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ABSTRACT
Conditional functional dependencies (CFDs) have recently been
proposed as extensions of classical functional dependencies that
apply to a certain subset of the relation, as specified by a pattern
tableau. Calculating the support and confidence of a CFD (i.e.,
the size of the applicable subset and the extent to which it satis-
fies the CFD) gives valuable information about data semantics and
data quality. While computing the support is easier, computing the
confidence exactly is expensive if the relation is large, and estimat-
ing it from a random sample of the relation is unreliable unless the
sample is large.

We study how to efficiently estimate the confidence of a CFD
with a small number of passes (one or two) over the input using
small space. Our solutions are based on a variety of sampling and
sketching techniques, and apply when the pattern tableau is known
in advance, and also the harder case when this is given after the
data have been seen. We analyze our algorithms, and show that
they can guarantee a small additive error; we also show that rela-
tive errors guarantees are not possible. We demonstrate the power
of these methods empirically, with a detailed study using both real
and synthetic data. These experiments show that it is possible to es-
timate the CFD confidence very accurately with summaries which
are much smaller than the size of the data they represent.

Categories and Subject Descriptors
H.2.7 [Database Management]: Database Administration

General Terms
Algorithms, Management, Theory
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Table 1: Tableau for {age_grp, education, occupation} →
salary_grp on census data

age_grp education occupation salary_grp
___ Masters Schoolteacher ___
___ PhD Professor ___

1. INTRODUCTION
Conditional functional dependencies (CFDs) have recently been

proposed to characterize the semantics of complex data and facili-
tate data cleaning [3, 4, 10, 11, 14, 15, 16, 18]. A CFD is a func-
tional dependency (FD) that holds on a subset of the relation spec-
ified in an accompanying pattern tableau. The support of a CFD is
the fraction of rows that match the tableau. Its confidence, defined
formally below, is the fraction of rows satisfying the functional de-
pendency amongst those that match the tableau. The support and
confidence of a given tableau are key properties in understanding
and exploring data quality. Consider a data warehouse contain-
ing large quantities of historical data. Careful analysis of a par-
ticular relation over time may have revealed various tableaux that
have high support and confidence; checking the support and confi-
dence on new data as they arrive hour by hour is an important qual-
ity check, and can reveal new trends if the support or confidence
change suddenly. A second situation is when analysis has revealed
a new tableau that has high support and confidence on the new data;
it is then natural to ask over which historical data this tableau also
had high support and confidence. Because of the quantity of the
data, and the many different tableaux which may be considered, we
seek efficient methods to find the support and confidence of CFDs
in large relations.

In these settings, as advocated in [8], although the full data may
be stored exactly, it is desirable to also maintain various compact
summaries as new data and/or new sources are integrated over time.
Summaries enable rapid data auditing without having to run com-
plex queries on massive fact tables, and when some data are phys-
ically stored at remote locations or archived on slow storage de-
vices. We seek compact summaries for computing the support and
confidence of CFDs in order to understand changes in data seman-
tics. Ideally, these summaries should be easy to derive from the
base data. They should require only one or a few passes over the
data to compute, so that they can be computed as the data is loaded
into a warehouse, without additional costly sorting steps. To make
this precise, we describe CFDs in more detail, and go on to define
the properties we desire from compact summaries for support and
confidence estimation.



Table 2: Tableau for {supplier, part, part_type} → price

supplier part part_type price

___ ___ tire ___
U.S. Auto Parts ___ ___ ___

___ 325_headlight ___ 50

Consider the FD {age_grp, education, occupation} →
salary_grp on a census table, which states that individuals in
the same age group that have the same education and occupa-
tion must have salaries in the same group. This rule is not ex-
pected to hold over the entire database; e.g., accountants working
in different companies may earn different salaries despite having
the same age group and education. It may, however, be true for
certain government-regulated occupations with age-based salary
scales, e.g., high school teachers with Masters’ degrees and profes-
sors with Doctorate degrees. Table 1 illustrates the corresponding
tableau. This indicates that the FD should hold on the set of tuples
that match at least one of the listed patterns. The wildcard pattern
“___” matches all possible attribute values.

In addition to limiting the scope of an FD, a tableau may spec-
ify tuple-level constraints. Consider a data warehouse of orders
placed by an auto manufacturer to its suppliers. Table 2 illustrates
a tableau for the FD {supplier, part, part_type} → price,
i.e., a supplier charges a constant price for a part (of some type
part_type). According to the first two patterns, this is true for
tires and parts supplied by U.S. Auto Parts, respectively. Accord-
ing to the third pattern, a supplier of headlights for model 325 must
charge a constant price, but not any constant price; it must be 50.
Thus, constants in the left-hand-side attributes define the scope of
the CFD and constants on the right-hand-side restrict attribute val-
ues. Note that patterns may overlap as U.S. Auto Parts may supply
tires and/or 325_headlights.

Exceptions can occur in real data in the form of incorrect records
(e.g., a supplier charges the wrong price of 325_headlights) or cor-
rect records that deviate from the assumed semantics (e.g., some
professors in a given age group may earn lower or higher salaries
than normal). Thus, even conditional functional dependencies may
not hold exactly. Instead, we consider approximate CFDs. Fol-
lowing prior work [18, 19, 23], we define the confidence of a CFD
as the maximum fraction of tuples that may be retained, so that if
all other tuples were deleted, the remaining ones would satisfy the
CFD with no exceptions. The support is the fraction of tuples that
match at least one pattern in the tableau. These quantities are fun-
damental to using CFDs to analyze data quality, and perform data
auditing, and so our focus in this work is on problems related to
estimating the confidence in various settings.

Given a supplied FD, one type of audit estimates the support and
confidence of an existing tableau on new data. Another audit in-
volves computing the support and confidence of new tableaux on
historical data. For instance, the tableau from Table 1 may not hold
on the latest census data due to changes in the job market. Instead,
the tableau (___|Bachelors|Nurse‖___) may be identified, in which
case a natural question is to study how the support and confidence
of this tableau has varied over time, and to identify when it first be-
came significant. Similarly, the tableau from Table 2 may not hold
on new data, perhaps because the contract with U.S. Auto Parts has
been re-negotiated to allow variable prices, or because some prices
are incorrectly recorded. These analyses may be time-consuming
to compute exactly over archived data (and impossible if the data
is not stored in full); instead, we look for more practical ways to
answer these questions from pre-computed summaries.

For many query types, summarizing data with a random sample
and evaluating the query over the sample is a good way to approx-
imate the answer. However, while small random samples can give
good estimates of simple frequency counts, such as the support of
a CFD, estimating the confidence of a CFD is more complex. In
fact, a uniform random sample of size Ω(

√
N
ε

) is required even to
estimate whether a standard FD holds on a relation of size N with
confidence above 1− ε [23]. Thus we need a different approach to
building summaries for CFD confidence estimation.

1.1 Our Contributions
In this paper, we provide the first scalable summaries (whose

space complexity is independent of N ) that estimate the true con-
fidence of a CFD (not just an indication of whether it is above or
below some fixed threshold) for effective data auditing. Our con-
tributions include:

• We prove lower bounds, in terms of relative and absolute er-
rors, for confidence estimation by any algorithm that makes
a small number of passes over the input.

• We propose a two-pass algorithm with space complexity
O( 1

ε3
log 1

δ
) that estimates the confidence of a given CFD

within additive error ε, with probability 1− δ. The summary
is based on a random sample of rows made in the first pass,
while the second pass computes additional information about
the sampled data.

• We propose a second algorithm, inspired by the first, which
constructs a summary in a single pass using the same amount
of space. This algorithm interleaves reservoir sampling [27]
and the gathering of additional information. The modified
algorithm does not give guarantees for the worst case, but is
shown to work well in practice.

• We propose a more complex one-pass algorithm, based on
non-uniform sampling and count-min sketches [13], that
achieves the same error bounds and asymptotic space usage
as the two-pass algorithm.

• We test our solutions on a variety of real and synthetic data
sets, and provide guidelines for choosing the best strategy.

The summaries generated by our algorithms may be used to es-
timate the confidence of arbitrary CFDs sharing a fixed FD (i.e.
the attributes considered are fixed, but the tableau can vary). This
allows the confidence of candidate tableaux to be estimated, and
accommodates testing new CFDs on summaries of past data. The
single-pass algorithms do not require a priori knowledge of the data
size, meaning that a summary of newly arrived data may be built
on-the-fly, and made available on-demand for real-time auditing.

