protocol for P : Alice runs \mathcal{A} of S_{1};

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

- An s-bit stream algorithm \mathcal{A} for Q yields $2 s$-bit protocol for P : Alice runs \mathcal{A} of S_{1}; sends memory state to Bob;

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

- An s-bit stream algorithm \mathcal{A} for Q yields $2 s$-bit protocol for P : Alice runs \mathcal{A} of S_{1}; sends memory state to Bob; Bob instantiates \mathcal{A} with state and runs it on S_{2};

Stream Algorithms Yield Communication Protocols

- Let Q be some stream problem. Suppose there's a reduction $x \rightarrow S_{1}$, $y \rightarrow S_{2}, z \rightarrow S_{3}$ such that knowing $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$ solves $P(x, y, z)$.

- An s-bit stream algorithm \mathcal{A} for Q yields $2 s$-bit protocol for P : Alice runs \mathcal{A} of S_{1}; sends memory state to Bob; Bob instantiates \mathcal{A} with state and runs it on S_{2}; sends state to Charlie who finishes running \mathcal{A} on S_{3} and infers $P(x, y, z)$ from $Q\left(S_{1} \circ S_{2} \circ S_{3}\right)$.

Communication Lower Bounds imply Stream Lower Bounds

- Had there been t players, the s-bit stream algorithm for Q would have lead to a $(t-1) s$ bit protocol P.

Communication Lower Bounds imply Stream Lower Bounds

- Had there been t players, the s-bit stream algorithm for Q would have lead to a $(t-1) s$ bit protocol P.
- Hence, a lower bound of L for P implies $s=\Omega(L / t)$.

Outline

Classic Problems and Reductions

Gap-Hamming

Indexing

- Consider a binary string $x \in\{0,1\}^{n}$ and $j \in[n]$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \quad \text { and } \quad j=3
$$

and define $\operatorname{Index}(x, j)=x_{j}$

Indexing

- Consider a binary string $x \in\{0,1\}^{n}$ and $j \in[n]$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \quad \text { and } \quad j=3
$$

and define $\operatorname{Index}(x, j)=x_{j}$

- Suppose Alice knows x and Bob knows j.

Indexing

- Consider a binary string $x \in\{0,1\}^{n}$ and $j \in[n]$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \quad \text { and } \quad j=3
$$

and define $\operatorname{Index}(x, j)=x_{j}$

- Suppose Alice knows x and Bob knows j.
- How many bits need to be sent by Alice for Bob to determine $\operatorname{Index}(x, j)$ with probability $9 / 10$?

Indexing

- Consider a binary string $x \in\{0,1\}^{n}$ and $j \in[n]$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \quad \text { and } \quad j=3
$$

and define $\operatorname{Index}(x, j)=x_{j}$

- Suppose Alice knows x and Bob knows j.
- How many bits need to be sent by Alice for Bob to determine $\operatorname{Index}(x, j)$ with probability $9 / 10$? $\Omega(n)$

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length $2 n-1$ stream requires $\Omega(n)$ memory.

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length $2 n-1$ stream requires $\Omega(n)$ memory.
- Reduction from indexing on input $x \in\{0,1\}^{n}, j \in[n]$: Alice generates: $S_{1}=\left\{2 i+x_{i}: i \in[n]\right\}$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \rightarrow\{2,5,6,9,11,12\}
$$

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length $2 n-1$ stream requires $\Omega(n)$ memory.
- Reduction from indexing on input $x \in\{0,1\}^{n}, j \in[n]$: Alice generates: $S_{1}=\left\{2 i+x_{i}: i \in[n]\right\}$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \rightarrow\{2,5,6,9,11,12\}
$$

Bob generates: $S_{2}=\{n-j$ copies of 0 and $j-1$ copies of $2 n+2\}$, e.g.,

$$
j=3 \longrightarrow\{0,0,0,14,14\}
$$

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length $2 n-1$ stream requires $\Omega(n)$ memory.
- Reduction from indexing on input $x \in\{0,1\}^{n}, j \in[n]$: Alice generates: $S_{1}=\left\{2 i+x_{i}: i \in[n]\right\}$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \rightarrow\{2,5,6,9,11,12\}
$$

