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Sparse Recovery Using Sparse Matrices
Anna Gilbert, Piotr Indyk

Abstract—We survey algorithms for sparse recovery prob-
lems that are based on sparse random matrices. Such matrices
has several attractive properties: they support algorithms with
low computational complexity, and make it easy to perform in-
cremental updates to signals. We discuss applications to several
areas, including compressive sensing, data stream computing
and group testing.

I. INTRODUCTION

The past several years have seen a new approach to the
acquisition of compressible signals. Traditional approaches
first capture the entire signal and then process it for com-
pression, transmission, or storage. In comparison, the new
approach obtains a succinct approximate representation di-
rectly by acquiring a small number of nonadaptive linear
measurements of the signal. For any signal x, of length n,
the representation is equal to Ax, where A is a m×n matrix.
The vector Ax is often referred to as the measurement vector
or sketch of x. Although m is typically much smaller than
n, the sketch Ax contains plenty of useful information about
the signal x. In particular, the sketch of x retains enough
inherent information that we can directly obtain a sparse
approximation or compressed form of the signal.

This approach has been discovered and explored exten-
sively in several different research communities, including
theoretical computer science, applied mathematics and digital
signal processing. The goal of that research is to obtain
encoding and recovery schemes with good compression rate
(i.e., short sketch lengths) as well as good algorithmic
properties (i.e., low encoding, update and recovery times).

Linear sketches have found numerous uses in several areas,
including compressive sensing, data stream computing, and
combinatorial group testing.

• Compressive sensing. In this area [CRT06], [Don06],
the signal or image x is acquired using (analog or
digital) hardware, which (approximately) computes a
dot product of each row of the matrix A and the signal at
a unit cost. Once we obtain the measurement vector Ax,
we process it digitally to extract information about the
signal, including significant coefficients in an orthonor-
mal basis (e.g., wavelet or Fourier), as well as the origi-
nal signal. Frequently, the number of measurements we
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obtain with compressed sensing hardware is much less
than that of traditional hardware devices. Nevertheless,
we can sample a band-limited analog signal at a sub-
Nyquist rate and still recover significant frequencies in
the signal or the entire signal spectrum. For examples
of compressive sensing hardware, see e.g., [TLW+06],
[DDT+08], [LKM+06], [TLD+09].

• Data stream computing. In this area [Mut03], [Ind07],
[CH09], the vectors x are often very large, and cannot
be represented explicitly. For example, in network mea-
surement, xi could denote the total number of packets
with destination i passing through a network router.
Storing such vector x itself is typically infeasible due to
its large size: each destination is represented by an IP
address that is 32 bit long, and therefore the vector x has
dimension n = 232 . Thus, it is preferable to maintain
a lower-dimensional sketch Ax instead and recover an
approximation to x from the sketch. However, it must
be possible to maintain such sketch under incremental
updates to x. For example, if a new packet arrives,
the corresponding coordinate of x is incremented by 1,
which should be reflected in the sketch Ax. Fortunately,
this can be easily done if the sketching procedure is
linear. Specifically, let ∆i denote the update to the
vector x after seeing a packet with destination i (i.e.,
∆i = 1 and ∆j = 0 for j 6= i). Then we have
A(x+ ∆i) = Ax+A∆i. Since A∆i is simply the i-th
column of A, updating the sketch can be accomplished
by simply adding that column to the current sketch Ax.
See e.g., [KSZC03], [EV03] for more information about
using data stream algorithms for network measurement.

• Combinatorial group testing. In pooling designs or
more generally combinatorial group testing [DH93],
the vector x represents a universe of n items in total.
Moreover, we know k of the elements are defective.
More specifically, the vector x is the characteristic
vector for the defective set so that x ∈ {0, 1}n has
exactly k entries that are 1 and (n−k) zeros. The goal of
combinatorial group testing is to construct a collection
of tests (called a design) to minimize the number of tests
needed to find the defective set for the worst case input.
The tests are represented by a matrix A that is binary,
with the jth column of the ith rows equal to 1 if and
only if the jth item is used by the ith test. In the simplest
(boolean) setting, each test returns 1 if at least one of
the elements used in the test is defective. In our setting
we assume the linear model, where each test returns the
number of defective elements. Note that each such test
corresponds to taking the dot product of x and a test
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vector, and therefore is captured in the linear sketching
model1. See e.g., [SAZ09], [ESAZ09], [KBG+10] for
further discussion and recent developments in the area.

In each of these applications, it is useful (and often crucial)
that the measurement matrix A be a sparse matrix, i.e.,
contain very few non-zero elements per column. In data
stream processing, the time needed to update the sketch
Ax under the update ∆i is proportional to the number
of non-zero elements in the vector A∆i, which is equal
to the number of non-zeros in the i-th column of A. In
experiment pooling, the design matrix A is a binary matrix
that captures which compounds are pooled together and the
measurements Ax reflect the activity levels of the pooled
compounds. In many chemical and biological applications,
the assumption that compound activity is a linear function
of the concentration holds only when there are not many
compounds mixed together in a single pool; thus, the design
matrix A should be not only binary but also sparse. In
other applications, sparsity can be useful for computational
reasons: one can compute the matrix-vector product Ax very
quickly2.