1.2 Paper Outline
In the remainder of this paper, Section 2 formalizes the problem

statement and discusses straightforward approaches to confidence
computation. The two-pass algorithm is presented in Section 3, and
the two one-pass algorithms in Sections 4 and 5. Section 6 proves
lower bounds for confidence estimation in limited time and space.
Section 7 experimentally evaluates the proposed algorithms, and
related work is discussed in Section 8.

2. PRELIMINARIES

2.1 Definitions
Let S be a relational schema with attributes A1, A2 . . . A`. Con-

sider a table R over this schema, with rows {r1, r2, . . . rN}.



DEFINITION 1. A functional dependency (FD) X → Y is said
to hold over sets of attributes X and Y on R if

∀i, j.ri[X] = rj [X]⇒ ri[Y ] = rj [Y ],

where r[X] denotes the row tuple r projected on the attributes X .

In other words, X → Y over the relation R if the value of X
uniquely determines the value of Y . Here, the set X ⊆ S is re-
ferred to as the antecedent, and Y ⊆ S is called the consequent.

The requirements for a functional dependency are strong. In
many cases, a similar condition holds over only a subset of the
data. This subset is identified by a condition on the data values,
hence this leads to conditional functional dependencies.

DEFINITION 2. A conditional functional dependency (CFD) φ
on S is a pair (X → Y, Tp), where X → Y is a standard FD,
referred to as the embedded FD; and Tp is a “pattern tableau”
that defines over which rows of the table the embedded FD applies.
Each entry tp ∈ Tp specifies a pattern over X ∪ Y , so for each
attribute in A ∈ X ∪Y , either tp[A] = a, where a is a value in the
domain of A, or else tp[A] = ___ , for the special wildcard symbol
___ . A row ri satisfies an entry tp of tableau Tp for attributes
A, denoted by ri[A] � tp[A], if either ri[A] = tp[A], or else
tp[A] = ___ . The CFD φ holds if

∀i, j, p.ri[X] = rj [X] � tp[X]⇒ ri[Y ] = rj [Y ] � tp[Y ].

Equivalently, the CFD states that on the subset of rows match-
ing the antecedent of at least one pattern (the support set), the FD
X → Y holds, and so do any tuple-level constraints on the conse-
quent attributes (e.g., the bottom pattern in Table 2). Thus, a stan-
dard FD may be expressed as a CFD with a single all-wildcards
tableau pattern that matches every tuple (i.e., the support set is the
entire relation). The requirements on the antecedents of the em-
bedded FD are referred to as “conditions”, while the requirements
on the consequents are referred to as “assertions”. More generally,
these assertions can be arbitrary constant constraints on the conse-
quent, e.g., requiring that the price of headlights be less than 50.
An common case is when there are no assertions (only conditions)
in the CFD: we refer to this as the assertion-free case.

In many cases, a CFD will not hold exactly. That is, some asser-
tions may not be satisfied, or there may be some rows in the support
set which agree on the antecedent (X), but which disagree on the
consequent (Y ).

DEFINITION 3. The confidence, Cφ(R), of a CFD φ on rela-
tion R is the maximum fraction of its support set that can be re-
tained, so that after deleting all other rows, the remainder of the
support set satisfies the embedded FD and all relevant assertions.

Observe that we can consider each distinct antecedent value be-
longing to the support set separately. We refer to the set of rows
associated with a (fully-instantiated) antecedent x as a group, or
“the group of x”. In order to satisfy the CFD, all rows in each
group must have the same consequent value and must satisfy all
applicable assertions. To minimize the number of rows that would
have to be deleted, for each group, we should retain rows with
the most common consequent value that meets all applicable as-
sertions. Thus, the confidence can be computed exactly, given a
table and a CFD, at the cost of sorting the whole table to form the
groups.

Without loss of generality, we can write the table R as a
(multi)set of rows ri = (xi, yi), where xi ∈ X is the an-
tecedent, yi ∈ Y is the consequent, and all other attributes are
dropped. Denote the total number of rows in R as N . Define Nx

as |{ri : xi = x}|, the number of rows sharing the antecedent x
(the size of the group of x), and Nx,y as

|{ri : xi = x ∧ yi = y ∧ ∀tp ∈ Tp, tp[X] � x⇒ tp[Y ] � y}|,

the number of rows with antecedent x and consequent y that satisfy
all applicable assertions. Furthermore, denote the support set of
CFD φ on R as sφ(R), i.e.,

sφ(R) = {ri : ∃tp ∈ Tp.ri[X] � tp[X]},

and define suppφ(R) = |sφ(R)|
N

as the support of φ on R. Then

Cφ(R) =
X

x∈sφ(R)[X]

max
y

Nx,y

N
=

X
x∈sφ(R)[X]

Nx

N
max

y

Nx,y

Nx
.

The fraction Nx/N can be interpreted as the “support” of x,
while the fraction maxy Nx,y/Nx can be thought of as a “confi-
dence” of the group x. We refer to the maxy Nx,y rows for x as
the set of keepers for the group x, since these are the rows that are
retained (kept) in order to build the largest possible relation which
satisfies the CFD.

2.2 Problems
Given sufficient computational resources, it is straightforward to

compute the confidence of a CFD by first sorting the input on at-
tributes XY . For each group in the support set, the number of
matching rows (Nx), and the frequency of the most common con-
sequent that satisfies all applicable assertions (maxy Nx,y) can be
found, allowing direct computation of the confidence. However, we
are interested in the case when the input is very large, and we can
only afford to access it via a small number of passes, while retain-
ing only a small amount of summary information. We compare to
the cost of exact computation in our experimental study later, and
show that the cost is considerably higher than our algorithms. Note
that a simple uniform sample of rows is sufficient to estimate the
support of any given CFD, so this quantity can be assumed to be
known approximately.

The first problem we consider involves estimating the confidence
of a single CFD that is specified upfront.

DEFINITION 4 (FIXED CFD PROBLEM). The fixed tableau
CFD confidence estimation problem is, given a relation R, a pro-
posed CFD φ, and parameters 0 < ε < 1 and 0 < δ < 1 to return
an estimate Ĉφ(R) so that

Pr
ˆ
|Ĉφ(R)− Cφ(R)| > ε

˜
< δ

Note that for this problem, any rows in the input that are not in
the support set of the specified CFD can be ignored, since they are
not relevant to the computation of the confidence. This is related to
the problem of estimating the confidence of an FD on the remaining
rows; however, a key difference is the presence of assertions in
tableau, making this problem more general.

The second problem we consider is to estimate the confidence of
CFDs where the embedded FD is fixed but the tableau is provided
after the data have been seen. This problem is more general since
the entire relation needs to be summarized to accommodate CFDs
with various support sets. Therefore, we must relax the desired
error bounds, especially for CFDs with small support sets for which
only a fraction of the summary will be relevant. The next definition
allows the error to scale naturally with the diminished support.

DEFINITION 5 (VARIABLE CFD PROBLEM). The variable
tableau CFD confidence estimation problem is to create a summary
based on a relation R, an embedded FD X → Y , and parameters



0 < ε < 1 and 0 < δ < 1 so that given an arbitrary CFD φ
constructed from this embedded FD, we can return an estimate
Ĉφ(R) with

Pr

»
|Ĉφ(R)− Cφ(R)| > ε

suppφ(R)

–
< δ

2.3 Drawbacks of Existing Approaches
It is natural to ask why simple sampling schemes are not suffi-

cient for the two problems defined above. We show cases where
such schemes fail even in the simplest case, in estimating the con-
fidence of the fixed CFD which matches all tuples, ___ → ___. We
show this over a relation R that has one group of size N/2, and
either this has 1 unique consequent, or N/2 unique consequents.
The rest of the relation consists of N/4 groups each of size 2, and
either each group has a unique consequent, or else has two different
consequents.

Uniform Row Sampling. Consider a scheme which samples a set
of rows uniformly from the relation, and then tries to use this infor-
mation to estimate the confidence. Let the large group in R have a
unique consequent, so the confidence is either 1 or 0.75, depending
on how the small groups are arranged. The sampling scheme is un-
likely to pick two rows from the same small group, and so has no
information to distinguish the two cases, unless the sample size is
Ω(
√

N).

