CMPSCI 711: More Advanced Algorithms

Vectors 5: Sparse Approximations and Algebraic Approximations

Andrew McGregor

Last Compiled: February 16, 2018

Sparse Recovery

- Goal: Find g such that $\|f-g\|_{1}$ is minimized subject to the constraint that g has at most k non-zero entries.
- Define $\operatorname{Err}^{k}(f)=\min _{g:\|g\|_{0} \leq k}\|f-g\|_{1}$
- Exercise: $\operatorname{Err}^{k}(f)=\sum_{i \notin S}\left|f_{i}\right|$ where S are indices of k largest f_{i}
- Using $O\left(\epsilon^{-1} k \log n\right)$ space, we can find \tilde{g} such that $\|\tilde{g}\|_{0} \leq k$ and

$$
\|\tilde{g}-f\|_{1} \leq(1+\epsilon) \operatorname{Err}^{k}(f)
$$

Count-Min Revisited

- Consider Count-Min sketch with depth $d=O(\log n)$, width $w=\frac{4 k}{\epsilon}$
- For $i \in[n]$, let $\tilde{f}_{i}=c_{j, h_{j}(i)}$ for some row $j \in[d]$.
- Let $S=\left\{i_{1}, \ldots, i_{k}\right\}$ be the indices with maximum frequencies. Let A_{i} be the event that there doesn't exist $k \in S \backslash i$, with $h_{j}(i)=h_{j}(k)$.
- Then for $i \in[n]$,

$$
\begin{aligned}
\mathbb{P}\left[\left|f_{i}-\tilde{f}_{i}\right| \geq \epsilon \frac{\operatorname{Err}^{k}(f)}{k}\right]= & \mathbb{P}\left[\neg A_{i}\right] \times \mathbb{P}\left[\left.\left|f_{i}-\tilde{f}_{i}\right| \geq \epsilon \frac{\operatorname{Err}^{k}(f)}{k} \right\rvert\, \neg A_{i}\right]+ \\
& \mathbb{P}\left[A_{i}\right] \times \mathbb{P}\left[\left.\left|f_{i}-\tilde{f}_{i}\right| \geq \epsilon \frac{\operatorname{Err}^{k}(f)}{k} \right\rvert\, A_{i}\right] \\
\leq & \mathbb{P}\left[\neg A_{i}\right]+\mathbb{P}\left[\left.\left|f_{i}-\tilde{f}_{i}\right| \geq \epsilon \frac{\operatorname{Err}^{k}(f)}{k} \right\rvert\, A_{i}\right] \\
\leq & k / w+1 / 4<1 / 2
\end{aligned}
$$

With high probability, all f_{i} are approximated up to error $\epsilon \operatorname{Err}^{k}(f) / k$

Sparse Recovery Algorithm

- Consider a Count-Min sketch with depth d and width $w=4 k / \epsilon$
- Let $f^{\prime}=\left(\tilde{f}_{1}, \tilde{f}_{2}, \ldots, \tilde{f}_{n}\right)$ be frequency estimates where for all i

$$
\left|f_{i}-\tilde{f}_{i}\right| \leq \epsilon \frac{\operatorname{Err}^{k}(f)}{k}
$$

- Let \tilde{g} be f^{\prime} with all but the k th largest entries replaced by 0 .
- Lemma: $\|\tilde{g}-f\|_{1} \leq(1+3 \epsilon) \operatorname{Err}^{k}(f)$

Proof of Lemma

- Let $S, T \subset[n]$ be indices corresponding to largest values of f_{i} and \tilde{f}_{i}.
- For a vector $x \in \mathbb{R}^{n}$ and $I \subset[n]$, write x_{l} as the vector formed by zeroing out all entries of x except for those indices in I.
- Then.

$$
\begin{aligned}
\left\|f-f_{T}^{\prime}\right\|_{1} & \leq\left\|f-f_{T}\right\|_{1}+\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& =\|f\|_{1}-\left\|f_{T}\right\|_{1}+\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& =\|f\|_{1}-\left\|f_{T}^{\prime}\right\|_{1}+\left(\left\|f_{T}^{\prime}\right\|_{1}-\left\|f_{T}\right\|_{1}\right)+\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& \leq\|f\|_{1}-\left\|f_{T}^{\prime}\right\|_{1}+2\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& \leq\|f\|_{1}-\left\|f_{S}^{\prime}\right\|_{1}+2\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& \leq\|f\|_{1}-\left\|f_{S}\right\|_{1}+\left(\left\|f_{S}\right\|_{1}-\left\|f_{S}^{\prime}\right\|_{1}\right)+2\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& \leq\left\|f-f_{S}\right\|_{1}+\left\|f_{S}-f_{S}^{\prime}\right\|_{1}+2\left\|f_{T}-f_{T}^{\prime}\right\|_{1} \\
& \leq \operatorname{Err}^{k}(f)+k \in \operatorname{Err}^{k}(f) / k+2 k \in \operatorname{Err}^{k}(f) / k \\
& =(1+3 \epsilon) \operatorname{Err}^{k}(f)
\end{aligned}
$$