A. Definitions, and classification of the results

Formally, we define the sparse recovery problem as fol-
lows. Let Errkq = Errkq (x) be the smallest possible `q
approximation error ‖x − x′‖q , where x′ ranges over all k-
sparse vectors (i.e., that have at most k non-zero entries).
Our goal is, given Ax, to find a vector x̂ such that the `p
approximation error3 ‖x−x̂‖p is at most c > 0 times Errkq (x),
i.e.,

‖x̂− x‖p ≤ c · Errkq (x) (1)

Note that for any value of p, the error ‖x − x̂‖p is
minimized when x̂ consists of the k largest (in magnitude)
coefficients of x. We refer to such x̂ as the ”head” of the
signal x, while x− x̂ will be called the ”tail” of x.

As mentioned earlier, we aim to design sparse recovery
schemes that achieve short sketches, have low algorith-
mic complexity and provide ”good” recovery guarantees.
In addition, the schemes described in this survey can be
classified based on other characteristics, such as (i) whether
the schemes are randomized or deterministic, or (ii) how
general is the class of signals x supported by the schemes.
In the following we elaborate on both issues.

1In fact, we can assume an even more general setting, where we allow a
general vector x ∈ Rn, and our goal is to identify the top k most significant
coefficients from the set of linear measurements. This is applicable in a
setting where the entries in x represent the activity level of n compounds,
or a genetic response in a biological sample

2Specifically, the matrix-vector product can be computed in time O(ns),
where s is the column sparsity of A. As we will see in Section III, in many
settings one can achieve s = O(log(n/k)), which leads to the running time
of O(n log(n/k)). This compares favorably to the O(nm) time achievable
for random Gaussian matrices, or to the O(n logn) time achievable for
random Fourier-like matrices.

3It is natural to consider p = q. However, as we will see later, other
guarantees are also possible.

• Randomization: we distinguish between two classes of
schemes: for-each and for-all. The latter describes a
scheme in which one matrix A works for all signals
x. In the former case, the matrix A is chosen at
random from some distribution and for each signal x,
the recovery algorithm works ”with high probability”
(at least 1 − 1/n)4 . Naturally, schemes with the for-
all property are preferable to those with the for-each
guarantee (if all other parameters are the same).
We note that “for-all” does not mean that the matrix
is constructed in an “explicit” or efficient manner. In
fact, most of the constructions presented here use the
probabilistic method. Although it is possible to con-
struct recovery schemes explicitly [DeV07], [Mut06],
[BGI+08], such schemes tend to require more measure-
ments.

• Generality of supported signals: ideally, the recovery
schemes should support arbitrary signals x. In this
survey, we focus on describing such schemes. However,
there has been plenty of work on algorithms supporting
more restrictive classes of signals. In particular, there
have been several schemes based on sparse matrices that
work for (almost) exactly k-sparse signals [SBB06b],
[SBB06a], [XH07], [JXHC08], [SBB08], [WWR08],
[KDXH08], [LMP+08]. Although we do not cover
them in detail, we point out relevant connections and
references whenever possible.

B. Survey summary

We present an overview of the algorithms for sparse
recovery that utilize sparse measurement matrices. The de-
scription is divided into two sections: for-each algorithms are
covered in section II, while for-all algorithms are described in
section III. Historically, most of the for-each schemes have
been developed in the data stream community during the
period 2001-2004. In contrast, most of the algorithms with
for-all guarantees have been discovered after 2004, during
the process of unifying the ideas of compressive sensing
and data stream algorithms. We present the algorithms in
the same chronological order.

Almost all schemes described here offer sketch length
bounds of O(k log n) or less, which matches or is close to
the lower bound of Ω(k log(n/k)) shown in [BIPW10]. They
are supported by efficient algorithms, with running times
ranging from polynomial in n to near-linear in n. They offer
a variety of approximation guarantees, starting from a ”plain
vanilla” guarantee of Equation 1 with p = q = 1 (the l1/l1-
guarantee) to more complex (but often stronger) ones. The
exact sketch length bounds, approximation guarantees and
algorithm running times are stated in theorems 1 to 10.

4We adopt here the terminology frequently used in computer science.
Note that one could require weaker probability bounds, e.g., 1 − o(1).
However, all algorithms presented in this survey naturally achieve the
stronger probability bound without changing the (asymptotic) bound on the
number of measurements.
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Due to lack of space, we focus on describing only those
algorithms that achieve the best known bounds and solve the
sparse recovery problem formulated earlier in this section.
See [GKMS03], [GGI+02] for some of the earlier work on
closely related problems, such as recovering good piece-wise
constant approximations from a sketch of a signal.

II. ALGORITHMS WITH FOR-EACH GUARANTEES

In this section we describe algorithms that provide for-each
guarantees. The algorithms were discovered and described in
the context of data stream computing. The descriptions pro-
vided here are sometimes simpler than the original versions,
since we ignore various issues specific to data streams (such
as how to generate the random matrix A using few random
bits, how to update the sketch under incremental changes to
x, etc).

A. Count-min and Count-median

The Count-min and Count-median algorithms [CM04]
utilize sparse random matrices where each entry is either 0
or 1. Both algorithms use the same distribution of matrices,
and differ only in the details of the recovery algorithms.

Each matrix A is generated in the following way. Let w be
a parameter, and let h be any function from the set H of all
functions h : {1, . . . , n} → {1, . . . , w}. Each such function
defines a w×n 0-1 matrix A(h), such that (A(h))j,i is equal
to 1 if j = h(i), and is equal to 0 otherwise. Note that each
column has exactly one 1.

To create the matrix A, we choose d functions h1 . . . hd
independently and uniformly at random from H . Then
we define A to be a vertical concatenation of matrices
A(h1) . . . A(hd). Note that the number of rows in the matrix
A is equal to m = wd.