Uniform Group Sampling. Consider a scheme that samples uni-
formly from the groups (so each group is equally likely to be
picked), and collects some information about the sampled groups.
Let the small groups have a unique consequent, so the confidence
is either 1 or 0.5+2/N , depending on the consequents in the large
group. However, unless some information is collected about the
large group, then there is no way to distinguish the two cases. This
only occurs if the sample size is Ω(N) when groups are sampled
uniformly.

These examples show that simple uniform sampling approaches
alone will not suffice, and instead we will need to consider more
nuanced sampling schemes.

3. TWO-PASS SOLUTION
In this section, we describe a solution to the CFD confidence es-

timation problem which takes two passes through the data. In the
first pass, it samples tuples uniformly from the relation. In the sec-
ond pass, for each sampled tuple, the confidence of the correspond-
ing group is estimated, then these are used to build an estimator for
the overall confidence. We show that this leads to an estimator with
strong guarantees.

3.1 Confidence of a Single Group
We first show how to solve a subproblem, to estimate the confi-

dence associated with a single group, denoted by Cx. Equivalently,
this is the confidence of a tableau with the pattern tp[X] = x for
the completely specified, or “fully-instantiated” antecedent x. For
now, assume that the CFD is assertion-free. We show two ways
to build an estimator Ĉx which accurately approximates Cx with a
single pass over the input.

3.1.1 Sampling Approach
Given x, we can draw a sample S of s rows from the input that

have x as their antecedent. If the sampled rows are drawn uni-
formly, then finding the confidence of this sample will be a good
estimate for Cx. More precisely, let Ĉx = maxy |{(x, y) ∈ S}|/s.
Many methods are known to draw a uniform sample S from a

Algorithm 1 Two-pass
Require: relation R, CFD (X → Y, Tp)

t: number of rows to sample in pass 1
z: reservoir size in pass 2
variable: true for variable CFD, false for fixed CFD

1: SR ← ∅; {PASS 1}
2: for all rows ri in R do
3: if variable or ri[X] � Tp[X] then
4: Reservoir sample ri into SR of size t;
5: for all x such that ∃rj = (xj , yj) ∈ SR, xj = x do
6: Sx ← ∅; {PASS 2}
7: for all rows ri = (xi, yi) in R do
8: if variable or ri[X] � Tp[X] then
9: if ∃Sx, xi = x then

10: Reservoir sample ri into Sx of size z
11: Ĉ = 0; {Estimate Confidence}
12: for all stored Sx do
13: if x 6� Tp[X] then
14: Delete Sx from SR;
15: else
16: Ĉ ← Ĉ+

maxy|y�Tp[Y ] |{(x,y)∈Sx}|·|{ri|ri=(xi,yi)∈SR,xi=x}|
|Sx| ;

17: return Ĉ/|SR|;

stream. In particular, the reservoir sampling method [27] will
achieve this in a single pass. Applying standard sampling argu-
ments yields the following result:

LEMMA 1. Given x, drawing a reservoir sample of s =
O( 1

ε2
log 1

δ
) rows uniformly from rows of the input that have x as

their antecedent allows us to find Ĉx so that

Pr[|Ĉx − Cx| > ε] < δ

3.1.2 Heavy Hitters Approach
The definition of confidence is based on finding which con-

sequent occurs most commonly in the group of x. It therefore
makes sense to look to heavy hitters algorithms to find such con-
sequents. In particular, given x, we can feed all rows of R which
have x as their antecedent into a streaming heavy hitters algorithm.
This will return an approximation of the most frequent item in the
stream, and an estimate of its frequency, f̂ . From this, we can
set Ĉx = f̂/Nx. Picking an algorithm such as the deterministic
SpaceSaving technique of Metwally et al. [25] yields the following
result:

LEMMA 2. Given x, running the SpaceSaving algorithm with
space s = O( 1

ε
) allows us to find Ĉx so that

|Cx(R)− Ĉx(R)| < ε

3.1.3 Comparing Sampling and Heavy Hitters
The heavy hitters approach has tighter worst-case asymptotic

bounds and provides a deterministic guarantee. However, empir-
ically the sampling approach typically yields equally good results
in practice using a similar amount of space. There are also cases
where retaining a sample offers more flexibility than a heavy hit-
ters data structure. In our experimental study, we evaluate sampling
methods, and see them to be effective in practice.



3.2 Fixed CFD Estimation
Two-pass Sampling Algorithm. Our algorithm to estimate the
confidence of a fixed CFD φ (recall Definition 4) takes two stream-
ing passes over the input. In the first pass, we draw a sample
T of t rows from the support set of φ uniformly, using reservoir
sampling. For each group for x identified in the sample S, we
make an estimate of the confidence Cx of the group as Ĉx, us-
ing either approach from Section 3.1, with appropriate parameters
(εg, δg). We take the t estimates and find their mean, and re-
port this as the estimated confidence. That is, our final estimate
Ĉφ(R) =

P
x∈T Ĉx/t. The pseudocode for this algorithm is

given in Algorithm 1 (note, in this implementation, if the same
group is sampled multiple times in the first pass, only a single sam-
ple is made in the second pass, but its confidence is weighted up
correspondingly in the final estimate).

THEOREM 1. Sampling t = 2ε−2
c log 2

δ
rows in the first pass

yields an estimator which is within additive error ε = εc + εg with
probability at least 1−δ. The total space required by this algorithm
is O(ε−3 log 1

δ
).

PROOF. For the proof, we assume that the heavy hitters ap-
proach of Lemma 2 is used to find each estimate Ĉx with error at
most εg . The output of the estimation process is a random variable,
Ĉ. The expectation of this random variable is

E[Ĉ] =
1

t

X
x

Pr[x ∈ T ]Ĉx =
X

x

Nx(Cx ± εg)

N

=
X

x

maxy Nx,y ± εgNx

N
= C ± εg

Note that the estimator is formed as the mean of t repetitions,
each of which has expected value C. By observing that each value
of Ĉx is constrained to lie in the range 0 . . . 1, we can apply the
Chernoff-Hoeffding bound to the mean of t repetitions:

Pr[Ĉ − E[Ĉ] > εc] < exp(−2ε2c/t) = 1
2
δ

and Pr[E[Ĉ]− Ĉ > εc] < exp(−2ε2c/t) = 1
2
δ

Combining these, we have that

Pr[|Ĉ − C| > (εc + εg)] < δ,

so setting εc = εg = ε/2 gives the result as required.

Applying this algorithm to the “hard case” described in Sec-
tion 2.3 ensures that the large group is picked up in the sample,
in addition to many of the small groups, so the contribution of the
large group is not lost. In the second pass, enough information is
collected about each of the sampled small groups to correctly com-
pute their contribution to the overall confidence.

3.3 Variable CFD Confidence Estimation
The more challenging problem of estimating the confidence of

multiple CFDs from a single summary is stated formally in Defini-
tion 5. Although the attribute sets X and Y are fixed in advance,
the tableau Tp is given after the data is seen, and can select an arbi-
trary set of groups. We adapt the above algorithm to this problem.
If many rows satisfy Tp (i.e., the tableau has high support), then
the above technique will sample many groups that satisfy Tp. If
we base our estimate on the confidence of these groups and ignore
samples from other groups, the uniformity of the sampling means
that this is a uniform sample of such groups. Consequently, the
resulting estimate of Cφ(R) should be accurate, providing the sup-
port of Tp is not too low.

THEOREM 2. Running the two pass sampling algorithm using
total space O(ε−3 log δ−1) enables us to estimate Cφ(R) with er-
ror ε/

p
suppφ(R).