Bob generates: $S_{2}=\{n-j$ copies of 0 and $j-1$ copies of $2 n+2\}$, e.g.,

$$
j=3 \longrightarrow\{0,0,0,14,14\}
$$

- Then median $\left(S_{1} \cup S_{2}\right)=2 j+x_{j}$ and parity determines $\operatorname{Index}(x, j)$

Application: Median Finding

- Thm: Any algorithm that returns the exact median of length $2 n-1$ stream requires $\Omega(n)$ memory.
- Reduction from indexing on input $x \in\{0,1\}^{n}, j \in[n]$: Alice generates: $S_{1}=\left\{2 i+x_{i}: i \in[n]\right\}$, e.g.,

$$
x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \rightarrow\{2,5,6,9,11,12\}
$$

Bob generates: $S_{2}=\{n-j$ copies of 0 and $j-1$ copies of $2 n+2\}$, e.g.,

$$
j=3 \longrightarrow\{0,0,0,14,14\}
$$

- Then median $\left(S_{1} \cup S_{2}\right)=2 j+x_{j}$ and parity determines $\operatorname{Index}(x, j)$
- An s-space algorithm gives an s-bit protocol so

$$
s=\Omega(n)
$$

by the one-way communication complexity of indexing.

Multi-Party Set-Disjointness

- Consider a $t \times n$ matrix where column has weight 0,1 , or t, e.g.,

$$
M=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

Multi-Party Set-Disjointness

- Consider a $t \times n$ matrix where column has weight 0,1 , or t, e.g.,

$$
M=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Define $\operatorname{DiSJ}_{t}(M)=\bigvee_{j} \operatorname{AND}_{t}\left(M_{1, j}, \ldots, M_{t, j}\right)$, i.e., $\operatorname{DISJ}_{t}(M)=1$ iff there is an all 1's column.

Multi-Party Set-Disjointness

- Consider a $t \times n$ matrix where column has weight 0,1 , or t, e.g.,

$$
M=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Define $\operatorname{DisJ}_{t}(M)=\bigvee_{j} \operatorname{AND}_{t}\left(M_{1, j}, \ldots, M_{t, j}\right)$, i.e., $\operatorname{DISJ}_{t}(M)=1 i f f$ there is an all 1's column.
- Consider t players where P_{i} knows i-th row of M.

Multi-Party Set-Disjointness

- Consider a $t \times n$ matrix where column has weight 0,1 , or t, e.g.,

$$
M=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Define $\operatorname{DISJ}_{t}(M)=\bigvee_{j} \operatorname{AND}_{t}\left(M_{1, j}, \ldots, M_{t, j}\right)$, i.e., $\operatorname{DISJ}_{t}(M)=1 \mathrm{iff}$ there is an all 1's column.
- Consider t players where P_{i} knows i-th row of M.
- How many bits need to be communicated between the players to determine $\operatorname{DISJ}_{t}(M)$?

Multi-Party Set-Disjointness

- Consider a $t \times n$ matrix where column has weight 0,1 , or t, e.g.,

$$
M=\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right)
$$

- Define $\operatorname{DISJ}_{t}(M)=\bigvee_{j} \operatorname{AND}_{t}\left(M_{1, j}, \ldots, M_{t, j}\right)$, i.e., $\operatorname{DISJ}_{t}(M)=1 \mathrm{iff}$ there is an all 1's column.
- Consider t players where P_{i} knows i-th row of M.
- How many bits need to be communicated between the players to determine $\operatorname{DISJ}_{t}(M)$? $\Omega(n / t)$

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$:

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$: P_{i} generates set $S_{i}=\left\{j: M_{i j}=1\right\}$, e.g.,

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \longrightarrow\{4,1,4,5,2,4,4\}
$$

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$: P_{i} generates set $S_{i}=\left\{j: M_{i j}=1\right\}$, e.g.,

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \rightarrow\{4,1,4,5,2,4,4\}
$$

- If all columns have weight 0 or $1: F_{k}(S) \leq n$

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$: P_{i} generates set $S_{i}=\left\{j: M_{i j}=1\right\}$, e.g.,

$$
\left(\begin{array}{cccccc}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \rightarrow\{4,1,4,5,2,4,4\}
$$

