Title: Better Gap Hamming lower bounds via Better Round Elimination. Speaker: Joshua Brody, Dartmouth College Abstract: The past fifteen years has seen an amazing burst of research in streaming algorithms, starting with the famous paper by Alon, Matias, and Szegedy. In particular, space-efficient algorithms are possible for several functions, when you allow both randomness and approximation. However, this comes at a price: most of the algorithms pay a penalty in space that is quadratic with the approximation factor. In 2003, Woodruff and Indyk showed that this penalty was necessary in the case of one-pass data streams, using a reduction from the one-way complexity of the Gap Hamming problem. However, it has been a long standing open problem whether the same lower bound applies to multipass algorithms. We extend this lower bound so it holds even when a constant number of rounds of communication are allowed. As a result, we show that even with O(1) passes, streaming algorithms must pay a high price for their approximation. Our main technique combines a Round Elimination Lemma with an isoperimetric inequalities. Results in this talk are joint work with Amit Chakrabarti, Oded Regev, Thomas Vidick, and Ronald de Wolf.