For intuition about the construction, observe that, for any
signal x, and j = 1 . . . w, l = 1 . . . d, we have

(Ax)(l−1)w+j = (A(hl)x)j =
∑

i:hl(i)=j

xi

That is, the coordinate of the sketch corresponding to the
function hl and value j is simply the sum of all values
xi such that i is mapped to j by hl. For a fixed value
of i the sums

∑
t:hl(t)=hl(i)

xt contain approximations of
xi, contaminated by other coordinates mapped together with
i. As a result, “aggregating” those sums over different
hl provides an approximation of xi. Different aggregation
methods will lead to different algorithms.

Count-Min. The Count-Min algorithm [CM04] (see
also [EV03]) works under the assumption that x ≥ 0. In this
case computing the approximation x∗ from Ax is particularly
simple: we define

x∗i = min
l

(A(hl)x)hl(i) = min
l

∑
i′:hl(i′)=hl(i)

xi′

The guarantees for the estimator x∗ can be derived as
follows. First, observe that xi ≤ x∗i , since the entries xi′
contaminating the estimation of xi can only increase the
value of the estimator x∗i . Thus, the estimator (A(hl)x)hl(i)

with the minimum value provides the smallest approximation
error. Moreover, for any coordinate xi and function index l
we have

E[(A(hl)x)hl(i)−xi] =
∑
i 6=i′

Pr[hl(i) = hl(i′)]xi′ ≤
1
w
‖x‖1

By Markov inequality:

Pr[(A(hl)x)hl(i) − xi ≥
2
w
‖x‖1] ≤ 1/2

and therefore

Pr[x∗i − xi ≥
2
w
‖x‖1] ≤ 1/2d

For d = C log n, we have that the above guarantee holds
for all i = 1 . . . n with probability 1− n/2d = 1− 1/nC−1.
Thus, with the same probability, we have

‖x∗ − x‖∞ ≤
2
w
‖x‖1

The disadvantage of the above guarantee is that the error
is a function of the norm of the whole vector x, not its tail.
However, the probability that any of the entries in the head
of x contaminate an estimator of a specific xi is at most
k/w. Thus, a slightly more refined analysis5 shows that, for
w = 4/α · k, α ∈ (0, 1), we have

Pr[x∗ − xi ≥ α/k · Errk1 ] ≤ 1/2d

For d = C log n this implies

‖x∗ − x‖∞ ≤ α/k · Errk1

with probability 1− n/2d = 1− 1/nC−1.
Count-Median. The Count-Min algorithm can be ex-

tended to work for general signals [CM04]; the extension
is often referred to as the Count-Median algorithm. The
main issue to take care of is that for general vectors x,
the inequality x∗i ≥ xi no longer holds, since the entries
contaminating the estimator might be negative. As a result,
we cannot aggregate using min. Instead, we replace the
estimator x∗ by

(x∗med)i = medianl(A(hl)x)hl(i)

By using the Chernoff bound we show that, with high
probability, the majority of the estimators (A(hl)x)hl(i) (and
therefore their median) have small error. Specifically, we can
show that for any constant C ′ > 0, there exists C such that
if we set d = C log n then

‖x∗med − x‖∞ ≤ α/k · Errk1

with probability 1− 1/nC
′
.

5The argument is essentially a simplified version of the argument used
in [CCFC02]. See [CM05] or [Ind07] (Lecture 4) for the proof.



4

Theorem 1: There exists a distribution over m×n matrices
A, m = O(k/α · log n), such that for any signal x, given
Ax, we can recover x̂ = x∗med such that

‖x̂− x‖∞ ≤ α/k · Errk1

with high probability. The column sparsity of A is O(log n),
and the time needed to recover x̂ from Ax is O(n log n).

We conclude by observing that the approximation guaran-
tee in the above theorem implies a weaker but perhaps more
intuitive guarantee about the l1 approximation error. Consider
the vector x̂ consisting of the k largest (in magnitude)
elements of x∗med. Then we have

‖x− x̂‖1 ≤ (1 + 3α)Errk1

To show this, let S be the set of the k largest in magnitude
coordinates of x, and let Ŝ be the support of x̂. Note that
‖x̂S‖1 ≤ ‖x̂Ŝ‖1. We have

‖x− x̂‖1 ≤ ‖x‖1 − ‖xŜ‖1 + ‖xŜ − x̂Ŝ‖1
≤ ‖x‖1 − ‖x̂Ŝ |1 + 2αErrk1
≤ ‖x‖1 − ‖x̂S‖1 + 2αErrk1
≤ ‖x‖1 − ‖xS‖1 + 3αErrk1
≤ (1 + 3α)Errk1

For more detailed descriptions of the algorithms, see
[CM04], [CCFC02], [EV03].

B. Count-Sketch

The next6 algorithm, called Count-Sketch [CCFC02], pro-
vides error guarantees that are a function of Errk2 as opposed
to Errk1 . This is accomplished by using a distribution over
matrices A very similar to those used by Count-Min, with
one difference: each non-zero entry is chosen independently
and uniformly at random from {−1, 1} ( instead just being
equal to 1). Formally, let ri,l be independent random vari-
ables with values chosen uniformly at random from {−1, 1},
and let the functions h1 . . . hd be defined as in the previous
section. Then the matrix A is a vertical concatenation of
matrices A(h1), . . . , A(hd), where (A(hl))j,i is equal to ri,l
if j = hl(i), and are equal to 0 otherwise. To estimate the
coordinate xi one then uses the median estimator

x∗med′ = medianl ri,l(A(hl)x)hl(i)

The analysis of Count-Sketch relies on the observation that

Pr[(ri,lA(hl)x)hl(i) − xi)
2 ≥ C/w · Errk2 ] ≤ 1/4

for some absolute constant C > 0. The final guarantee is
captured by the following theorem:

6Chronologically, the Count-Sketch algorithm has been invented before
Count-Min. It is easier, however, to describe the ideas in the reverse order.