- If all columns have weight 0 or $1: F_{k}(S) \leq n$
- If there's column of weight $t: F_{k}(S) \geq t^{k}$

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$: P_{i} generates set $S_{i}=\left\{j: M_{i j}=1\right\}$, e.g.,

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \rightarrow\{4,1,4,5,2,4,4\}
$$

- If all columns have weight 0 or $1: F_{k}(S) \leq n$
- If there's column of weight $t: F_{k}(S) \geq t^{k}$
- If $t>2^{1 / k} n^{1 / k}$ then a 2 approximation of $F_{k}(S)$ distinguishes cases.

Application: Frequency Moments

- Thm: A 2-approximation algorithm for F_{k} needs $\Omega\left(n^{1-2 / k}\right)$ space.
- Reduction from multi-party set disjointness on input $M \in\{0,1\}^{t \times n}$: P_{i} generates set $S_{i}=\left\{j: M_{i j}=1\right\}$, e.g.,

$$
\left(\begin{array}{llllll}
0 & 0 & 0 & 1 & 0 & 0 \\
1 & 0 & 0 & 1 & 1 & 0 \\
0 & 1 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 1 & 0 & 0
\end{array}\right) \rightarrow\{4,1,4,5,2,4,4\}
$$

- If all columns have weight 0 or $1: F_{k}(S) \leq n$
- If there's column of weight $t: F_{k}(S) \geq t^{k}$
- If $t>2^{1 / k} n^{1 / k}$ then a 2 approximation of $F_{k}(S)$ distinguishes cases.
- An s-space 2 -approximation gives a $s(t-1)$ bit protocol so

$$
s=\Omega\left(n / t^{2}\right)=\Omega\left(n^{1-2 / k}\right)
$$

by the communication complexity of set-disjointness.

Hamming Distance

- Consider 2 binary vectors $x, y \in\{0,1\}^{n}$, e.g.,

$$
\begin{aligned}
& x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
& y=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

Hamming Distance

- Consider 2 binary vectors $x, y \in\{0,1\}^{n}$, e.g.,

$$
\begin{aligned}
& x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
& y=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

- Define the Hamming distance $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.

Hamming Distance

- Consider 2 binary vectors $x, y \in\{0,1\}^{n}$, e.g.,

$$
\begin{aligned}
& x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
& y=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

- Define the Hamming distance $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.
- Suppose Alice knows x and Bob knows y.

Hamming Distance

- Consider 2 binary vectors $x, y \in\{0,1\}^{n}$, e.g.,

$$
\begin{aligned}
& x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
& y=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

- Define the Hamming distance $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.
- Suppose Alice knows x and Bob knows y.
- How many bits need to be communicated to estimate $\Delta(x, y)$ up to an additive \sqrt{n} error?

Hamming Distance

- Consider 2 binary vectors $x, y \in\{0,1\}^{n}$, e.g.,

$$
\begin{aligned}
& x=\left(\begin{array}{llllll}
0 & 1 & 0 & 1 & 1 & 0
\end{array}\right) \\
& y=\left(\begin{array}{llllll}
1 & 1 & 0 & 0 & 1 & 1
\end{array}\right)
\end{aligned}
$$

- Define the Hamming distance $\Delta(x, y)=\left|\left\{i: x_{i} \neq y_{i}\right\}\right|$.
- Suppose Alice knows x and Bob knows y.
- How many bits need to be communicated to estimate $\Delta(x, y)$ up to an additive \sqrt{n} error? $\Omega(n)$ bits.