PROOF. We first assume that φ is assertion-free (that is, it does
not place any requirements on the consequents), and later dis-
cuss how to remove this assumption. Let T be the sample of
t = O(ε−2log 1/δ) rows selected in the first pass of the algorithm,
as before. Given a tableau Tp, let t′ be the number of rows in the
sample which satisfy Tp[X]. We have

E[t′] =
X
ri∈R

Pr[ri ∈ T ∧ ri[X] � Tp[X]]

=
X
ri∈R

t

N
suppφ(R) = t suppφ(R)

We argue that with high probability, t′ will be close to its expected
value. If the support of Tp is very small, then we obtain the required
error guarantee by choosing our estimate to be Ĉφ(R) = 0. In par-
ticular, if suppφ(R) ≤ ε (and ε < 1), then ε/suppφ > 1, and so
any estimate of the confidence is within the error bounds. Other-
wise, suppφ(R) > ε and using the Chernoff-Hoeffding bound,

Pr[t′ < suppφ(R)t/2] = Pr[E[t′]− t′ > suppφ(R)t/2]

≤ Pr[E[t′]− t′ > εt/2]

≤ exp(−2(ε2t2/4)/t)

≤ exp(−ε2t/2) < δ/4

which follows by our choice of t. So, apart from this small
probability, we have at least t suppφ(R)/2 samples in the
first pass which satisfy Tp. Applying the analysis of Theo-
rem 1, this allows Cφ(R) to be estimated with additive errorp

4 log(2/δ)/t suppφ(R) + εg . Ensuring t ≥ 4ε−2
c log 2/δ

bounds the overall error by εc/
p

suppφ + εg with probability at
least 1 − δ. Observe that this guarantee, in terms of

p
suppφ, is

actually stronger than that required by Definition 5.
An immediate consequence of this analysis is that we can esti-

mate the support of the CFD, suppφ(R), by t′/t. The Chernoff-
Hoeffding bound argument above then shows that Pr[|t′/t −
suppφ | > ε] < δ/2, meaning that the sample also provides a
good estimate of the support with additive error.

The above analysis requires only small modifications when the
tableau is allowed to contain assertions. We first consider the case
when reservoir sampling is being used. Given a sample of tuples
which match on the antecedent, we can find a candidate keeper as
the most frequent consequent in the sample which satisfies all the
assertions in the tableau (if there are any such in the sample). For
the same reasons as Lemma 1, the relative frequency of this keeper
is a good estimate for the group confidence. Similarly, in the heavy
hitters approach, it suffices to use the maximum frequency of any
heavy hitter which satisfies all relevant assertions (if any). For the
same reasons as the assertion-free case, the estimated frequency of
this consequent estimates the group confidence with error at most
εg . In both cases, if no candidate keepers are found, then the confi-
dence of the group is estimated by 0. Putting this all together into
the above proof, the same result follows.

Lastly, we comment that our solution based on reservoir sam-
pling is slightly more general. Note that the first pass depends only
on the antecedent set X . If in the second pass we maintain a sample
of rows for each sampled group, then this summary allows the esti-
mation of the confidence of any CFD with embedded FD X → Y ′:
the consequent Y ′ can be specified even at query time.



Algorithm 2 Idealized One-pass
Require: relation R, CFD (X → Y, Tp)

t: number of rows to sample
z: reservoir size
variable: true for variable CFD, false for fixed CFD

1: SR ← ∅; n← 0;
2: for all rows ri = (xi, yi) in R do
3: if variable or ri[X] � Tp[X] then
4: for all Sj ∈ SR such that xi = xj do
5: Reservoir sample ri into Sj of size z
6: Si ← {ri};
7: Reservoir sample Si into SR of size t
8: k ← 0 ; s← 0; {Estimate Confidence}
9: for all Si ∈ SR do

10: if Si[X] 6� Tp[X] then
11: Delete Si from SR

12: else
13: s← s + 1;
14: if yi � Tp[Y ] and ∀y′ 6= yi|{(xi, yi) ∈ Si}| >

|{(xi, y
′) ∈ Si}| then

15: k ← k + 1;
16: return (k/s);

4. IDEALIZED ONE-PASS ALGORITHM
Drawing on ideas from the above algorithm, we now propose an

“idealized” approach to estimating the confidence with only a sin-
gle streaming pass over the relation R. We say “idealized”, since
it requires computing a quantity that can be hard in general to es-
timate accurately in one pass. The algorithm is based on multiple
independent instances of a basic estimator. We first consider the
fixed CFD estimation problem for assertion-free CFDs. Each esti-
mator samples a row r = (x, y) uniformly from the stream—using
reservoir sampling, the algorithm does not have to know the length
of the stream in advance to do this. We say that y is a keeper for
this row if, in the suffix of the stream including the tuple, y is the
strict mode for the group of x. More formally, if tuple ri = (x, y)
is the ith tuple in the stream, then let Ri denote the suffix of the
stream beginning at ri. Let N i

x denote the number of occurrences
of x in the remainder of the stream, and N i

x,y be the number of
occurrences of the tuple (x, y). Then y is a keeper for Ri if

∀y′ 6= y.N i
x,y > N i

x,y′ .

Define the variable Xi = 1 if, for the ith row of the relation, ri =
(xi, yi), yi is a keeper for xi in Ri, and 0 otherwise. We argue that
if i is chosen uniformly from [1 . . . N ], then this random variable
Xi is an unbiased estimator for the confidence Cφ(R). First, we
show that Xi can be written in terms of the number of keepers
of different suffixes of the stream, then use this to prove the main
claim.

LEMMA 3. Xi = max
y

N i
x,y −max

y
N i+1

x,y

PROOF. Consider maxy N i
x,y−maxy N i+1

x,y : if this is not zero,
then it must be 1, since maxy N i

x,y only considers one more row
than maxy N i+1

x,y . The only way this quantity can be 1 is if the
ith row from the relation contributes to an increase in the value of
N i

x,y for some y. But this row ri = (xi, yi) can only increase the
corresponding Nxi,yi . Therefore, the ith row (xi, yi) must have
N i+1

xi,yi
= maxy N i+1

xi,y and hence N i
xi,yi

> maxy N i
xi,y for all

y 6= yi. But this corresponds precisely to the definition that yi is a
keeper for xi in Ri.

LEMMA 4. The random variable Xi is an unbiased estimator
for the confidence of the relation R. That is, E[Xi] = Cφ(R).

PROOF.

E[Xi] =

NX
i=1

Xi

N
=

1

N

NX
i=1

X
x

(max
y

N i
x,y −max

y
N i+1

x,y )

=
1

N

X
x

max
y

Nx,y = Cφ(R)

Therefore, if we could find Xi exactly for each i in a sample, we
could again sample t = O(ε−2 log 1

δ
) tuples, and run this estimator

to build an approximation with additive error at most ε. However,
in general, finding this Xi value is hard, if there are many “near-
keepers” for many suffices of the stream. That is, if for the group of
x, there are several different consequents which have similar num-
bers of occurrences in every suffix of the stream, then it is (prov-
ably) hard to determine whether any given consequent is a keeper,
which is required by the definition of Xi. Note though that in such
cases the confidence of the group must be low, so we may be less
interested in obtaining accurate estimates of the overall confidence
in such cases. In practice, we may again use either a heavy hitter
or sampling based method for each sampled row ri = (xi, yi) to
determine whether yi is a keeper for xi in Ri. The pseudocode for
this algorithm is given in Algorithm 2. From a formal perspective,
this method is a heuristic, so we will evaluate it empirically and
compare to the other methods we present.

When applying this algorithm to the “hard cases” in Section 2.3,
there is an even chance that the sampled row r comes from the
large group or one of the small groups. For the large group, there is
a high chance that enough subsequent tuples indicate whether the
confidence of the group is high or low. For a small group, either the
first or second tuple in the group is sampled; if it is the first, then
the second will be seen, and the confidence of the group correctly
computed; in expectation, the result will be correct.

4.1 Extension to Variable CFD problem.
We first extend this approach to the variable tableau CFD con-

fidence estimation problem in the case that Tp is assertion free.
Again, we sample t = O(ε−2 log 1/δ) rows uniformly from the
relation, and use the above procedure to estimate for each sampled
row (xi, yi) whether yi is a keeper for xi. Again, define Xi = 1
if this is the case, and 0 otherwise. However, for our final esti-
mate, we only compute the average of those sampled is for which
xi � Tp[X], and ignore the others. By the uniformity of the sam-
pling, the sampled is correspond to a uniform sample of R′, which
consists of only those rows of R which satisfy Tp. Thus, we obtain
an unbiased estimate of Cφ(R). Similarly to Theorem 2, we ob-
tain a good estimate if sufficiently many estimates satisfy Tp. With
probability at least 1 − δ, there are at least suppφ(R)t/2 such es-
timates, meaning that the obtained (idealized) estimate would have
error ε/

p
suppφ(R). Since the first step of this algorithm is to

draw a sample of tuples from the relation, it follows that we can
also use this sample to estimate suppφ, with the same argument as
that in Theorem 2.