Theorem 2: There exists a distribution over m×n matrices
A, m = O(k/α log n), such that for any signal x, given Ax,
we can recover x̂ such that

‖x̂− x‖2∞ ≤ α/k · (Errk2)2

with high probability. The column sparsity of A is O(log n),
and the time needed to recover x̂ from Ax is O(n log n).

As before, the approximation guarantee in the theorem
implies a weaker but more intuitive guarantee, this time about
the l2 approximation error. Consider the vector x̂ consisting
of the k largest (in magnitude) elements of x∗med′ . Then we
have [CM06]:

‖x− x̂‖22 ≤ (1 + 9
√
α)(Errk2)2

The proof proceeds as follows. Let E = Errk2 . Let S be
the set of k largest (in magnitude) coordinates of x, and let Ŝ
be the support of x̂. Moreover, for any set P , let −P denote
the complement of P . We have

‖x− x̂‖22 ≤ ‖(x− x̂)Ŝ‖
2
2 + ‖xS−Ŝ‖

2
2 + ‖x−(S∪Ŝ)‖

2
2 (2)

The first term is bounded by kα/k ·E2 = αE2. To bound the
second term, we proceed as follows. Consider any i ∈ S− Ŝ
and j ∈ Ŝ − S. We have

|xi| − |xj | ≤ |x̂i| − |x̂j |+ 2
√
α/kE ≤ 2

√
α/kE (3)

Let a = maxi∈S−Ŝ |xi| and b = minj∈Ŝ−S |xj |. From
Equation 3 we have a ≤ b+ 2

√
α/kE. Thus

‖xS−Ŝ‖
2
2 ≤ a2|S − Ŝ| ≤ (b+ 2

√
α/kE)2|S − Ŝ|

Since ‖xŜ−S‖22 ≥ b2|Ŝ − S| = b2|S − Ŝ|, we continue

‖xS−Ŝ‖
2
2 ≤ (‖xŜ−S‖2/

√
|S − Ŝ|+ 2

√
α/kE)2|S − Ŝ|

≤ (‖xŜ−S‖2 + 2
√
αE)2

≤ ‖xŜ−S‖
2
2 + 4‖xŜ−S‖2

√
αE + 4αE2

≤ ‖xŜ−S‖
2
2 + 4

√
αE2 + 4αE2

≤ ‖xŜ−S‖
2
2 + 8

√
αE2

Plugging into Equation 2 we get

‖x− x̂‖22 ≤ αE2 + ‖xŜ−S‖
2
2 + 8

√
αE2 + ‖x−(S∪Ŝ)‖

2
2

≤ 9
√
αE2 + ‖x−S‖22

= (1 + 9
√
α)E2

C. Sublinear algorithms

The above algorithms all run in time at least linear in
the signal size as they entail estimating a value for each
coordinate in the signal, even those that are insignificant.
If our goal is to just report k non-zero terms of k-sparse
approximation, then it is sufficient to find (or approximate)
the top k values only to achieve similar error guarantees.
Sublinear algorithms aim to do just that and to do so in time
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that scales polynomially with the number of terms k desired
and logarithmically with the length of the input signal.

We start with the simplest example of a sublinear algo-
rithm and its associated binary measurement matrix to find
the unique non-zero entry in a signal of length n and sparsity
1. Let B be the binary matrix with ith column given by the
binary representation of i, beginning with the first column
i = 0. We refer to this matrix as a bit-tester matrix.7. We
add a row of 1s to the bit-tester matrix (to estimate the signal
value) and refer to this matrix as B1. It has log(n) + 1
rows and n columns and from the measurements B1x of
a vector x with a single large entry, we can determine both
the value of the entry and its position in time log(n) + 1.
The measurements are simply the position in binary plus
an estimate of the signal value and the recovery algorithm
is trivial. It also can be seen that a similar approach applies
even if the signal x is not exactly 1-sparse, but contains some
”small” amount of noise.

For general signals, the approach is to ”augment” the algo-
rithms and measurement matrix constructions from previous
sections with the matrix B1. Recall that those algorithms
used simple hash functions which map signal coordinates xi
to rows j of the measurements. Implicit in the correctness
proofs was the ability of those hash functions to isolate a few
significant signal values from one another. More precisely, if
h is chosen uniformly at random from a pre-specified family
H of hash functions, then

Pr[h(i) = h(i′)] =
O(1)
w

,

for some w; that is, the probability that positions i and i′ are
hashed into the same measurement is low. Using arguments
similar to those above, we can show that if there are only k
large (or non-zero) entries that are hashed into more than k
measurements, then with high probability, a large fraction of
the significant entries are hashed into separate measurements.
We can view this process as a random masking of the original
signal, leaving a signal with only one significant entry, to
which we can apply the bit-tester matrix. More precisely,
each row of our final matrix M is the pointwise (Hadamard)
product between a row in A and a row in B1. We say that
M is the row tensor product of B1 and A, M = B1

⊗
r A.