Application: Distinct Elements

- Thm: A $(1+\epsilon)$-approximation algorithm for F_{0} needs $\Omega\left(\epsilon^{-2}\right)$ space.
- Reduction from Hamming Distance on input $x, y \in\{0,1\}^{n}$: Alice and Bob generate sets $S_{1}=\left\{j: x_{j}=1\right\}$ and $S_{2}=\left\{j: y_{j}=1\right\}$, e.g., $\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \longrightarrow\{2,4,5,1,2,5,6\}$

Application: Distinct Elements

- Thm: A $(1+\epsilon)$-approximation algorithm for F_{0} needs $\Omega\left(\epsilon^{-2}\right)$ space.
- Reduction from Hamming Distance on input $x, y \in\{0,1\}^{n}$: Alice and Bob generate sets $S_{1}=\left\{j: x_{j}=1\right\}$ and $S_{2}=\left\{j: y_{j}=1\right\}$, e.g.,
$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \longrightarrow\{2,4,5,1,2,5,6\}$
- Note that $2 F_{0}(S)=|x|+|y|+\Delta(x, y)$.

Application: Distinct Elements

- Thm: A $(1+\epsilon)$-approximation algorithm for F_{0} needs $\Omega\left(\epsilon^{-2}\right)$ space.
- Reduction from Hamming Distance on input $x, y \in\{0,1\}^{n}$: Alice and Bob generate sets $S_{1}=\left\{j: x_{j}=1\right\}$ and $S_{2}=\left\{j: y_{j}=1\right\}$, e.g.,
$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \longrightarrow\{2,4,5,1,2,5,6\}$
- Note that $2 F_{0}(S)=|x|+|y|+\Delta(x, y)$.
- We may assume $|x|$ and $|y|$ are known Bob. Hence, a $(1+\epsilon)$ approximation of F_{0} yields an additive approximation to $\Delta(x, y)$ of

$$
\epsilon(|x|+|y|+\Delta(x, y)) / 2 \leq n \epsilon
$$

Application: Distinct Elements

- Thm: A $(1+\epsilon)$-approximation algorithm for F_{0} needs $\Omega\left(\epsilon^{-2}\right)$ space.
- Reduction from Hamming Distance on input $x, y \in\{0,1\}^{n}$: Alice and Bob generate sets $S_{1}=\left\{j: x_{j}=1\right\}$ and $S_{2}=\left\{j: y_{j}=1\right\}$, e.g.,
$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \longrightarrow\{2,4,5,1,2,5,6\}$
- Note that $2 F_{0}(S)=|x|+|y|+\Delta(x, y)$.
- We may assume $|x|$ and $|y|$ are known Bob. Hence, a $(1+\epsilon)$ approximation of F_{0} yields an additive approximation to $\Delta(x, y)$ of

$$
\epsilon(|x|+|y|+\Delta(x, y)) / 2 \leq n \epsilon
$$

- This is less than \sqrt{n} if $\epsilon<1 / \sqrt{n}$

Application: Distinct Elements

- Thm: A $(1+\epsilon)$-approximation algorithm for F_{0} needs $\Omega\left(\epsilon^{-2}\right)$ space.
- Reduction from Hamming Distance on input $x, y \in\{0,1\}^{n}$: Alice and Bob generate sets $S_{1}=\left\{j: x_{j}=1\right\}$ and $S_{2}=\left\{j: y_{j}=1\right\}$, e.g.,
$\left(\begin{array}{llllll}0 & 1 & 0 & 1 & 1 & 0\end{array}\right),\left(\begin{array}{cccccc}1 & 1 & 0 & 0 & 1 & 1\end{array}\right) \longrightarrow\{2,4,5,1,2,5,6\}$
- Note that $2 F_{0}(S)=|x|+|y|+\Delta(x, y)$.
- We may assume $|x|$ and $|y|$ are known Bob. Hence, a $(1+\epsilon)$ approximation of F_{0} yields an additive approximation to $\Delta(x, y)$ of

$$
\epsilon(|x|+|y|+\Delta(x, y)) / 2 \leq n \epsilon
$$

- This is less than \sqrt{n} if $\epsilon<1 / \sqrt{n}$
- An s-space $(1+\epsilon)$-approximation gives a s bit protocol so

$$
s=\Omega(n)=\Omega\left(1 / \epsilon^{2}\right)
$$

by communication complexity of approximating Hamming distance.

Outline

Classic Problems and Reductions

Gap-Hamming

Hamming Distance Lower Bound

Some communication results can be proved via a reduction from other communication results.

