CMPSCI 711: More Advanced Algorithms

Vectors 7: Subspace Embeddings and Regression

Andrew McGregor

Last Compiled: April 26, 2018

Subspace Embedding

Recall: Exists distribution D over $\Pi \in \mathbb{R}^{k \times n}$ where $k=O\left(\epsilon^{-2} \log m\right)$ such that for any $v_{1}, \ldots v_{m} \in \mathbb{R}^{n}$, with probability $\geq 1-\delta$,

$$
\forall i, j, \quad\left\|\Pi v_{i}\right\|_{2}^{2}=(1 \pm \epsilon)\left\|v_{i}\right\|_{2}^{2} \quad \text { and } \quad\left\|\Pi\left(v_{i}-v_{j}\right)\right\|_{2}^{2}=(1 \pm \epsilon)\left\|v_{i}-v_{j}\right\|_{2}^{2}
$$

Definition

Let $E \subseteq \mathbb{R}^{n}$ be a linear subspace of dimension d. We say Π is a subspace embedding for E, if for any unit $x \in E,\|\Pi x\|_{2}^{2}=1 \pm \epsilon$

We'll prove existence of low-dimensional subspace embedding via γ-nets.

Theorem
We say $M=\left\{y_{1}, y_{2}, \ldots\right\}$ is a γ-net for E if for every unit $x \in E$ there exists $y \in M$ such that

$$
\|y-x\|_{2} \leq \gamma
$$

There exists a γ-net for E of size at most $(1+2 / \gamma)^{d}$.

Proof of Theorem: Bounding Size of γ-Net

- Construct a γ-net N for \mathbb{R}^{d} of size at most $(1+2 / \gamma)^{d}$:
- While there exists a unit $x \in \mathbb{R}^{d}$ that is distance greater than γ from all points in N, add x to N.
- Balls of radius $\gamma / 2$ centered at each point in N are disjoint A ball centered at origin of radius $1+\gamma / 2$ covers all these $|N|$ balls. Hence

$$
|N| \leq \frac{\text { volume of ball of radius }(1+\gamma / 2)}{\text { volume of ball of radius } \gamma / 2}=\frac{(1+\gamma / 2)^{d}}{(\gamma / 2)^{d}} \leq(1+2 / \gamma)^{d}
$$

- Let A be a matrix whose columns are orthornormal basis for E. Then $M=\{A x: x \in N\}$ is a γ-net for E of size at most $(1+2 / \gamma)^{d}$:
- Pick arbitrary unit $z \in E$. Let $x \in \mathbb{R}^{d}$ be unit vector with $z=A x$.
- Let $x^{\prime} \in N$ such that $\left\|x-x^{\prime}\right\|_{2} \leq \gamma$ and $y=A x^{\prime} \in M$ then

$$
\|z-y\|_{2}=\left\|A x-A x^{\prime}\right\|_{2}=\left\|x-x^{\prime}\right\|_{2} \leq \gamma
$$

where second inequality follows since columns of A are orthonormal.

Preserving Distances for Net Implies

Theorem

Let M be a $1 / 2$-net for E. If for all $y, y^{\prime} \in M$,

$$
\|\Pi y\|_{2}^{2}=1 \pm \epsilon \quad \text { and } \quad\left\|\Pi\left(y-y^{\prime}\right)\right\|_{2}^{2}=\left\|y-y^{\prime}\right\|_{2}^{2}(1 \pm \epsilon)
$$

then Π is a subspace embedding for E.

- Pick arbitrary unit $z \in E$.
- Lemma 1: $z=z_{1}+z_{2}+\ldots$ where $z_{i} /\left\|z_{i}\right\|_{2} \in M$ and $\left\|z_{i}\right\|_{2} \leq 2 \gamma^{i-1}$.
- Lemma 2: For all i, j

$$
\left\|\Pi z_{i}\right\|_{2}^{2}=\left\|z_{i}\right\|_{2}^{2} \pm \epsilon\left\|z_{i}\right\|_{2}^{2} \quad \text { and } \quad\left\langle\Pi z_{i}, \Pi z_{j}\right\rangle=\left\langle z_{i}, z_{j}\right\rangle \pm O(\epsilon)\left\|z_{i}\right\|_{2}\left\|z_{j}\right\|_{2}
$$

- Note $\sum_{j \geq 1}\left\|z_{j}\right\|_{2}^{2}=O(1)$ and $\sum_{j \geq 1}\left\|z_{j}\right\|_{2}=O(1)$ and so,

$$
\begin{aligned}
\|\Pi z\|_{2}^{2} & =\left\|\Pi \sum_{i} z_{i}\right\|_{2}^{2} \\
& =\sum_{i}\left\|\Pi z_{i}\right\|_{2}^{2}+2 \sum_{i \neq j}\left\langle\Pi z_{i}, \Pi z_{j}\right\rangle \\
& =\sum_{i}\left\|z_{i}\right\|_{2}^{2}+\epsilon \sum_{i}\left\|z_{i}\right\|_{2}^{2}+2 \sum_{i \neq j}\left\langle z_{i}, z_{j}\right\rangle \pm O(\epsilon) \sum_{i \neq j}\left\|z_{i}\right\|_{2}\left\|z_{j}\right\|_{2}
\end{aligned}
$$

$=\|z\|^{2}+O(\epsilon)$

Proof of Lemma 1

Can write $z=z_{1}+z_{2}+\ldots$ where $\frac{z_{i}}{\left\|z_{i}\right\|_{2}} \in M$ and $\left\|z_{i}\right\|_{2} \leq 2 \gamma^{i-1}$.