Note that M has approximately k log(n) rows.
Once we have a good estimate of a large fraction of the

significant entries, we can subtract their contribution from
the original measurements (exploiting the linearity of the
measurement process algorithmically, in addition to its role
in the application!). We then repeat the process, using ”fresh”
measurements.

By using the above techniques we obtain the following
result [GLPS09].

Theorem 3: There exists a distribution over m×n matrices
A, m = O(k log n), such that for any signal x, given Ax,

7Readers familiar with coding theory might recognize B as the parity-
check matrix of the Hamming code.

we can recover x̂ such that ‖x̂ − x‖1 ≤ CErrk1 with high
probability. The column sparsity of A is O(logc n) for some
constant c, and the time needed to recover x̂ from Ax is
polynomial in k and log n.

III. ALGORITHMS WITH FOR-ALL GUARANTEES

In this section we describe algorithms that provide for-
all guarantees. The algorithms have been discovered during
the process of unifying the ideas of compressive sensing
with those from data stream algorithms. The key part of that
process has been to identify concrete properties that (a) hold
for a random sparse matrix with a non-zero probability and
(b) are sufficient to support efficient and accurate recovery
algorithms.

One such property is based on the notion of graph
expansion [XH07], [BGI+08]. Consider a bipartite graph
G = G(A) between two node sets U and V , with |U | = n
and |V | = m, such that an edge (i, j) belongs to G if and
only if Aj,i = 1. Informally, such a graph is an expander, if
each small enough set of the nodes in U has many neighbors
in V (the formal definition is provided below).

The notion of expansion has been known to be useful
for some related problems, such as constructing low-density
parity-check codes. In fact, iterative decoding algorithms
for such codes have been used, e.g., in [XH07], [Ind08],
[JXHC08], to design sparse recovery algorithms. However,
those algorithms were designed and proven to work only
for the case where the signal x is either exactly k-sparse
or “almost” k-sparse. In contrast, the algorithms we present
here work for arbitrary input signals x.

Formally, we define unbalanced expander graphs as fol-
lows. Consider a bipartite graph G = (U, V,E), where
E ⊂ U × V is the set of edges. We refer to U as the
“left” part, and refer to V as the “right” part of the graph. A
vertex belonging to the left (right) part is called a left (right)
vertex. In our constructions the left part will correspond to
the set {1, 2, . . . , n} of coordinate indexes of vector x, and
the right part will correspond to the set of row indexes of
the measurement matrix. A bipartite graph is called left-d-
regular if every vertex in the left part has exactly d neighbors
in the right part.

Definition 1: A bipartite, left-d-regular graph G =
(U, V,E) is an (s, d, ε)-expander if any set S ⊂ U of at
most s left vertices has at least (1− ε)d|S| neighbors.

The algorithms described in this section use adjacency
matrices A of the expanders graphs G: we simply set
Aj,i = 1 if and only if (i, j) ∈ E. Note that the resulting
matrices are sparse, with exactly d ones per column.

What are the achievable expansion parameters ? Since
expander graphs are meaningful only when |V | < d|U |,
some vertices must share neighbors, and hence the param-
eter ε cannot be smaller than 1/d. Using the probabilistic
method one can show that there exist (s, d, ε)-expanders with



6

d = O(log(n/s)/ε) and m = |V | = O(s log(n/s)/ε2).
Since our constructions require s = O(k) and ε strictly
bounded away from zero, the resulting matrices will have
O(k log(n/k)) rows.

For many applications one often needs an explicit ex-
pander, i.e., an expander for which we can efficiently com-
pute the neighbor set of a given left vertex. No explicit
constructions with the aforementioned parameters are known.
However, it is known [GUV07] how to explicitly construct
expanders with left degree d = O((log |U |)(log s)/ε)1+1/α

and right set size (d2s1+α), for any fixed α > 0. For
simplicity, in the remainder of this paper, we will assume
expanders with the optimal parameters.

Unlike in the for-each case8 , the algorithms in this section
are known to be resilient to the measurement noise. That is,
we could assume that we are given a noisy sketch vector b =
Ax+ µ, where µ is the “measurement noise” vector. In that
case, the error bounds in the approximation guarantees would
have an additional term depending on η = ‖µ‖1/d. However,
for the sake of consistency, we will focus the description on
the noise-free case where b = Ax. The reader is referred
to the original papers for the bounds for the noise-resilient
variants of the algorithms.

A. RIP(1) and l1 minimization

In this section we give an overview of the ”geometric”
approach to sparse recovery using sparse matrices, introduced
in [BGI+08]. The approach uses the l1 minimization algo-
rithm that has been earlier shown to work for random dense
matrices [CRT06], [Don06]. In the noiseless case b = Ax,
the algorithm proceeds by finding x̂ such that Ax̂ = b and
‖x̂‖1 is minimized.

To understand when the above algorithm performs an ac-
curate recovery, we need the following generalized definition
of the Restricted Isometry Property.

Definition 2: An m × n matrix A is said to satisfy
RIP(p, k, δ) if, for any k-sparse vector x, we have

‖x‖p(1− δ) ≤ ‖Ax‖p ≤ ‖x‖p.

For the case of p = 2, the notion was introduced9

in [CRT06] , which also showed that if a matrix A satisfies
this property, then the l1 minimization procedure produces
an accurate solution. Since then there has been a tremen-
dous amount of study of the properties and construction of
RIP(2, k, δ) (or RIP(2), for short) matrices. Unfortunately,
sparse matrices cannot satisfy the RIP(2) property, unless

8It should be noted that, although the for-each algorithms have typically
been not analyzed for the case of noisy sketches, the algorithm themselves
could very well be quite resilient to various forms of noise.