Theorem
Alice and Bob have $x \in\{0,1\}^{n}$ and $y \in\{0,1\}^{n}$ respectively. If Bob wants to determine $\Delta(x, y)$ up to $\pm \sqrt{n}$ with probability $9 / 10$ then Alice must send $\Omega(n)$ bits.

Hamming Distance Lower Bound

- Reduction from Index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.

Hamming Distance Lower Bound

- Reduction from index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.

Hamming Distance Lower Bound

- Reduction from index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.
- Alice computes $\operatorname{sign}(r . z)$ and Bob computes $\operatorname{sign}\left(r_{j}\right)$

Hamming Distance Lower Bound

- Reduction from Index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.
- Alice computes $\operatorname{sign}(r . z)$ and Bob computes $\operatorname{sign}\left(r_{j}\right)$
- Lemma: For some constant $c>0$,

$$
\mathbb{P}\left[\operatorname{sign}(r . z)=\operatorname{sign}\left(r_{j}\right)\right]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

Hamming Distance Lower Bound

- Reduction from Index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.
- Alice computes $\operatorname{sign}(r . z)$ and Bob computes $\operatorname{sign}\left(r_{j}\right)$
- Lemma: For some constant $c>0$,

$$
\mathbb{P}\left[\operatorname{sign}(r . z)=\operatorname{sign}\left(r_{j}\right)\right]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- Repeat $n=25 t / c^{2}$ times to construct

$$
x_{i}=I[\operatorname{sign}(r . z)=+] \quad \text { and } \quad y_{i}=I\left[\operatorname{sign}\left(r_{j}\right)=+\right]
$$

Hamming Distance Lower Bound

- Reduction from index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.
- Alice computes $\operatorname{sign}(r . z)$ and Bob computes $\operatorname{sign}\left(r_{j}\right)$
- Lemma: For some constant $c>0$,

$$
\mathbb{P}\left[\operatorname{sign}(r . z)=\operatorname{sign}\left(r_{j}\right)\right]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- Repeat $n=25 t / c^{2}$ times to construct

$$
x_{i}=I[\operatorname{sign}(r . z)=+] \quad \text { and } \quad y_{i}=I\left[\operatorname{sign}\left(r_{j}\right)=+\right]
$$

- Note that

$$
\begin{gathered}
z_{j}=0 \Rightarrow \mathbb{E}[\Delta(x, y)]=n / 2 \\
z_{j}=1 \Rightarrow \mathbb{E}[\Delta(x, y)]=n / 2-5 \sqrt{n}
\end{gathered}
$$

and by Chernoff bounds $\mathbb{P}[|\Delta(x, y)-\mathbb{E}[\Delta(x, y)]| \geq 2 \sqrt{n}]<1 / 10$.

Hamming Distance Lower Bound

- Reduction from index problem: Alice knows $z \in\{0,1\}^{t}$ and Bob knows $j \in[t]$. Let's assume $|z|=t / 2$ and this is odd.
- Alice and Bob pick $r \in_{R}\{-1,1\}^{t}$ using public random bits.
- Alice computes $\operatorname{sign}(r . z)$ and Bob computes $\operatorname{sign}\left(r_{j}\right)$
- Lemma: For some constant $c>0$,

$$
\mathbb{P}\left[\operatorname{sign}(r . z)=\operatorname{sign}\left(r_{j}\right)\right]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- Repeat $n=25 t / c^{2}$ times to construct

$$
x_{i}=I[\operatorname{sign}(r . z)=+] \quad \text { and } \quad y_{i}=I\left[\operatorname{sign}\left(r_{j}\right)=+\right]
$$

- Note that

$$
\begin{gathered}
z_{j}=0 \Rightarrow \mathbb{E}[\Delta(x, y)]=n / 2 \\
z_{j}=1 \Rightarrow \mathbb{E}[\Delta(x, y)]=n / 2-5 \sqrt{n}
\end{gathered}
$$

and by Chernoff bounds $\mathbb{P}[|\Delta(x, y)-\mathbb{E}[\Delta(x, y)]| \geq 2 \sqrt{n}]<1 / 10$.

- Hence, a $\pm \sqrt{n}$ approx. of $\Delta(x, y)$ determines z_{j} with prob. $>9 / 10$.