When Tp is not assertion free, we modify the estimator Xi so
that it is 1 if and only if yi � tp[Y ] for all tp such that xi � tp[X],
and N i

xi,yi
> N i

xi,y for all y 6= yi that also satisfy the same condi-
tion. This still yields an estimator which is correct in expectation,
but may be less accurate to determine from the summary, since re-
strictions on consequents mean there are fewer matching tuples.



Algorithm 3 Multi-level One-pass
Require: relation R, CFD (X → Y, Tp)

N : number of rows in relation R
ε, δ: accuracy parameters
variable: true for variable CFD, false for fixed CFD

1: b← 1
ε3

log 1
δ

; lmax ← log N ;
2: for k = 0 to lmax do
3: αk ← min( 1

2kε2
, 1); nk = 0;

4: Initialize hashk with range [0, 1);
5: Initialize CMGroupk sketch with parameter b;
6: Initialize CMTuplek sketch with parameter b;
7: for all rows ri = (xi, yi) in R do
8: if variable or ri[X] � Tp[X] then
9: n = n + 1;

10: for k = 0 to lmax do
11: if hashk(xi) ≤ αk then
12: nk = nk + 1;
13: Update CMGroupk with xi;
14: Update CMTuplek with (xi, yi);
15: r = a random number ∈ [1, 2]; {Estimate Confidence}
16: for k = 0 to lmax do
17: keepersk ← 0;
18: HeavyGrpk ← ε-heavy hitters from CMGroupk;
19: HeavyTplk ← ε-heavy hitters from CMTuplek;
20: for all (x, nx) ∈ HeavyGrpk such that x � Tp[X] do
21: if r

2k+1 < nx
n
≤ r

2k then
22: keepersk ← keepersk+

maxy{nx,y|((x, y), nx,y)∈HeavyTplk, y�Tp[Y ]};
23: return 1

supp(R)·n
Plmax

0
keepersk

αk
;

5. ONE PASS ALGORITHM BASED ON
MULTI-LEVEL SAMPLING

In this section, we describe a one-pass algorithm for the fixed
CFD estimation problem. The algorithm and its analysis are more
involved than the previous methods, in order to give the desired
guarantees in a single pass.

5.1 One Pass Algorithm
The algorithm builds summaries for different “levels” k, for each

k in the range 0 . . . log N : At level k, each group is initially sam-
pled with probability αk = min{2−kε−2, 1} — note that for
k ≤ 2 log2 1/ε, all groups are sampled, and so can be treated to-
gether. The group sampling is accomplished using min-wise hash-
ing [5]: a hash function is applied to the antecedent x mapping it
into the range 0 . . . 1, and is sampled if the hash value is at most αk.
If a group is sampled at level k, then it is inserted into a Count-Min
sketch with b = O(ε−3log 1/δ) buckets based on the group ids. In
parallel, we also insert the (x, y) pairs that are sampled at level k
into a Count-Min sketch with b = O(ε−3log 1/δ) buckets based
on the (x, y) values. We use the sketch of groups at each level to
extract the ‘heavy hitter’ groups (those that account for more than
an ε fraction of the frequency at that level), along with their corre-
sponding estimated N̂x values. From the tuple sketch at each level,
we extract the heavy hitter consequents, and their corresponding
estimate N̂x,y values.

The final estimation process picks a randomly chosen “shift”
r ∈ [1, 2] to avoid some adversarial cases. For a heavy group x
recovered at level k, we test whether its estimated support falls in
the range r

2k+1
< N̂x

N
≤ r

2k . If so, we estimate its maxy N̂x,y

value using the sketch of tuples. From these, we compute

Ĉφ(R) =

log NX
k=0

1

αkN

X
x at level k

max
y

N̂x,y.

We claim that the resulting estimator solves the fixed CFD es-
timation procedure by producing an estimate of the confidence
Cφ(R) with additive error at most ε.

For example, on the “hard case” given in Section 2.3, the large
group would be dominate for low values of k, and its statistics re-
covered at these levels. But for higher values of k, the large group
is unlikely to be sampled, allowing the (many) small groups more
chances to be sampled, and statistics collected. Combining the in-
formation from all levels of the sampling could then provide the
overall confidence. Pseudocode for the algorithm is given in Algo-
rithm 3.

5.2 Analysis
Define Gk as the set of groups with support close to r2−k as:

Gk = {x :
r

2k+1
<

Nx

N
≤ r

2k
}

First, we show that if we could draw a uniform random sam-
ple of the groups and find the corresponding Nx,y values exactly,
we would have an estimator that is correct in expectation and with
bounded variance. Let Sk be the groups sampled at the kth level
(so they are picked with probability αk). Let Cx be the confi-
dence of the group x as before, so that Cx =

maxy Nx,y

N
and

Cφ(R) =
P

x Cx. Define the estimator Xk as

Xk =
X

x∈(Sk∩Gk)

Cx

αk

LEMMA 5. The expectation and variance of Xk satisfies

E[Xk] =
X

x∈Gk

Cx and Var[Xk] = ε2E[Xk] .

PROOF. For the expectation,

E[Xk] = E

24 X
x∈(Sk∩Gk)

Cx

αk

35 =
X

x∈Gk

Pr[x ∈ Sk]
Cx

αk
=

X
x∈Gk

Cx.

For the variance, define Ix,k as the indicator variable that is 1 if
x is chosen to be in the sample Sk, and 0 otherwise. Then

Var[Xk] =
X

x∈Gk

Var

»
Ix,k

Cx

αk

–
=

X
x∈Gk

C2
x

α2
k

Var[Ix,k]

=
X

x∈Gk

C2
x

α2
k

(αk)(1− αk)

≤
X

x∈Gk

Cx2−k

αk
= ε2E[Xk] .

This shows that if we could estimate each Cx value of the sam-
pled groups accurately, then these could be combined into an es-
timate with low variance for the overall confidence. In particular,
for X =

Plog N
k=0 Xk, we have Pr[|X − Cφ(R)| > ε] ≤ δ, by the

Chebyshev inequality. We now show that by using the Count-Min
sketch summary, each Cx is approximated with high accuracy.



LEMMA 6. Using Count-Min sketches with b = 2ε−3 log 1/δ
buckets allows Nx and Nx,y to be estimated with additive error
ε3αkN .

PROOF. Given any group x in Sk, the two Count-Min sketches
with b buckets promise to estimate Nx and Nx,y with error pro-
portional to ∆ = F

res(b)
1 /b, where F

res(b)
1 is the frequency of all

items in Sk excluding the b most frequent items [13]. Note that if
Nx or Nx,y is less than ∆, then estimating it by 0 will satisfy this
requirement.

We now analyze F
res(b)
1 (Sk), and argue that it is at most

10αkN log 1/δ with probability at least 1 − δ. First, consider
groups x such that Nx ≥ 2−kN — there can be at most 2k of
these. Moreover, in expectation, the random sampling picks at
most αk2k = ε−2 such groups. Using the relative Chernoff bound,
which states that for β > 2e− 1,

Pr[X > (1 + β)E[X]] < 2−E[X]β ,

we have that the probability of picking more than b = ε−3 log 1
δ

groups is at most 2−ε−2(ε−1 log δ−1−1) < δ for δ, ε < 1/2.
For groups with Nx < 2−kN , we bound the total frequency

that these contribute. Since these are sampled with probability
αk, the expected sum of frequency of all such sampled items is
at most αkN . Applying the relative Chernoff bound again, and
using the fact that αk ≤ 1, the probability that F

res(b)
1 (Sk) >

10αkN log 1/δ is at most δ. The analysis of F
res(b)
1 (Sk) for an-

tecedent, consequent pairs Nx,y is similar. The difference arises
since the sampling choice is based only on the antecedent x, so
there are correlations between consequents in the same group.
However, since the analysis is based on expectations, these do not
affect the result, and again, we can conclude that the F

res(b)
1 is

bounded.

Using the sketches at level k, we recover N̂x,y values for all x
for which x ∈ G̃k, where G̃ is defined as

G̃k = {x : r2−k−1 <
N̂x

N
≤ r2−k}.