9The original paper [CRT06] employed a slightly different notation using
”double sided error”, i.e., requiring that ‖x‖2(1 − δ′) ≤ ‖Ax‖2 ≤
‖x‖2(1 + δ′). The two definitions can be seen to be equivalent, by scaling
A and setting (1 + δ) = (1 + δ′)/(1− δ′).

their number of rows is ”large” [Cha08]. In particular, sparse
0-1 matrices must have at least Ω(k2) rows.

However, it was shown [BGI+08] that such matrices
can satisfy RIP(p) for p equal (or very close) to 1. In
particular, the adjacency matrices of expander graphs do have
this property10. By earlier arguments, such matrices have
O(k log(n/k)) rows, which translates into O(k log(n/k))
sketch length bound.

Lemma 4: Consider any m × n matrix A that is
the adjacency matrix of an (k, d, ε)-unbalanced expander
G = (U, V,E). Then the scaled matrix A/d satisfies the
RIP(1, k, δ) property for δ = 2ε.

Proof: Let x ∈ Rn be a k-sparse vector. Without loss of
generality, we assume that the coordinates of x are ordered
such that |x1| ≥ . . . ≥ |xn|. We order the edges et = (it, jt),
t = 1 . . . dn of G in a lexicographic manner. It is helpful to
imagine that the edges e1, e2 . . . of E are being added to
the (initially empty) graph. An edge et = (it, jt) causes a
collision if there exists an earlier edge es = (is, js), s < t,
such that jt = js. We define E′ to be the set of edges which
do not cause collisions, and E′′ = E − E′.

Claim 5: We have∑
(i,j)∈E′′

|xi| ≤ εd‖x‖1

Proof: For each t = 1 . . . dn, we use an indicator
variable rt ∈ {0, 1}, such that rt = 1 iff et ∈ E′′. Define a
vector z ∈ Rdn such that zt = |xit |. Observe that∑

(i,j)∈E′′

|xi| =
∑

et=(it,jt)∈E

rt|xit | = r · z

To upper bound the latter quantity, observe that the vectors
satisfy the following constraints:

• The vector z is non-negative.
• The coordinates of z are monotonically non-increasing,

and at most kd of them are non-zero.
• For each prefix set Pi = {1 . . . di}, i ≤ k, we

have ‖r|Pi
‖1 ≤ εdi - this follows from the expansion

properties of the graph G.
• r|P1 = 0, since the graph is simple.

It follows that for any r, z satisfying the above constraints,
we have r · z ≤ ‖z‖1ε. Since ‖z‖1 = d‖x‖1, the lemma
follows.

Since

‖Ax‖1 ≥
∑

et=(it,jt)∈E′

|xit | −
∑

et=(it,jt)∈E′′

|xit |,

Claim 5 immediately implies that ‖Ax‖1 ≥ d‖x‖1(1 − 2ε).
Since for any x we have ‖Ax‖1 ≤ d‖x‖1, it follows that
A/d satisfies the RIP(1, k, 2ε) property.

10In fact, for some range of parameters, the opposite holds, i.e., 0-1
matrices that satisfy RIP(1) are adjacency matrices of expander graphs.
See [Cha08], [BGI+08] for more details.
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We now need to show that the RIP(1) property of the
matrix A is sufficient to guarantee that the l1 minimization
works. First, we show that any vector from the kernel of
a an adjacency matrix A of an expander graph (i.e., such
that Ax = 0) is “smooth”, i.e., the `1 norm of the vector
cannot be concentrated on a small subset of its coordinates.
An analogous result for RIP(2) matrices and with respect to
the `2 norm has been used before to show guarantees for
LP-based recovery procedures.

Lemma 6: Consider any y ∈ Rn such that Ay = 0, and
let S be any set of k coordinates of y. Then we have

‖yS‖1 ≤ α(ε)‖y‖1.

where α(ε) = (2ε)/(1− 2ε).
The proof proceeds by showing that any vector y whose l1

norm is concentrated on a small set S of coordinates cannot
satisfy Ay = 0. This is because (by the RIP(1) property)
the l1 norm of the vector A(yS) is ”large”, and (from the
expansion property of the underlying graph) the contribution
of the coordinates in the complement of S is not sufficient
to reduce Ay to 0. See [BGI+08] for the formal proof.

The ”smooth kernel” property is then used, as in prior
work, to provide recovery guarantees for the l1 minimization.
This is achieved by the following lemma, by setting u = x
and v = x̂.

Lemma 7: Consider any two vectors u, v, such that for
y = v− u we have Ay = 0, and ‖v‖1 ≤ ‖u‖1. Let S be the
set of k largest (in magnitude) coefficients of u, then

‖v − u‖1 ≤ 2/(1− 2α(ε)) · ‖u− uS‖1

The following theorem summarizes the discussion.
Theorem 8: There exists an m × n (expander) matrix A,

m = O(k log(n/k)/ε2), such that for any signal x, given
Ax, we can recover x̂ such that

‖x− x̂‖1 ≤ c(ε) Errk1

where c(ε) → 2 as ε → 0. The column sparsity of A is
O(log(n)/ε2), and the recovery involves solving a linear
program with O(n) variables and O(m+ n) constraints.

This concludes the overview of the results of [BGI+08].
Further studies of l1 minimization algorithms for sparse
matrices have been done in [WWR08] and [KDXH08], where
the authors obtained tight estimates for the number of mea-
surements needed to recover signals of given sparsity. The
papers consider somewhat different setups: in [WWR08],
one allows arbitrary sparse signals x and measurements
contaminated by random Gaussian noise; in [KDXH08], the
authors consider sparse non-negative signals.