Proof of Lemma

Claim
Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

Proof of Lemma

Claim
Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.

Proof of Lemma

Claim
Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,

Proof of Lemma

Claim
Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,
- $\mathbb{P}[A]=\mathbb{P}[A \mid s=0] \mathbb{P}[s=0]+\mathbb{P}[A \mid s \neq 0] \mathbb{P}[s \neq 0]$

Proof of Lemma

Claim
Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,
- $\mathbb{P}[A]=\mathbb{P}[A \mid s=0] \mathbb{P}[s=0]+\mathbb{P}[A \mid s \neq 0] \mathbb{P}[s \neq 0]$
- $\mathbb{P}[A \mid s=0]=1$ since $s=0 \Rightarrow r . z=r_{j} \Rightarrow A$

Proof of Lemma

Claim

Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,
- $\mathbb{P}[A]=\mathbb{P}[A \mid s=0] \mathbb{P}[s=0]+\mathbb{P}[A \mid s \neq 0] \mathbb{P}[s \neq 0]$
- $\mathbb{P}[A \mid s=0]=1$ since $s=0 \Rightarrow r . z=r_{j} \Rightarrow A$
- $\mathbb{P}[A \mid s \neq 0]=1 / 2$ since $s \neq 0 \Rightarrow s=\{\ldots,-4,-2,2,4, \ldots\}$. Hence, $\operatorname{sign}(r . z)=\operatorname{sign}(s)$ which is independent of r_{j}.

Proof of Lemma

Claim

Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,
- $\mathbb{P}[A]=\mathbb{P}[A \mid s=0] \mathbb{P}[s=0]+\mathbb{P}[A \mid s \neq 0] \mathbb{P}[s \neq 0]$
- $\mathbb{P}[A \mid s=0]=1$ since $s=0 \Rightarrow r . z=r_{j} \Rightarrow A$
- $\mathbb{P}[A \mid s \neq 0]=1 / 2$ since $s \neq 0 \Rightarrow s=\{\ldots,-4,-2,2,4, \ldots\}$. Hence, $\operatorname{sign}(r . z)=\operatorname{sign}(s)$ which is independent of r_{j}.
- $\mathbb{P}[s=0]=\binom{\ell}{\ell / 2} / 2^{\ell}=2 c / \sqrt{t}$ for some constant $c>0$

Proof of Lemma

Claim

Let A be the event $A=\left\{\operatorname{sign}(r . z)=r_{j}\right\}$. For some constant $c>0$,

$$
\mathbb{P}[A]= \begin{cases}1 / 2 & \text { if } z_{j}=0 \\ 1 / 2+c / \sqrt{t} & \text { if } z_{j}=1\end{cases}
$$

- If $z_{j}=0: \operatorname{sign}(r . z)$ and r_{j} are independent. So $\mathbb{P}[A]=1 / 2$.
- If $z_{j}=1$: Let $s=r . z-r_{j}$ which is the sum of an even number ($\ell=t / 2-1$) of independent $\{-1,1\}$ values. Then,
- $\mathbb{P}[A]=\mathbb{P}[A \mid s=0] \mathbb{P}[s=0]+\mathbb{P}[A \mid s \neq 0] \mathbb{P}[s \neq 0]$
- $\mathbb{P}[A \mid s=0]=1$ since $s=0 \Rightarrow r . z=r_{j} \Rightarrow A$
- $\mathbb{P}[A \mid s \neq 0]=1 / 2$ since $s \neq 0 \Rightarrow s=\{\ldots,-4,-2,2,4, \ldots\}$. Hence, $\operatorname{sign}(r . z)=\operatorname{sign}(s)$ which is independent of r_{j}.
- $\mathbb{P}[s=0]=\binom{\ell}{\ell / 2} / 2^{\ell}=2 c / \sqrt{t}$ for some constant $c>0$
- So $\mathbb{P}[A]=\mathbb{P}[s=0]+\frac{\mathbb{P}[s \neq 0]}{2}=\frac{1}{2}+\frac{\mathbb{P}[s=0]}{2}=\frac{1}{2}+\frac{c}{\sqrt{t}}$.

