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Abstract. We develop linear sketches for estimating the Earth-Mover
distance between two point sets, i.e., the cost of the minimum weight
matching between the points according to some metric. While Euclidean
distance and Edit distance are natural measures for vectors and strings
respectively, Earth-Mover distance is a well-studied measure that is
natural in the context of visual or metric data. Our work considers the
case where the points are located at the nodes of an implicit graph and
define the distance between two points as the length of the shortest path
between these points. We first improve and simplify an existing result
by Brody et al. [4] for the case where the graph is a cycle. We then
generalize our results to arbitrary graph metrics. Our approach is to
recast the problem of estimating Earth-Mover distance in terms of an `1
regression problem. The resulting linear sketches also yield space-efficient
data stream algorithms in the usual way.

1 Introduction

Given two multi-sets A,B ⊆ X where |A| = |B| = k and a metric d on X , the
Earth-Mover Distance (EMD) between A and B is defined as the minimum cost
of a matching between A and B, i.e.,

EMDd(A,B) = min
π:A→B

∑
a∈A

d(a, π(a))

where π ranges over all bijective mappings between A and B. Earth-Mover
distance is a natural and well-studied notion of the difference between two point
sets. It was initially proposed in the context of image retrieval and has been
shown to correspond closely to the perceptual difference between two images [14].
While Euclidean distance and Edit distance are natural measures of dissimilarity
for vectors and strings respectively, EMD is perhaps the most natural measure
for metric and visual data.

Linear sketching is a popular and powerful technique for processing large
data sets. See Cormode et al. [7] for a survey. The basic idea is to take random
linear projections of the data set and then post-process these projections in order
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to evaluate properties of the original data. The main parameters of the sketch
are the size, or dimension, of the projection and the time required to perform
the post-processing. Important applications of sketching include processing data
streams or distributed data. A significant fraction of the work on linear sketches
has focused on the problem of distance estimation and estimating the Earth-
Mover distance is a long-standing open question [9, 12] that has remained open
(in the case where the point sets lie on a ∆×∆ grid) despite a substantial body
of work dedicated to the problem [3,4,8,10,17]. The best known results achieve a
logarithmic approximation with sketches of poly-logarithmic size and an O(1/ε)
approximation with sketches of ∆ε size. The most relevant work to this paper is
a recent paper by Brody et al. [4] in which they consider the more restricted case
where X corresponds to the nodes of a cycle and d is the shortest-path metric
on this cycle (see also Cabrelli and Molter [5] for an optimal solution in the
offline, non-streaming case). In this case, they show that (1 + ε)-approximation
is possible with sketches of poly-logarithmic size.

1.1 Our Techniques and Results

In this paper, we consider d to be the shortest-path metric in an arbitrary graph
G = (V,E) on n = |V | nodes with m = |E| edges. Note that the graph structure
is assumed to be known in advance1 and the input is point sets A and B of size
k. Our results are as follows.

1. Cycles: O(ε−2 polylog nk)-size sketches for approximating EMD(A,B) up
to a (1 + ε) factor with high probability. This improves over the existing
sketch of Brody et al. which used sketches of size O(ε−3 polylog nk). We then
show how to ensure that post-processing the sketch can be performed in
O(polylog n) time. Our analysis also has the advantage of being significantly
simpler. See Section 3.

2. Trees: O(ε−2 polylog nk)-size sketches for approximating EMD(A,B) up to
a (1 + ε) factor with high probability. By combining recent results on range-
summable random variables by Tirthapura and Woodruff [16] with a natural
path-decomposition, we show how such a sketch can be applied in the data-
stream setting with O(polylog n) update time whereas, even in the cycle case,
the existing sketch has Ω(n) update time. See Section 4.

3. Arbitrary Graphs: O(ε−2 · t · polylog nk)-size sketches for approximating
EMD(A,B) up to a (1+ε) factor with high probability where t = m−n+1 is
the number of edges that need to be removed from G such that the resulting
graph is acyclic. This generalizes our result on cycles in which t = 1. While
our results hold for arbitrary t, our results are most interesting in the case
where there are relatively few cycles and hence t is moderate in size. See
Section 5.