The above lemma shows that these estimates are quite accurate. If
we replace the random variable Xk with X̃k, the same estimator
built with the estimated frequencies, we obtain:

|Xk − X̃k| ≤
1

αkN

X
x∈Sk∩(Gk∩G̃k)

|max
y

Nx,y −max
y

N̂x,y|+

X
x∈Sk∩(Gk\G̃k)

max
y

Nx,y +
X

x∈Sk∩(G̃k\Gk)

max
y

N̂x,y

That is, the error comes from three places: error in the estimated
frequencies on antecedents that both methods agree should be in the
sample, plus groups missed by the sketching approach that should
be included, and groups included by the sketching approach that
should be omitted. For the first of these, we have

1

αkN

X
x∈Sk∩(Gk∩Ĝk)

|max
y

Nx,y −max
y

N̂x,y|

≤
X

x∈Sk∩Gk

1

αkN
ε3αkN

≤
X

x∈Sk∩Gk

ε3 ≤ ε
X

x∈Gk

Nx

N

The last equality holds in expectation because for x ∈ Gk, we have
αk ≤ 2−kε−2 ≤ Nx

Nε2
. Since each x is sampled into Sk with proba-

bility αk, the expected value of this summation is ε
P

x∈Gk
Nx/N .

Observe that if we take this sum over all x, then ε
P

x Nx/N ≤ 2ε
with constant probability, applying the Markov inequality.

For the errors due to misclassification of antecedents into groups,
these affect only those x for which

Nx ∈ [r2−kN − rε3αk+1N, r2−kN ] = [(1− 2ε)r2−kN, r2−kN ]

or Nx ∈ [r2−kN, r2−k + rε3αkN ] = [r2−kN, (1 + ε)r2−kN ]

For other values of Nx, the estimated N̂x will place it in the
correct Gk by the guarantees on the sketch estimation. We can
bound this quantity by observing that, based on the random choice
of the parameter r,

E[
X

x∈[(1−2ε)r2−kN,(1+ε)r2−kN ]

Nx] = 3εN/2k.

So the contribution to the confidence of all such groups is at most 3ε
with constant probability, and errors on these groups can contribute
at most this much to the overall error in the confidence estimate.

In conclusion then, our final estimate Ĉφ(R) formed as the sum
of all estimates X̃k satisfies:

|Ĉφ(R)−X| ≤
log NX
k=0

|X̃k−Xk| ≤ (

log NX
k=0

2ε
X

x∈Gk

Nx

N
)+3ε = 5ε

with constant probability. We amplify this to arbitrarily small prob-
ability of failure by repeating the estimation process (with different
random choices of the shift r) sufficiently many times, and taking
the median of the estimates. Thus, by the bounds on X , we con-
clude (after appropriate rescaling of ε) that:

THEOREM 3. The estimate Ĉφ(R) produced by the multilevel
algorithm satisfies

Pr[|Cφ(R)− Ĉφ(R)| > ε] < δ .

5.3 One-pass Variable CFD estimation
We now outline how to use the above data structure to estimate

the confidence of a CFD given after the data has been seen. Given
the same set of sketches, we again extract the heavy hitter groups
and their estimated Nx values at each level. But now we consider
only those x values for which x � Tp[X]. For these xs, we esti-
mate the heavy hitter tuples to find the corresponding Nx,y values,
and pick the largest of these which matches the requirements on
the consequent (if any). We also need to estimate the support of
φ, which can be done by additionally keeping a uniform sample of
rows. We then estimate

Ĉφ(R) =

log NX
k=0

1

αk ŝupp
φ
(R)N

X
x�Tp[X]at level k

max
y�Tp[Y ]

Nx,y

The analysis of correctness relies on the linearity of expectation.
We omit full details in this presentation for brevity.

6. LOWER BOUNDS FOR CONFIDENCE
ESTIMATION

We show that there are certain fundamental limitations on what
is possible for any algorithm which takes a small number of passes
over the input to estimate the confidence of a fixed CFD.

THEOREM 4. Estimating Cφ(R) with relative error ε < 1/3
in P passes over input of size N with at most constant probability
of error requires at least Ω(N/P ) space
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Figure 1: Accuracy of algorithms in estimating the confidence of a fixed CFD

PROOF. We show a reduction from the DISJOINTNESS problem
in communication complexity [24]. In this problem, two players
(Alice and Bob) each hold a binary vector (a and b, respectively) of
length n. The problem is to determine whether there is any index i
such that a[i] = b[i] = 1, or if there is no such index. It is known
that determining the answer in P messages requires Alice and Bob
to exchange Ω(n) bits of communication in total.

Given vectors a and b, we can create an instance of the fixed
CFD estimation problem. The instance has a single group, with
some fixed antecedent, x, say. For each entry in a such that
a[i] = 1, we insert (x, i) at the start of the constructed relation.
Similarly, for each i such that b[i] = 1, we insert (x, i) at the
end of the constructed relation. This generates a relation R with
N rows. Now consider the confidence Cφ(R), where the tableau
contains a single wildcard-only pattern: if the two vectors are dis-
joint, then Cφ(R) = 1/N . But if they have an intersection, then
Cφ(R) = 2/N . A relative error estimate would find Ĉφ(R) so
that (1 − ε)Cφ(R) ≤ Ĉφ(R) ≤ (1 + ε)Cφ(R). So if we could
estimate Cφ(R) with relative error better than ε = 1/3, then we
could distinguish these two cases. An efficient algorithm with P
passes to estimate the confidence could be turned into an efficient
communication protocol with 2P messages: Alice would run the
algorithm of the part of the relation corresponding to her string,
then send a message consisting of the current memory state of the
algorithm to Bob, who would continue the execution on the portion
of the relation derived from his string, and so on. From the com-
munication necessary for the DISJOINTNESS problem, it follows
that at least Ω(n/P ) = Ω(N/P ) space must be needed for any
algorithm estimating the confidence of a CFD with P passes.

This shows that we should not expect to design algorithms which
can give answers with relative error. But note that the hard case at
the heart of the above proof corresponds to a very low confidence.
In general, we are interested in cases when the confidence is at least
some constant value (say, at least 0.1). In these cases, an additive
error (as required in Definition 4) will suffice. Even here, there are
limits to how accurately the problem can be solved.

THEOREM 5. Solving the fixed CFD estimation problem with
additive error at most ε in a constant number of passes over the
data with at most constant probability of error requires at least
Ω( 1

ε2
) space.

PROOF. We show a reduction from the GAPHAMMING prob-
lem in communication complexity. As in the previous theorem,
Alice and Bob each hold a binary vector of length n (a and b re-
spectively). In addition, there is the promise on the Hamming dis-
tance H between the vectors so that either H(a, b) ≤ n

2
−
√

n

or H(a, b) ≥ n
2

+
√

n. It is known that determining which case
holds with a constant number of messages between Alice and Bob
requires at least Ω(n) bits of communication [21, 6].

Given such vectors, we can create an instance of the CFD estima-
tion problem. For each ai, we create an (antecedent, consequent)
pair (i, ai); and similarly, for each bi we create the pair (i, bi).
This creates a relation R of N = 2n pairs. Now observe that the
confidence of this relation (again, assuming a tableau with a single
all-wildcards pattern) isX

x

Nx

N
max

y

Nx,y

Nx
=

2

N

„
N

2
− H(a, b)

2

«
= 1− H(a, b)

N

By the promise on the Hamming distance between a and b, this
quantity is either less than 3

4
− 1√

2N
or more than 3

4
+ 1√

2N
. So

if we set ε = 1√
2N

we could determine which case holds. As in
the previous theorem, any algorithm taking a constant number of
passes over the relation and storing a small amount of data can be
transformed into an efficient communication protocol: Alice runs
the algorithm on the portion of the relation derived from her bit-
string, then send the memory contents to Bob who would continue
on the tuples from his bitstring, and so on. Since this would solve
the GAPHAMMING communication problem, it follows that a data
structure of size Ω(N) = Ω( 1

ε2
) bits is needed to solve this prob-

lem, even allowing a constant probability of error.

