CMPSCI 711: More Advanced Algorithms

Vectors 7: Subspace Embeddings and Regression

Andrew McGregor

Last Compiled: April 26, 2018

Subspace Embedding

Recall: Exists distribution D over $\Pi \in \mathbb{R}^{k \times n}$ where $k = O(\epsilon^{-2} \log m)$ such that for any $v_1, \ldots v_m \in \mathbb{R}^n$, with probability $\geq 1 - \delta$,

$$\forall i,j, \quad \|\Pi v_i\|_2^2 = (1 \pm \epsilon) \|v_i\|_2^2 \qquad \text{ and } \qquad \|\Pi (v_i - v_j)\|_2^2 = (1 \pm \epsilon) \|v_i - v_j\|_2^2$$

Definition

Let $E \subseteq \mathbb{R}^n$ be a linear subspace of dimension d. We say Π is a subspace embedding for E, if for any unit $x \in E$, $\|\Pi x\|_2^2 = 1 \pm \epsilon$

We'll prove existence of low-dimensional subspace embedding via γ -nets.

Theorem

We say $M = \{y_1, y_2, \ldots\}$ is a γ -net for E if for every unit $x \in E$ there exists $y \in M$ such that

$$||y-x||_2 \leq \gamma$$
.

There exists a γ -net for E of size at most $(1+2/\gamma)^d$.

Proof of Theorem: Bounding Size of γ -Net

- ▶ Construct a γ -net N for \mathbb{R}^d of size at most $(1+2/\gamma)^d$:
 - ▶ While there exists a unit $x \in \mathbb{R}^d$ that is distance greater than γ from all points in N, add x to N.
 - ▶ Balls of radius $\gamma/2$ centered at each point in N are disjoint A ball centered at origin of radius $1 + \gamma/2$ covers all these |N| balls. Hence

$$|\mathit{N}| \leq \frac{\text{volume of ball of radius } (1+\gamma/2)}{\text{volume of ball of radius } \gamma/2} = \frac{(1+\gamma/2)^d}{(\gamma/2)^d} \leq (1+2/\gamma)^d \ .$$

- Let A be a matrix whose columns are orthornormal basis for E. Then $M = \{Ax : x \in N\}$ is a γ -net for E of size at most $(1 + 2/\gamma)^d$:
 - ▶ Pick arbitrary unit $z \in E$. Let $x \in \mathbb{R}^d$ be unit vector with z = Ax.
 - ▶ Let $x' \in N$ such that $||x x'||_2 \le \gamma$ and $y = Ax' \in M$ then

$$||z - y||_2 = ||Ax - Ax'||_2 = ||x - x'||_2 \le \gamma$$

where second inequality follows since columns of A are orthonormal.

Preserving Distances for Net Implies

Theorem

Let M be a 1/2-net for E. If for all $y, y' \in M$,

 $= \|z\|_2^2 + O(\epsilon)$

$$\|\Pi y\|_2^2 = 1 \pm \epsilon$$
 and $\|\Pi (y - y')\|_2^2 = \|y - y'\|_2^2 (1 \pm \epsilon)$

then Π is a subspace embedding for E.

- Pick arbitrary unit $z \in E$.
- Lemma 1: $z = z_1 + z_2 + \dots$ where $z_i / \|z_i\|_2 \in M$ and $\|z_i\|_2 \le 2\gamma^{i-1}$.
- Lemma 2: For all i, j $\| \Pi z_i \|_2^2 = \| z_i \|_2^2 + \epsilon \| z_i \|_2^2 \quad \text{and} \quad \langle \Pi z_i | \Pi z_i \rangle = \langle z_i | z_i \rangle + O(\epsilon) \| z_i \|_2 \| z_i \|_2$
- $\|\Pi z_i\|_2^2 = \|z_i\|_2^2 \pm \epsilon \|z_i\|_2^2$ and $\langle \Pi z_i, \Pi z_j \rangle = \langle z_i, z_j \rangle \pm O(\epsilon) \|z_i\|_2 \|z_j\|_2$

