CMPSCI 711: More Advanced Algorithms Vectors 1: Sampling

Andrew McGregor

Last Compiled: February 16, 2018

Concentration Bounds

Theorem (Markov)

Let X be a non-negative random variable with expectation μ . For t > 0,

 $\mathbb{P}\left[X \geq t\mu\right] \leq 1/t$

Theorem (Chebyshev)

Let X be a random variable with expectation μ . Then for t > 0,

$$\mathbb{P}\left[|X - \mu| \ge \delta\mu\right] \le \frac{\mathbb{V}\left[X\right]}{(\delta\mu)^2}$$

Theorem (Chernoff)

Let X_1, \ldots, X_t be i.i.d. random variables with range [0, 1] and expectation μ . Then, if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$\mathbb{P}\left[|X - \mu| \ge \delta \mu\right] \le 2 \exp\left(\frac{-\mu t \delta^2}{3}\right)$$

Chernoff Corollary

Corollary (Chernoff)

Let X_1, \ldots, X_t be i.i.d. random variables with range [0, c] and expectation μ . Then, if $X = \frac{1}{t} \sum_i X_i$ and $1 > \delta > 0$,

$$\mathbb{P}\left[|X - \mu| \ge \delta \mu
ight] \le 2 \exp\left(rac{-\mu t \delta^2}{3c}
ight)$$

For i ∈ [t], let Y_i = X_i/c. Note that Y_i has expectation µ/c.
Then,

$$\mathbb{P}\left[|\boldsymbol{X} - \boldsymbol{\mu}| \geq \delta \boldsymbol{\mu}\right] = \mathbb{P}\left[|\boldsymbol{Y} - \boldsymbol{\mu}/\boldsymbol{c}| \geq \delta \boldsymbol{\mu}/\boldsymbol{c}\right] \leq 2\exp\left(\frac{-\boldsymbol{\mu}t\delta^2}{3\boldsymbol{c}}\right)$$

Warm-Up: Median Approximation

Reservoir Sampling

Today's Set-Up

• Stream: m elements from universe $[n] = \{1, 2, ..., n\}$, e.g.,

$$\langle x_1, x_2, \dots, x_m \rangle = \langle 3, 5, 103, 17, 5, 4, \dots, 1 \rangle$$

• Let f_i be the frequency of *i* in the stream. The "frequency vector" is

$$f=(f_1,\ldots,f_n)$$

Outline

Warm-Up: Median Approximation

Reservoir Sampling

Approximate Median

Let S = {x₁, x₂,..., x_m} and define rank(y) = |{x ∈ S : x ≤ y}|.
 For simplicity suppose elements in S are distinct.

• *Problem:* Find an ϵ -approximate median of S, i.e., y such that

$$m/2 - \epsilon m < \operatorname{rank}(y) < m/2 + \epsilon m$$

- Algorithm: Sample t values from S (with replacement) and return the median of the sampled values.
- Lemma: If $t = 7\epsilon^{-2} \log(2\delta^{-1})$ then the algorithm returns an ϵ -median with probability 1δ .
- ▶ We'll later present an algorithm with smaller space.

Median Analysis

Partition S into 3 groups:

$$S_L = \{x \in S : \operatorname{rank}(x) \le m/2 - \epsilon m\}$$

$$S_M = \{x \in S : m/2 - \epsilon m < \operatorname{rank}(x) < m/2 + \epsilon m\}$$

$$S_U = \{x \in S : \operatorname{rank}(x) \ge m/2 + \epsilon m\}$$

- ► If less than t/2 elements from both S_L and S_U are present in sample then the median of the sample is an ε-approximate median.
- ► Let $X_i = 1$ if *i*-th sample if in S_L and 0 otherwise. Let $X = \sum_i X_i$. Assume $\epsilon < 1/10$. By Chernoff bound, if $t > 7\epsilon^{-2} \log(2\delta^{-1})$

$$\mathbb{P}\left[X \ge t/2\right] \le \mathbb{P}\left[X \ge (1+\epsilon)\mathbb{E}\left[X\right]\right] \le e^{-\epsilon^2(1/2-\epsilon)t/3} \le \delta/2$$

- Similarly, there are $\geq t/2$ elements from S_U with probability $\leq \delta/2$.
- ▶ By the union bound, with probability at least 1δ there are less than t/2 elements chosen from both S_L and S_U .

