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Information Statistics Approach

I Information statistics approach is based on analyzing the
“information revealed” about the input from the messages.

I Useful for proving bounds on complicated functions in terms of
simpler problems, e.g., proving a bound on

disjt(M) =
∨
j∈[n]

andt(M1,j , . . . ,Mt,j)

by first establishing a bound on andt .

I We’ll first give some definitions and then run through an example.
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Information Theory Definitions

I Let X and Y be random variables.

I Entropy: H(X ) :=
∑

i −P [X = i ] lgP [X = i ]

I Conditional Entropy: H(X |Y ) := Ey∼Y [H(X |Y = y)] ≤ H(X )

I Mutual Information: I (X : Y ) = H(X )− H(X |Y )

H(X) H(Y)

I(X:Y)H(X|Y) H(Y|X)

I Useful Facts:
I If X takes at most 2` values, then H(X ) ≤ `.
I Chain rule: H(XY ) = H(X ) + H(Y |X ).
I Subadditivity: H(XY ) ≤ H(X ) + H(Y ); equality if independent.
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Mutual Information

Lemma
If X and Y are independent, then I (XY : Z ) ≥ I (X : Z ) + I (Y : Z ).

Proof.

I (XY : Z ) = H(XY )− H(XY |Z )

= H(X ) + H(Y )− H(XY |Z )

≥ H(X ) + H(Y )− H(X |Z )− H(Y |Z )

= I (X : Z ) + I (Y : Z )
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Information Cost

I Suppose you have a protocol Π for a two-party communication
problem P in which Alice and Bob have random inputs X and Y .

I Let M be the (random) message sent by Alice and define:

cost(Π) = max |M|

and
icost(Π) = I (M : X )

I Note icost(Π) = I (M : X ) ≤ H(M) ≤ cost(Π).
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Example: Indexing

I We’ll prove a lower bound on the information cost of Index where
X ∈R {0, 1}n in terms a simpler problem “Echo”

I Echo: Alice has a single bit B ∈R {0, 1} and Bob wants to output
B with probability at least 1− δ.

I A protocol ΠIndex for Index yields a protocol ΠEcho,i for Echo:

1. Given B, Alice picks Xj ∈R {0, 1} for j 6= i and generates:

X = (X1,X2, . . . ,Xi−1,B,Xi+1, . . . ,Xn)

2. She sends the message M she’d have sent in ΠIndex if she’d had X .
3. Bob receives message and outputs the value he’d have returned in

ΠIndex had his input been i .
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Relating Information Cost of Index and Echo

I Since X1,X2, . . . ,Xn are independent:

cost(ΠIndex) ≥ icost(ΠIndex)

= I (X1X2 . . .Xn : M)

≥ I (X1 : M) + I (X2 : M) + . . .+ I (Xn : M)

= icost(ΠEcho,1) + icost(ΠEcho,2) + . . .+ icost(ΠEcho,n)

I Lemma: Any protocol solving Echo with probability ≥ 1− δ, needs

icost(ΠEcho,i ) ≥ 1− H2(δ)

where H2(p) = −p lg p − (1− p) lg(1− p).

I Hence, cost(ΠIndex) ≥ (1− H2(δ))n.

7/9



Proof of Lemma

1. Fano’s inequality: Let A and B be random variables. If you can
guess B correctly with probability at least 1− δ given A, then

H(B|A) ≤ H2(δ) .

2. Let A = M be message and B be the bit needing echoed.

3. Hence,

icost(ΠEcho) = H(B)− H(B|M) ≥ 1− H2(δ)
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Outline for disjt Lower Bound
I Express disjt in terms of andt where andt(x1, . . . , xt) =

∏
i xi :

disjt(M) =
∨
j∈[n]

andt(M1,j , . . . ,Mt,j)

I Consider a random input M to disjt where MDj j ∈R {0, 1} for
Dj ∈R [t]. All other entries are 0.

I Let T = (T1, . . . ,Tt−1) be the messages sent in a t-party protocol
and define the information cost of a protocol as:

icost(Π|D) = I (T : M|D) where D = (D1, . . . ,Dt) .

I A protocol for disjt yields n different protocols Πandt ,i for andt :

icost(Πdisjt |D) ≥
∑
i∈[n]

icost(Πandt ,i |D) .

I Result follows by showing icost(Πandt ,i |D) = Ω(1/t).
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