- Let $z_{1} \in M$ such that $\left\|z-z_{1}\right\|_{2} \leq \gamma$ and note $\|z\|_{2}=1<2$.
- Suppose we have chosen z_{1}, \ldots, z_{i-1} such that

$$
\alpha_{i}:=\left\|z-z_{1}-\ldots-z_{i-1}\right\|_{2} \leq \gamma^{i-1}
$$

- Pick $y \in M$ with

$$
\left\|\left(z-z_{1}-\ldots-z_{i-1}\right) / \alpha_{i}-y\right\|_{2} \leq \gamma
$$

and let $z_{i}=\alpha_{i} y$. Then

$$
\alpha_{i+1}:=\left\|z-z_{1}-\ldots-z_{i-1}-z_{i}\right\|_{2} \leq \gamma \alpha_{i} \leq \gamma^{i}
$$

and so

$$
\left\|z_{i}\right\| \leq\left\|z-z_{1}-\ldots-z_{i-1}-z_{i}\right\|_{2}+\left\|z-z_{1}-\ldots-z_{i-1}\right\|_{2} \leq \gamma^{i}+\gamma^{i-1} \leq 2 \gamma^{i-1}
$$

Proof of Lemma 2

- Let $y=z_{i} /\left\|z_{i}\right\|_{2}$. Then $\left\|\Pi z_{i}\right\|_{2}^{2}=\left\|z_{i}\right\|_{2}^{2}(1 \pm \epsilon)$ because,

$$
\frac{\left\|\Pi z_{i}\right\|_{2}^{2}}{\left\|z_{i}\right\|_{2}^{2}}=\|\Pi y\|_{2}^{2}=1 \pm \epsilon
$$

- Let $y^{\prime}=z_{j} /\left\|z_{j}\right\|_{2}$. Note that

$$
\begin{aligned}
\left\langle\Pi y, \Pi y^{\prime}\right\rangle & =\frac{1}{2}\left(\|\Pi y\|_{2}^{2}+\left\|\Pi y^{\prime}\right\|_{2}^{2}-\left\|\Pi\left(y-y^{\prime}\right)\right\|_{2}^{2}\right) \\
\left\langle y, y^{\prime}\right\rangle & =\frac{1}{2}\left(\|y\|_{2}^{2}+\left\|y^{\prime}\right\|_{2}^{2}-\left\|y-y^{\prime}\right\|_{2}^{2}\right)
\end{aligned}
$$

and corresponding terms on right hand side differ by $O(\epsilon)$,

$$
\left\langle\Pi y, \Pi y^{\prime}\right\rangle\left\langle y, y^{\prime}\right\rangle \pm O(\epsilon)
$$

Finishing Up

- There exists $\Pi \in \mathbb{R}^{k \times n}$ where

$$
k=O\left(\epsilon^{-2} \log |M|\right)=O\left(\epsilon^{-2}(d)\right.
$$

such that for any $y, y^{\prime} \in M$,

$$
\|\Pi y\|_{2}^{2}=(1 \pm \epsilon)\|y\|_{2}^{2} \quad \text { and } \quad\left\|\Pi\left(y-y^{\prime}\right)\right\|_{2}^{2}=(1 \pm \epsilon)\left\|y-y^{\prime}\right\|_{2}^{2}
$$

- Previous theorem establishes this is subspace embedding for E.

Application: Regression

- Given $A \in \mathbb{R}^{n \times d}$ and $b \in \mathbb{R}^{n}$, we want to find $x \in \mathbb{R}^{d}$ such that $A x \approx b$, in particular,

$$
x_{o p t}=\operatorname{argmin}_{x}\|A x-b\|_{2}
$$

- Let E be the $d+1$ dimensional subspace spanned by columns of A and b. And let Π be a subspace embedding for E. Let

$$
\tilde{x}=\operatorname{argmin}_{x}\|\Pi A x-\Pi b\|_{2}
$$

- Then

$$
\|\Pi A \tilde{x}-\Pi b\|_{2}^{2} \leq\left\|\Pi A x_{\text {opt }}-\Pi b\right\|_{2}^{2} \leq(1+\epsilon)\left\|A x_{\text {opt }}-b\right\|_{2}^{2}(1+\epsilon)
$$

and

$$
\|\Pi A \tilde{x}-\Pi b\|_{2}^{2} \geq(1-\epsilon)\|A \tilde{x}-b\|_{2}^{2}
$$