Similar Result for ℓ_{2}

- Goal: Find g such that $\|f-g\|_{2}$ is minimized subject to the constraint that g has at most k non-zero entries.
- Define $\operatorname{Err}_{2}^{k}(f)=\min _{g:\|g\|_{0} \leq k}\|f-g\|_{2}^{2}$
- Using $O\left(\epsilon^{-2} k \log n\right)$ space, we can find \tilde{g} such that $\|\tilde{g}\|_{0} \leq k$ and

$$
\|\tilde{g}-f\|_{2}^{2} \leq(1+\epsilon) \operatorname{Err}_{2}^{k}(f)
$$

Outline

Wavelets

Haar Wavelets

- Defn: For $n=8$, Haar Wavelet basis consists of rows of the matrix.

$$
M=\left(\begin{array}{cccccccc}
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} \\
\frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{1}{\sqrt{8}} & \frac{-1}{\sqrt{8}} & \frac{-1}{\sqrt{8}} & \frac{-1}{\sqrt{8}} & \frac{-1}{\sqrt{8}} \\
\frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{-1}{\sqrt{4}} & \frac{-1}{\sqrt{4}} & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{4}} & \frac{1}{\sqrt{4}} & \frac{-1}{\sqrt{4}} & \frac{-1}{\sqrt{4}} \\
\frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0, & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & \frac{1}{\sqrt{2}} & \frac{-1}{\sqrt{2}}
\end{array}\right)
$$

and for $n=2^{r}$, the construction generalizes in the natural way.

- Note that the basis is orthonormal and $M M^{T}=M^{T} M=I$. Hence, any signal $f \in \mathbb{R}^{n}$ can be expressed in the Haar basis.

Sparse Representation in Haar Basis

- Let $\mathcal{H}=\left\{\phi_{1}, \ldots, \phi_{n}\right\}$ be the Haar basis.
- Goal: Find g that minimizes $\|f-g\|_{2}$ subject to the constraint that g can be expressed as the sum of at most k Haar basis vectors, i.e., g is k-sparse in the Haar basis.
- Write $f=\sum_{i} \lambda_{i} \phi_{i}$ where $\lambda_{i}=\phi_{i} \cdot f$.
- Suppose $g=\sum_{i \in I} \mu_{i} \phi_{i}$ for some $I \subset[n]$ of size at most k.
- Then

$$
\|f-g\|_{2}^{2}=\sum_{i \in l}\left(\lambda_{i}-\mu_{i}\right)^{2}+\sum_{i \notin l} \lambda_{i}^{2}
$$

- Hence, we want to find k values of i that maximize $\mu_{i}=\phi_{i} \cdot f$.

Time Series Model

- Suppose coordinations of f are presented in order $\left\langle f_{1}, f_{2}, \ldots, f_{n}\right\rangle$. This is called the time-series model.
- Can easily compute $\mu_{i}=\phi_{i} \cdot f$
- At any given time,
- We've calculated μ_{i} exactly for some $i \in A$
- We've calculated μ_{i} partially for some $i \in B$
- We haven't started computing μ_{i} for $i \notin A \cup B$
- Lemma: The size of B is at most $\log _{2} n$.
- Algorithm: Maintain only the k largest values of μ_{i} for $i \in A$.
- We find the optimal k term representation in $O(k+\log n)$ space.

General Update Model

- Can express goal in terms of standard basis...
- Because M is unitary,

$$
\|f-g\|_{2}^{2}=(f-g)^{T}(f-g)=(f-g)^{T} M^{T} M(f-g)=\|M f-M g\|_{2}^{2}
$$

and g is k-sparse in Haar basis iff $M g$ is k-sparse in standard basis.

- Hence, finding best g is same as finding $h=M g$ with $\|h\|_{0} \leq k$ that minimizes $\|M f-h\|_{2}$
- Using Count-Sketch algorithm, can find \tilde{h} with $\|\tilde{h}\|_{0} \leq k$ such that

$$
\begin{aligned}
\|M f-\tilde{h}\|_{2}^{2} & \leq(1+\epsilon)_{h: h} \text { is } k \text {-sparse in standard basis } \min _{g f-h \|_{2}^{2}} \\
& =(1+\epsilon)_{g: g \text { is } k \text {-sparse in Haar basis }}\|M f-M g\|_{2}^{2} \\
& =(1+\epsilon)_{g: g \text { is } k \text {-sparse in Haar basis }}\|f-g\|_{2}^{2}
\end{aligned}
$$