7. EXPERIMENTAL STUDY
We conducted an empirical study of the three proposed algo-

rithms for CFD confidence estimation on both real and synthetic
data sets. The first real data set Retailer contains 3 × 105 sales
records from an online retailer (this is the largest data set used
in [11], where it is described in more detail). The schema is {type,
name, country, price, tax, itemid}. The second real data
set WorldCup1Day and the third real data set WorldCup1Month
are part of the 1998 World Cup website access logs [1]. World-
Cup1Day contains the access log during a consecutive 13 hour time
span, corresponding to the first 7×106 records from day 69. World-
Cup1Month contains the access log during a consecutive 32 day
time span, from the start of day 49 to the end of day 79, and has
109 records. The schema is {objectID, day, hour, size, ...},
where objectID is the ID of the object in each request and size

is the number of bytes in the response.
Each synthetic data set contains 106 records with the same

schema as the Retailer data set. The group sizes are chosen based
on a Zipfian distribution, with parameter z. The confidence of each
group is chosen by picking a value Cx in [0, 1] uniformly at ran-
dom. In the first class of synthetic data sets (Syn1), for each group,
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(g) IDEALIZED: Reservoir Size (Syn1)
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Figure 2: Sensitivity to Parameters

one consequent is chosen to achieve the desired confidence Cx,
and all other consequents are chosen to be distinct. In the second
class (Syn2), one consequent is chosen to have confidence Cx, and
b1/Cxc others are chosen to have confidence as close to Cx as
possible. This is chosen to be especially challenging for the ide-
alized one-pass algorithm, since there are many “near keepers” in
these groups. The default CFD used for Syn1, Syn2, and Retailer
is the embedded FD {type, name, country} → {price, tax,
itemid}, with the (fixed) tableau (‘book’|___|___‖___|___|___) (de-
noted CFD1). The true confidence of CFD1 over Retailer is 0.908.

The embedded FD used for WorldCup1Day (CFD2) is
{objectID, day, hour} → {size}, with the tableau
(___|69|___‖___), unless otherwise stated. The group sizes in both
real data sets approximately follow a Zipfian distribution: for
WorldCup1Day, the skewness parameter is close to z = 1.8, and
for Retailer, z = 0.4. The true confidence of CFD2 over World-
Cup1Day is 0.88.

A third real dataset WorldCup1Month with one billion records is
used to demonstrate the scalability in addition to other properties of
the relevant algorithms. Its embedded FD (CFD3) is {objectID,

day} → {size}, with the pattern (___|___‖___). The true confi-
dence of CFD3 over WorldCup1Month is 0.78.

As two baseline algorithms, we also implement UNIFORMROW
and UNIFORMGROUP, as discussed in Section 2.3. UNIFORMROW
collects a uniform random sample of tuples and uses the confidence
of the CFD in the relation induced by the sample as the final es-
timate. UNIFORMGROUP collects a uniform random sample of
groups, and a uniform random sample of consequents for every
sampled group. The estimate is the average confidence of all sam-
pled groups.

7.1 Implementation Issues
We implemented all the algorithms in C++ and ran experiments

on a shared machine with Intel Xeon 2.83GHz dual CPU running
RedHat Linux with 16GB RAM. In the first pass, the TWOPASS al-
gorithm used reservoir sampling to collect a uniform random sam-
ple of rows. The identifiers of the sampled groups are stored in
hash tables for quick testing in the second pass. The IDEALIZED
algorithm also used reservoir sampling to determine which groups
to sample, and again to determine whether the sampled row con-
stitutes a keeper for the suffix of the stream. The MULTILEVEL
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Figure 3: Accuracy comparison between TWOPASS and IDEALIZED

algorithm used Count-Min sketches based on the reference im-
plementations available from http://www.research.att.
com/~marioh/frequent-items. The default values of the
number of samples, t, is 2500 in TWOPASS and IDEALIZED. When
estimating the confidence of a single group, the default reservoir
size is 20.

7.2 Fixed CFD Estimation
We begin by comparing the performance of all five algorithms

mentioned above under the same space usage in estimating the
confidence of fixed CFDs. Figure 1(a) plots the absolute error in
the estimated confidence value on synthetic data sets (Syn1) with z
ranging from 0.2 to 1.8 when each algorithm is allocated 1.2MB.
On all data sets, TWOPASS and IDEALIZED outperform the other
three and show little variation as the skew of the data is increased.
They consistently obtain an error of less than 1% over all synthetic
data sets. UNIFORMGROUP and MULTILEVEL have satisfactory
performance when the data set is rather uniform. As the data set be-
comes more skewed, their errors grow. Since TWOPASS and UNI-
FORMGROUP use the same parameters (same number of sampled
groups, and same reservoir size to estimate the confidence of each
group) the performance discrepancy between these two algorithms
is a consequence of the representativeness of groups chosen and
the different weighting schemes. Due to its high error, we do not
consider UNIFORMROW further: it gives poor results in all exper-
iments tried. Meanwhile, MULTILEVEL does tend to show better
results when given more space, as we see in later experiments.

Figures 1(b) and 1(c) illustrate the performance of each algo-
rithm under different space usage on data with Zipfian group size
distribution (z = 0.8) from (Syn1), and Retailer respectively. On
both data sets, as they are given more space, the performance of
all four algorithms tends to improve. TWOPASS and IDEALIZED
are able to give good estimates even with very limited space (a few
hundred kilobytes), and so show the least room for improvement
with increasing space. MULTILEVEL is able to give good estimates
when there is enough space for accurate Count-Min sketches. It
achieves 1% error on the real data set Retailer when given space of
the order of a megabyte (although Retailer is the smallest data set
considered, it still requires 11MB to store in full). Notice that even
though UNIFORMGROUP results in low error (< 0.01) in moder-
ate space (≥ 300K) in Figure 1(c), it never achieves absolute error
below 0.02 on the synthetic data in Figure 1(b). This is because
the group distribution in Retailer is rather uniform, which is the
best case for UNIFORMGROUP. On the WorldCup data sets (not
shown), it did appreciably worse: for the default setting of param-
eters, the absolute error is around 0.05.

Sensitivity to Parameters. Our second set of experiments studies
the influence of the various parameters for each of the proposed al-
gorithms in turn. The results are illustrated in Figure 2. Figure 2(a)
shows the impact of varying the main parameter of TWOPASS, the
number of tuples t sampled in the first pass, over synthetic data.
This shows a general trend of increasing accuracy as t increases, as
predicted by the analysis. A similar pattern occurs on the real data
(Figure 2(b)), although with lower overall error (figures are shown
on the same y-scale for ease of comparison). The size of the reser-
voir allocated to each group to estimate the confidence can be quite
small and still obtain high accuracy: Figures 2(c) and 2(d) show
that with only tens of samples per group, the overall accuracy is
estimated well. Doubling the reservoir size seems to roughly halve
the observed error, but beyond a reservoir size of 20 there is little
room for improvement.

We see a similar trend for the number of tuples t sampled by
the IDEALIZED algorithm in Figure 2(e) and 2(f). The broad trend
is for decreasing error as t increases, which is easier to see when
viewing this algorithm in isolation. Likewise, doubling the size of
the reservoir used to estimate whether the sampled tuple is a keeper
seems to (more than) halve the observed error, though of course
there are still some random fluctuations due to the random nature
of the algorithms (Figures 2(g) and 2(h)).

Lastly, for MULTILEVEL, there is only a single parameter af-
fecting the algorithm, which is the size of the Count-Min sketches
used. Figure 2(i) plots the observed accuracy as a function of the
total space used by the algorithm. This clearly shows the behavior
of this algorithm is dominated by the skew of the data: for highly
skewed data, it has large error. In fact, the plots also show that all
three algorithms do seem to vary somewhat with the skew of the
data: in all cases, the more skewed the data, the harder it seems to
be to estimate the confidence. However, for TWOPASS and IDE-
ALIZED, when these algorithms are given sufficient space, these
differences become very small indeed.

7.3 Two-pass vs Idealized One-pass Algo-
rithm

Since TWOPASS and IDEALIZED have the best performance over
a variety of data sets and space parameters, we compare them more
closely. Figure 3 shows more detail on three synthetic data sets
from (Syn2)—a data set designed to be more challenging for IDE-
ALIZED. In fact, this data is a challenge for both algorithms, and as
the skew increases, the errors increase, with TWOPASS achieving
worse results. In part, this may be due to the fact that the con-
fidence is dominated by a few large groups: even if these are all
sampled in the first pass, a reservoir of size 20 is used to estimate
their confidence in our experiments. So only a small portion of
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summary is being actively used to estimate the confidence in these
cases, suggesting room for optimization.

