CMPSCI 711: More Advanced Algorithms Vectors 2: Sketching F₀ and F₂

Andrew McGregor

Last Compiled: February 16, 2018

Hash Functions

Definition

A family \mathcal{H} of functions from $A \rightarrow B$ is k-wise independent if for any distinct $x_1, \ldots, x_k \in A$ and $i_1, i_2, \ldots, i_k \in B$,

$$\mathbb{P}_{h \in_{\mathcal{R}} \mathcal{H}}[h(x_1) = i_1, h(x_2) = i_2, \dots, h(x_k) = i_k] = \frac{1}{|B|^k}$$

Example

Suppose $A \subset \{0,1,2,\ldots,p-1\}$ and $B = \{0,1,2,\ldots,p-1\}.$ Then,

$$\mathcal{H} = \{h(x) = \sum_{i=0}^{k-1} a_i x^i \mod p : 0 \le a_0, a_1, \dots, a_{k-1} \le p-1\}$$

is a k-wise independent family of hash functions.

Note. If |B| is not prime or |A| > |B| more ideas are required.

Linear Sketches

- A sketch algorithm stores a random matrix Z ∈ ℝ^{k×n} where k ≪ n and computes projection Zf of the frequency vector.
- Can be computed incrementally:
 - ► Suppose we have sketch *Zf* of current frequency vector *f*.
 - If we see an occurrence of *i*, the new frequency vector is $f' = f + e_i$
 - Can update sketch be just adding i column of Z to Zf:

$$Zf' = Z(f + e_i) = Zf + Ze_i = Zf + (i-\text{th column of } Z)$$

 Useful? Need to choose random matrices such that relevant properties of f can be estimated with high probability from Zf.

Outline

F_2 Estimation

Distinct Elements

- **Problem:** Construct an (ϵ, δ) approximation for $F_2 = \sum_i f_i^2$
- ► Algorithm:
 - Let Z ∈ {−1, 1}^{k×n} where entries of each row are 4-wise independent and rows are independent.
 - Compute Zf and average squared entries appropriately.

Analysis:

• Let s = z.f be an entry of Zf where z is a row of Z.

• Lemma:
$$\mathbb{E}\left[s^2\right] = F_2$$

• Lemma:
$$\mathbb{V}\left[s^2\right] \leq 4F_2^2$$

Expectation Lemma

s = z.f where z_i ∈_R {−1,1} are 4-wise independent.
 Then

$$\mathbb{E}\left[s^{2}\right] = \mathbb{E}\left[\sum_{i,j\in[n]} z_{i}z_{j}f_{i}f_{j}\right] = \sum_{i,j\in[n]} f_{i}f_{j}\mathbb{E}\left[z_{i}z_{j}\right] = \sum_{i\in[n]} f_{i}^{2}$$

since $\mathbb{E}[z_i z_j] = 0$ unless i = j,

Variance Lemma

$$\mathbb{V}\left[s^{2}\right] = \mathbb{E}\left[s^{4}\right] - \mathbb{E}\left[s^{2}\right]^{2} = \sum_{i} f_{i}^{4} + 6\sum_{i < j} f_{i}^{2} f_{j}^{2} - \left(\sum_{i \in [n]} f_{i}^{2}\right)^{2}$$
$$= 4\sum_{i < j} f_{i}^{2} f_{j}^{2}$$
$$\leq 4F_{2}^{2}$$

Averaging "Appropriately"

- ► Group entries of the sketch into a = O(log δ⁻¹) groups of b = 12ε⁻²
- Let Y_1, Y_2, \ldots, Y_a be the average of squared entries in each group.

$$\mathbb{E}[Y_i] = F_2$$
$$\mathbb{V}[Y_i] \le 4F_2^2/b$$

- ▶ By Chebychev, $\mathbb{P}\left[|Y_i F_2| \ge \epsilon F_2\right] \le \frac{4F_2^2}{b(\epsilon F_2)^2} = 1/3$
- ▶ By Chernoff, median(Y_1, \ldots, Y_a) is a (ϵ, δ) approximation of F_2 .

Extension to Estimating ℓ_p

• The ℓ_p norm is defined as $\ell_p(f) = (\sum_i |f_i|^p)^{1/p}$

▶ A distribution *D* is *p*-stable if given $X, Y \sim D$ and $a, b \in \mathbb{R}$ then

$$aX + bY \sim (a^p + b^p)^{1/p}D$$

▶ E.g., Cauchy and Gaussian distributions are 1 and 2-stable:

$$\mathsf{Cauchy}(x) = rac{1}{\pi} \cdot rac{1}{1+x^2} \quad \mathsf{Gaussian}(x) = rac{1}{\sqrt{2\pi}} \cdot e^{-x^2/2}$$

• If entries of matrix $z_{i,j} \sim D$ are p stable, then projection entries:

$$s \sim \ell_p(f) D$$

▶ For $p \in (0, 2]$, can (ϵ, δ) estimate ℓ_p in $O(\epsilon^{-2} \operatorname{polylog}(n, m))$ space.

Outline

F_2 Estimation

Distinct Elements

Distinct Elements

- **Problem:** Construct an (ϵ, δ) approximation for $F_0 = \sum_i f_i^0$
- Simpler problem: For given T > 0, with probability 1 − δ distinguish between F₀ > (1 + ϵ)T and F₀ < (1 − ϵ)T</p>
- If we can solve simpler problem, can solve original problem by trying O(e⁻¹ log n) values of T

$$T = 1, (1 + \epsilon), (1 + \epsilon)^2, \ldots, n$$

► Algorithm:

- ▶ Choose random sets $S_1, S_2, \ldots, S_k \subset [n]$ where $\mathbb{P}[i \in S_j] = 1/T$
- Compute $s_j = \sum_{i \in S_i} f_i$
- If at least k/e of the s_j are zero, output $F_0 < (1-\epsilon)T$

Analysis:

- If $F_0 > (1 + \epsilon)T$, $\mathbb{P}[s_i = 0] < 1/e \epsilon/3$
- If F₀ < (1 − ε)T, P[s_j = 0] > 1/e + ε/3
- Chernoff: $k = O(e^{-2} \log \delta^{-1})$ ensures correctness with prob. 1δ .

Analysis

Suppose T is large and ϵ is small:

$$\mathbb{P}[s_j = 0] = (1 - 1/T)^{F_0} \approx e^{-F_0/T}$$

► If
$$F_0 > (1 + \epsilon)T$$
,
 $e^{-F_0/T} \le e^{-(1+\epsilon)} \le e^{-1} - \epsilon/3$
► If $F_0 < (1 - \epsilon)T$,
 $e^{-F_0/T} \ge e^{-(1-\epsilon)} \ge e^{-1} + \epsilon/3$