Outline

Warm-Up: Median Approximation

Reservoir Sampling

Reservoir Sampling

Problem: Find uniform sample s from a stream if we don't know m

- Algorithm:
 - Initially s = x₁
 - ▶ On seeing the *t*-th element, $s \leftarrow x_t$ with probability 1/t
- Analysis:
 - What's the probability that $s = x_i$ at some time $t \ge i$?

$$\mathbb{P}[s=x_i] = \frac{1}{i} \times \left(1 - \frac{1}{i+1}\right) \times \ldots \times \left(1 - \frac{1}{t}\right) = \frac{1}{t}$$

• To get k samples we use $O(k \log n)$ bits of space.

Outline

Warm-Up: Median Approximation

Reservoir Sampling

AMS Sampling

- *Problem:* Estimate $\sum_{i \in [n]} g(f_i)$ for any function g with g(0) = 0
- ▶ *Basic Estimator:* Sample x_J where $J \in_R [m]$ and compute

$$r = |\{j \ge J : x_j = x_J\}|$$

Output X = m(g(r) - g(r - 1))

• Correct Expectation:

$$\mathbb{E}[X] = \sum_{i} \mathbb{P}[x_{J} = i] \mathbb{E}[X|x_{J} = i]$$
$$= \sum_{i} \frac{f_{i}}{m} \left(\sum_{r=1}^{f_{i}} \frac{m(g(r) - g(r-1))}{f_{i}} \right)$$
$$= \sum_{i} g(f_{i})$$

• For high confidence: Compute t estimators in parallel and average.

Example: Frequency Moments (a)

- Frequency Moments: Define $F_k = \sum_i f_i^k$ for $k \in \{1, 2, 3, ...\}$
- Use AMS estimator with $X = m(r^k (r-1)^k)$.

$$\mathbb{E}\left[X\right]=F_k$$

- *Exercise:* $0 \le X \le mkf_*^{k-1}$ where $f_* = \max_i f_i$.
- Repeat t times and let \hat{X} be the average value. By Chernoff,

$$\mathbb{P}\left[|\hat{X} - F_k| \ge \epsilon F_k\right] \le 2 \exp\left(-\frac{tF_k \epsilon^2}{3mk f_*^{k-1}}\right)$$

► Hence, taking $t = \frac{3mkf_*^{k-1}\log(2\delta^{-1})}{\epsilon^2 F_k}$ ensures $\mathbb{P}\left[|\hat{X} - F_k| \ge \epsilon F_k\right] \le \delta$.

- Lemma: $mf_*^{k-1}/F_k \le n^{1-1/k}$.
- ► Thm: In $O(kn^{1-1/k}\epsilon^{-2}\log \delta^{-1}\log(nm))$ space we find an (ϵ, δ) approximation for F_k .

Example: Frequency Moments (b)

Lemma
$$mf_*^{k-1}/F_k \le n^{1-1/k}$$
.
Proof.

- *Exercise:* $F_k \ge n(m/n)^k$. (Hint: Use convexity of $g(x) = x^k$.)
- Case 1: Suppose $f_*^{\ k} \leq n(m/n)^k$. Then,

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mn^{1-1/k}(m/n)^{k-1}}{n(m/n)^k} = n^{1-1/k}$$

• Case 2: Suppose $f_*^{\ k} \ge n(m/n)^k$. Then,

$$\frac{mf_*^{k-1}}{F_k} \le \frac{mf_*^{k-1}}{f_*^{k}} = \frac{m}{f_*} \le \frac{m}{n^{1/k}(m/n)} = n^{1-1/k}$$