Note
$$\sum_{j\geq 1}\|z_j\|_2^2=O(1)$$
 and $\sum_{j\geq 1}\|z_j\|_2=O(1)$ and so, $\|\Pi z\|_2^2=\|\Pi\sum z_i\|_2^2$

$$= \sum_{i} \|\Pi z_{i}\|_{2}^{2} + 2 \sum_{i \neq j} \langle \Pi z_{i}, \Pi z_{j} \rangle$$

$$= \sum_{i} \|z_{i}\|_{2}^{2} + \epsilon \sum_{i} \|z_{i}\|_{2}^{2} + 2 \sum_{i \neq j} \langle z_{i}, z_{j} \rangle \pm O(\epsilon) \sum_{i \neq j} \|z_{i}\|_{2} \|z_{j}\|_{2}$$

Proof of Lemma 1

Can write $z = z_1 + z_2 + \dots$ where $\frac{z_i}{\|z_i\|_2} \in M$ and $\|z_i\|_2 \leq 2\gamma^{i-1}$.

- ▶ Let $z_1 \in M$ such that $||z z_1||_2 \le \gamma$ and note $||z||_2 = 1 < 2$.
- ▶ Suppose we have chosen $z_1, ..., z_{i-1}$ such that

$$\alpha_i := \|z - z_1 - \ldots - z_{i-1}\|_2 \le \gamma^{i-1}$$

▶ Pick $y \in M$ with

$$\|(z-z_1-\ldots-z_{i-1})/\alpha_i-y\|_2\leq \gamma$$

and let $z_i = \alpha_i y$. Then

$$\alpha_{i+1} := \|z - z_1 - \ldots - z_{i-1} - z_i\|_2 \le \gamma \alpha_i \le \gamma^i$$

and so

$$||z_i|| \le ||z-z_1-\ldots-z_{i-1}-z_i||_2 + ||z-z_1-\ldots-z_{i-1}||_2 \le \gamma^i + \gamma^{i-1} \le 2\gamma^{i-1}$$
.

Proof of Lemma 2

▶ Let $y = z_i/\|z_i\|_2$. Then $\|\Pi z_i\|_2^2 = \|z_i\|_2^2(1 \pm \epsilon)$ because,

$$\frac{\|\Pi z_i\|_2^2}{\|z_i\|_2^2} = \|\Pi y\|_2^2 = 1 \pm \epsilon$$

▶ Let $y' = z_i/||z_i||_2$. Note that

$$\langle \Pi y, \Pi y' \rangle = \frac{1}{2} (\|\Pi y\|_2^2 + \|\Pi y'\|_2^2 - \|\Pi (y - y')\|_2^2)$$
$$\langle y, y' \rangle = \frac{1}{2} (\|y\|_2^2 + \|y'\|_2^2 - \|y - y'\|_2^2)$$

and corresponding terms on right hand side differ by $O(\epsilon)$,

$$\langle \Pi y, \Pi y' \rangle \langle y, y' \rangle \pm O(\epsilon)$$

Finishing Up

▶ There exists $\Pi \in \mathbb{R}^{k \times n}$ where

$$k = O(\epsilon^{-2} \log |M|) = O(\epsilon^{-2}(d)$$

such that for any $y, y' \in M$,

$$\|\Pi y\|_2^2 = (1 \pm \epsilon)\|y\|_2^2$$
 and $\|\Pi(y - y')\|_2^2 = (1 \pm \epsilon)\|y - y'\|_2^2$

▶ Previous theorem establishes this is subspace embedding for *E*.

Application: Regression

▶ Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^n$, we want to find $x \in \mathbb{R}^d$ such that $Ax \approx b$, in particular,

$$x_{opt} = \operatorname{argmin}_{x} ||Ax - b||_{2}$$

▶ Let E be the d+1 dimensional subspace spanned by columns of A and b. And let Π be a subspace embedding for E. Let

$$\tilde{x} = \operatorname{argmin}_{x} \| \Pi Ax - \Pi b \|_{2}$$

► Then

$$\|\Pi A \tilde{x} - \Pi b\|_2^2 \le \|\Pi A x_{opt} - \Pi b\|_2^2 \le (1+\epsilon) \|A x_{opt} - b\|_2^2 (1+\epsilon)$$

and

$$\|\Pi A \tilde{x} - \Pi b\|_2^2 \ge (1 - \epsilon) \|A \tilde{x} - b\|_2^2$$