B. EMP, SMP and other near-linear time algorithms

In this section, we describe a family of iterative algo-
rithms for performing sparse recovery. Their key feature is
that they enable performing sparse recovery in near-linear

time while still using O(k log(n/k)) measurements. The
algorithms do not use linear programming; instead, they
exploit various forms of voting mechanisms to converge to
a solution. The specific algorithms covered are: Expander
Matching Pursuit (EMP) [IR08] and Sparse Matching Pur-
suit (SMP) [BIR08].11

To describe the algorithms we need some notation. For a
set S of nodes of a graph G, the ordered set of its neighbors
in G is denoted by ΓG(S). The subscript G will be omitted
when it is clear from the context, and we write Γ(u) as a
shorthand for Γ({u}).

Both EMP and SMP proceed in a sequence of steps, where
each step is similar to the median estimation process of the
Count-Median algorithm. A minor technical difference is that
the algorithms are constructed for general sparse matrices A,
as opposed to block-structured ones used by Count-Median.
Therefore, for a given sketch vector b = Ax, the median
estimation vector Emed(b) is defined as:

Emed(b)i = medianj∈Γ(i)bj

That is, each vertex i selects the entries bj where j is a
neighbor of i in G, and then computes the median of those
entries. One can observe that for the matrices used by Count-
Median, the new and the old estimators are identical. The
basic intuitions behind the choice of the estimator transfer
as well.

There is, however, one important difference: unlike in the
for-each setup, here we cannot guarantee that each coordinate
Emed(b)i differs from xi by only a small term. In fact,
due to the deterministic nature of the process, it might be
possible that, for some coordinate i, all sketch coordinates
bj , j ∈ Γ(i), could be highly ”contaminated” by other entries
of x. Thus, the algorithms do not provide guarantees for
the l∞ error of the recovered approximation. However, it is
nevertheless possible to directly give guarantees for the l1
approximation error.

1) EMP: The first algorithm that achieved the
O(k log(n/k)) sketch length bound and recovery time
near-linear in n was the Expander Matching Pursuit,
or EMP. The algorithm and its analysis are somewhat
complicated, so instead of a detailed description we provide
only an overview.

EMP consists of two phases. In the first phase, the algo-
rithm identifies a set I of coordinates of x that (a) contains
”most” of the k largest (in magnitude) coefficients of x and
(b) for all nodes i /∈ I the neighborhood sets Γ(i) and Γ(I)
have ”small” intersection. The first constraint ensures that we
can set the coordinates x̂i of the approximation to zero for
all i /∈ I . The second constraint ensures that the values of
sketch coordinates bΓ(I) are not too contaminated by entries
xi for i /∈ I . Together, this implies that we can focus on

11There is a very recent variant of SMP called Sequential Sparse Matching
Pursuit [BI09]. We do not cover it in this survey due to lack of space.
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decoding x̂I from bΓ(I). This is accomplished during the
second phase, which proceeds in a sequence of iterations. In
each iteration, the algorithm identifies coordinates i ∈ I such
that most of elements of Γ(i) do not have any other neighbors
in Γ(I). The algorithm then estimates the values x̂i of such
coordinates (using the median estimator), eliminates them
from the I , and subtracts their contribution to the sketch.
The process is continued until the set I becomes empty.

Since each coordinate of the approximation is estimated
only once, and is never revised again, the EMP algorithm is
very efficient: it runs in time proportional to the number of
edges in the graph G, which is O(n log(n/k)). The recovered
vector x̂ provides an approximation in the l1 norm, i.e., we
have that

Theorem 9: There exists an m × n (expander) matrix A,
m = O(k log(n/k)/α2), such that for any signal x, given
Ax, we can recover x̂ such that

‖x− x̂‖1 ≤ (1 + α) Errk1

The column sparsity of A is O(log(n)/α2), and the recovery
algorithm (EMP) has O(n log(n/k)/α2) running time.

Although EMP offers excellent asymptotic guarantees, its
empirical performance is not so great. Specifically, the num-
ber of measurements required by the algorithm to achieve
correct recovery is suboptimal. For example, our recovery
experiments on random signed k-sparse signals of length
n, for k = 50 and n = 20000, show that one typically
needs at least 5000 measurements to recover the signal
correctly using the EMP algorithm. In comparison, the linear-
programming-based recovery algorithm for sparse matrices
described earlier requires only about 450 measurements to
perform the same task12.

2) SMP: The SMP borrows some of the ideas present in
EMP, but it has been also influenced by the recent iterative
algorithms for sparse recovery using dense matrices, such
as [NT08]. The running time of the new algorithm is slightly
higher (by a logarithmic factor) than of EMP. However, em-
pirically, the algorithm performs successful recovery from a
significantly smaller number of measurements. In particular,
for the instances described above, SMP typically needs about
2000 measurements. The asymptotic bound on the number
of required measurements is still O(k log(n/k)).

The recovery algorithm is iterative, in the spirit of Match-
ing Pursuit [TG05]. In each iteration, the algorithm estimates
the difference between the current approximation x̂j and the
signal x from the sketch Ax̂j − b. The estimation, denoted
by u∗ is obtained by using the median estimator as in EMP.
The approximation x̂j is updated by u, and the process is
repeated.