Figure 4 illustrates the running time of the two algorithms on the
WorldCup1Month data set of 109 records. The size of this dataset
makes it impractical to compute the confidence exactly—we ran a
series of group-by queries that compute the confidence on this data
set. After 12 hours, the computation had not concluded, and was
terminated. Analytically, the cost should be approximately linear
in t, the number of tuples initially sampled by the two algorithms.
As shown in Figure 4(a), this is close to the truth: the cost displays
a slightly sublinear trend. This is partly because there is more op-
portunity for sharing information when the same group is sampled
multiple times. Generally speaking, Figure 4(a) shows a slow in-
crease in the running time with the increase of t. Given the size
of WorldCup1Month, the cost of maintaining a random sample of
t tuples using reservoir sampling becomes significant. Since the
time for reservoir sampling does not directly depend on the size of
the reservoir, this cost does not vary proportionally with t. To see
this, we break the cost of TWOPASS down further by separating the
cost of the first pass: it is clear that the cost of maintaining a ran-
dom sample of t tuples remains stable regardless of t. The slightly
increasing trend in both algorithms can be explained by the infor-
mation collection for the sampled t suffixes/groups. This part of
the cost grows proportionally with t.

We also observe that the time cost does not significantly vary
with the size of the reservoir used, as shown in Figure 4(b). This is

to be expected since, again, the time for the reservoir sampling does
not directly depend on the size of the reservoir. In total, both algo-
rithms take about 1.5 hours to process a data set of 109 rows. The
time cost of extracting an estimated confidence from the summaries
is also minimal: too small to measure in most cases.

7.4 Variable CFDs
Our final set of experiments are on the variable tableau CFD

confidence estimation problem, where an arbitrary tableau can be
given after the data has been seen. We compare the efficacy of
TWOPASS, IDEALIZED and UNIFORMGROUP on instances of this
problem. Figure 5(a) shows the results of these algorithms when
given the same amount of space and a CFD φ on Retailer data with
support value suppφ(Retailer) = 0.34. All three algorithms give
a larger error compared to the fixed CFD (i.e. when the support is
100%). In particular, the increase in the error of UNIFORMGROUP
is much larger than that of the other two methods. Figure 5(b)
shows the error of TWOPASS and IDEALIZED when estimating the
confidence of variable CFDs with varying support. It displays a
trend of increasing error as the support decreases, broadly in line
with that predicted by the analysis of these algorithms. TWOPASS
outperforms IDEALIZED in the majority of cases, which is consis-
tent with our conclusion in Section 7.3. Similar results are seen
in Figure 5(c) on the WorldCup1Day data set: here, the UNIFORM-
GROUP approach is more clearly seen to behave significantly worse
than the proposed algorithms by large factors.



7.5 Experimental Summary
From our experimental analysis, we draw the following conclu-

sions:

• TWOPASS and IDEALIZED are able to provide estimates with
a very small error given very limited space, over the whole
range of skew values observed in the data sets. Their relative
improvement in accuracy over UNIFORMROW can be up to
2 orders of magnitude, and up to 1 order of magnitude over
UNIFORMGROUP when the data set is more skewed.

• MULTILEVEL, while having strong analytical guarantees, re-
quires a large amount of space in order to produce good esti-
mates in practice. This is due to needing to store many large
Count-Min sketches for sufficient accuracy.

• Increasing the space available to the algorithms (such as in-
creasing the number of samples, or the reservoir size) tends
to improve the accuracy of all three proposed algorithms.

• TWOPASS is slightly more accurate than IDEALIZED in some
cases. This comes at the price of requiring two passes over
the data instead of one.

• Both TWOPASS and IDEALIZED do a good job of solving the
variable tableau CFD estimation problem, and in particular
are seen to produce results that are appreciably better than
UNIFORMGROUP. Both are able to process data at a rate of
over 105 tuples per second.

8. RELATED WORK
The problem of estimating the confidence of CFDs is related to

work on finding conditional functional dependencies, estimating
the confidence of functional dependencies and other integrity con-
straints, and generating concise summaries of large data sets. Re-
cent research on CFDs has followed three directions. The first in-
volves reasoning about CFDs, that is, axiomatization, consistency,
and implication [3, 4, 14, 16]. The second employs exact and ap-
proximate CFDs to characterize the semantics of data, for exam-
ple, discovering and verifying the confidence of CFDs on a given
relation instance [10, 14, 15, 18]. The third uses CFDs for data
cleaning, such as identifying and “repairing” tuples in a given rela-
tion instance that violate a given set of CFDs [11], which is usually
performed after an appropriate set of CFDs has been identified and
validated. Our work is closest to the second of these categories,
although no prior work has addressed problems of estimating the
confidence of CFDs directly. Our techniques for confidence esti-
mation may be used in lieu of exact validation via an expensive
SQL query, or when the entire data set cannot be stored or readily
accessed.

The related question of determining whether an FD holds has
been studied in [23]. In particular, it was shown that if a uniform
random sample of size O(ε−1

√
N) is collected, then any FD that

does not hold perfectly on the sample cannot (with high probabil-
ity) have a confidence of above 1 − ε. This was used to determine
which FDs could hold exactly, by eliminating any which did not
pass this randomized test; however, this approach does not obvi-
ously extend to estimating the confidence. Further, the space cost of
this test is polynomial in the input size N and requires prior knowl-
edge of N , whereas the solutions we seek are largely independent
of this quantity, or depend only very weakly (logarithmically) on
N . Estimating FDs from a sample was also considered in [20], but
no error bounds were given and the confidence metric was different

(the number of distinct antecedent values divided by the number of
distinct antecedent-consequent values).

There has also been work on estimating other types of integrity
constraints from a (random) sample, such as association rules [26,
9], algebraic relationships between attributes [7], and universal first
order logic sentences [22]. An association rule X → Y over a set
of transactions (e.g., {bread, milk} → {butter}) asserts that
whenever all the items in the set X appear in a transaction, so do
all the items in the set Y . The confidence of an association rule is
the count of transactions having X and Y divided by the number
of transactions having X . Thus, approximating the confidence of
an association rule requires an estimate of only these two counts,
which can be obtained from a random sample with additive error. In
contrast, CFD estimation involves counting the most frequent con-
sequent value for each antecedent group. Similarly, [7] discovers
correlations between attributes by estimating frequency counts of
attribute values from a random sample, and [22] estimates the con-
fidence of logical sentences by counting the proportion of tuples in
the random sample that satisfy them.

Our work is related to summarizing large data sets. There has
been recent work on maintaining bounded-size samples in a data
warehouse that continually receives new data, but only random
samples were considered [8, 17]. Our (one-pass and two-pass)
algorithms can be thought of as constructing special summaries
that may be stored in a data warehouse for CFD confidence esti-
mation. These summaries are formed by careful combination of
existing summaries such as reservoir sampling [27], heavy-hitter
summaries [25], and count-min sketches [13]. Lastly, the CFD con-
fidence estimation problem can be thought of as a special case of
a “cascaded aggregate” [12], formed by the summation of frequent
items. In [12], this problem is denoted as F1(F∞), for which so-
lutions were not previously known. Similar multilevel techniques
have been previously used to estimate other quantities over data
streams [2].

9. CONCLUDING REMARKS
We have introduced the problem of estimating the confidence

of Conditional Functional Dependencies when the tableau is given
upfront or specified after the fact. It is natural to extend our results
to related problems; we briefly outline some extensions to which
they apply. Given a tableau, it is sometimes important to know not
just the global confidence of the CFD, but also the local confidence
resulting from each row in isolation [18]. However, this can be
thought of as a generalization of the variable CFD problem: each
row of the tableau can be thought of as an entire tableau, and the
relevant confidence estimated.

Given a CFD with less than perfect confidence, it is also informa-
tive to know for which subset of the data the CFD fails to hold. This
is captured by a fail tableau, by analogy with the (hold) tableau
on which the CFD holds with high confidence [18]. Given a fail
tableau, it is straightforward for our methods to estimate its (low)
confidence. Similarly, our algorithms apply to extended CFDs in-
troduced in [3], whose tableaux may include negations and dis-
junctions in addition to constants and wildcards. A last challeng-
ing problem is to summarize the data, and then to attempt to dis-
cover a high confidence tableau for a particular embedded FD from
the summary [18]. A natural direction to study is to apply known
tableau discovery algorithms directly to the data stored in the sum-
maries we have defined here, and also use the summary to estimate
the confidence of the candidate tableau rows. We hope to report on
the quality of this approach in future work.
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