Let Hl[y] be a “thresholding operator”, which zeros out all
but the l largest in magnitude coefficients of the argument
y. Also, let C > 0 be some constant. The details of the

12For both algorithms we used randomly generated 0-1 matrices with
column sparsity equal to 20.

1) Let j = 0
2) Let x̂j = 0
3) Repeat T times

a) Let j = j + 1
b) Let b = b−Ax̂j−1

Remark: b = A(x′ − x̂j−1) + µ′

c) Let u∗ = Emed(b)
d) Let uj = H2k[u∗]

Remark: ‖uj− (x′− x̂j−1)‖1 ≤ ‖x′− x̂j−1‖/4+
Cη′

e) Let x̂j = x̂j−1 + uj

Remark: ‖x′ − x̂j‖1 ≤ ‖x′ − x̂j−1‖/4 + Cη′

f) Let x̂j = Hk[x̂j ]
Remark: ‖x′ − x̂j‖1 ≤ ‖x′ − x̂j−1‖/2 + 2Cη′

Fig. 1. The Sparse Matching Pursuit algorithm: pseudocode and remarks
on the analysis.

algorithm, together with remarks about the properties used
in the analysis, are depicted in Figure 1.

The remarks rely on the following trick, borrowed
from [NT08]: we can decompose the input signal x into the
“head” x′ (containing the k most significant components of
x) and the “tail” x− x′. Then, we can interpret the “sketch
of the tail” term A(x − x′) as measurement noise. That is,
we can assume that the sketch b is equal to Ax′+µ′, where
µ′ = A(x−x′) and x′ is k-sparse. Note that the RIP(1) prop-
erty of A implies that ‖A(x− x′)‖1 ≤ d‖x− x′‖1 = dErrk1 .
We define η′ = ‖µ′‖1/d ≤ Errk1 .

From the remarks in the algorithm description we conclude
that for any j = 1, 2, . . . T , we have

‖x̂j − x′‖1 ≤ ‖x′‖1/2j +O(η′)

Thus, setting the number of iterations to T = log(‖x′‖1/η′)
guarantees that

‖x̂T − x′‖1 = O(η′) = O(Errk1)

The following theorem summarizes the discussion.
Theorem 10: There exists an m×n (expander) matrix A,

m = O(k log(n/k)), such that for any signal x, given Ax,
we can recover x̂ such that

‖x− x̂‖1 ≤ c Errk1

for an absolute constant c > 0. The column sparsity
of A is O(log n), and the recovery algorithm (SMP) has
O(n log(n/k)T ) running time, for T defined as above.

3) Connections to message-passing algorithms: The SMP
algorithm described above, as well as the aforementioned
algorithms from [XH07], [Ind08], [JXHC08], can be in-
terpreted in a general framework of message-passing al-
gorithms. Such algorithms structure their operations based
on the bipartite graph G underlying the matrix A. Specifi-
cally, each node of the graph can be viewed as a separate
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processing unit, and the algorithm proceeds by the units
sending messages to each other along the edges of the graph.
Message-passing algorithms have numerous advantages over
the ”centralized” ones: their computational complexity is low
(if the underlying graph is sparse); they also can be easily
implemented in a parallel or distributed manner.

There have been several papers on message-passing al-
gorithms for sparse recovery problems using sparse random
matrices. In [SBB06a], [SBB08], the authors introduced the
belief propagation approach to compressive sensing, and
applied it to the recovery of random signals, modeled by
a two-state mixture of Gaussians. In a more recent pa-
per [APT09], the authors used belief propagation on signals
modeled as Gaussian-scale mixtures to obtain algorithms
with an excellent empirical performance.

Message passing framework has been also used to design
randomized algorithms that work in the worst-case. In par-
ticular, the paper [LMP+08] introduced and analyzed such
algorithms that work for arbitrary k-sparse signals. That
algorithm can be viewed as an iterative generalization of the
Count-Min algorithms described in earlier sections.

C. HHS and sublinear algorithms

As in Section II, there are versions of the above algo-
rithms with sublinear running times. The main example is
HHS [GSTV07]. The output of the HHS algorithm is x̂ where
‖x − x̂‖2 ≤ C(Err2 + 1/

√
kErr1) and its running time is

k2(log n)O(1). It retains the same overall architecture as the
iterative algorithms: within each step, it isolates significant
entries by hashing, estimates their values, and then updates
the measurements accordingly. It shares a “voting” procedure
for determining significant signal entries with the EMP and
SMP algorithms; however, these votes are derived from the
bit-tests rather than from the signal estimates directly. HHS
differs from the simple sublinear algorithm we sketched in
Section II in three major parts. First, in order to obtain a
strong guarantee for all signals, we must hash k significant
entries into O(k) measurements repeatedly, for O(log n)
repetitions. The adjacency matrix of a (s, d, ε) expander with
s = O(k) is a way to achieve this. Second, because we use
a simple bit-tester B1 to identify the significant entries, we
must ensure that it is applied to a signal that is sufficiently
filtered; the contribution of the insignificant entries must be
small enough not to pollute our estimates of the significant
entry (recall that because the algorithm is iterative, estimation
errors at one stage can accumulate at further iterations).
Furthermore, we must carefully balance the `1 and `2 errors.
To this end, we employ a second hash matrix that reduces
the noise in each measurement after the first hash. In each
iteration j, we keep a list of signal positions for which we
have at least

√
k/j log k log(n/j) log(n) votes. Third, we

use a separate matrix to estimate the values of the identified
signal positions with the desired mixed norm error guarantee.
Finally, in each iteration, we prune the list of signal positions

to retain the top O(k) positions.
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