1 This is in contrast to recent work in graph sketching [1,2] where the goal is to sketch
the actual graph. Note that the space used in the algorithms we present will be
sufficient to maintain an explicit representation of the graph structure.



Technical Approach. The general approach is follows. We define vectors x, y ∈ R|E|
corresponding to the two multi-sets A and B. We then relate EMD(A,B) to an
`1-regression problem involving x, y, and a set of vectors defined by the structure
of the underlying graph. To achieve our results, we first sketch the vectors, i.e.,
construct random projections of these vectors, and then perform the `1-regression
on the sketched vectors rather than manipulating the original vectors explicitly.

2 Preliminaries

Notation. We use [n] to denote the set {1, 2, . . . , n}. We say an algorithm
is an (ε, δ)-approximation for a quantity Q if the value returned Q̃ satisfies

P
[
|Q− Q̃| < εQ

]
≥ 1− δ. Given a tree T = (V,E) and u, v ∈ V we define,

PT (u, v) = {e ∈ E : e on the path between nodes u and v} .

We denote the `1-norm of a vector x by ‖x‖1 =
∑
i |xi|.

Sketches for `1-norm estimation. `1-norm estimation is one of the canonical
sketching and data stream problems. We will make extensive use of the following
result due to Kane et al. [11].

Theorem 1 (`1 Sketching [11]). There exists a distribution ν over linear maps
from Rn → Rq where q = O(ε−2 log n log δ−1) and a “post-processing” function
f : Rq → R such that for any x ∈ Rn with polynomially-bounded entries,

Pr
M∼ν

[|‖x‖1 − f(Mx)| ≤ ε‖x‖1] ≥ 1− δ .

Note that it immediately follows by rescaling δ and applying the union bound,
that if we increase q to O(ε−2 log n log(tδ−1)) we ensure that for any t vectors
X = {x1, . . . , xt},

Pr
M∼ν

[∀x ∈ X ; |‖x‖1 − f(Mx)| ≤ ε‖x‖1] ≥ 1− δ .

In particular, if X consists of all linear combinations of some set {y1, . . . , yr}
where the linear coefficients are from the set {−k,−k + 1, . . . , k − 1, k} then
t = (2k + 1)r and we can estimate the `1 norm of any vector x ∈ {x1, . . . , xt}
from O(rε−2 log n log(kδ−1))-dimensional sketches My1,My2, . . . ,Myr since

M(
∑
i∈[r]

λiyi) =
∑
i∈[r]

λiMyi .

One-Dimensional EMD. We next describe an important folklore result for sketch-
ing earth-mover distance in one dimension. For the sake of future sections, it will
be helpful to describe this result in terms of graph distances when the graph is
a path. Let G = (V,E) be a path on n nodes, i.e., V = {1, 2, . . . , n} and edges



E = {e1, e2, . . . , en−1} where ei = {i, i+ 1}. Suppose A,B ⊂ V and define the
distance between i ∈ A and j ∈ B to be shortest path distance d(i, j) = |i− j|.

We can relate EMD(A,B) to a norm estimation problem as follows. Define
the vectors x, y ∈ Rn−1 where:

∀i ∈ [n− 1] ; xi = |{a ∈ A : i ≥ a}| and yi = |{b ∈ B : i ≥ b}| .

Then the following theorem establishes that EMD(A,B) equals ‖x− y‖1.

Theorem 2 (Folklore). EMD(A,B) = ‖x− y‖1.

We will actually prove a more general result in Lemma 5 from which the above
theorem follows. For intuition, suppose A = {i} and B = {j} and i < j < n.
Then, x = (0, . . . , 0, 1, . . . , 1) where the first “1” is in the i-th position and
y = (0, . . . , 0, 1, . . . , 1) where the first “1” is in the j-th position. Therefore ‖x‖1
and ‖y‖1 correspond to the distances that would be covered moving points i and
j to node n. However, y − x = (0, . . . , 0, 1, . . . , 1, 0, . . . , 0) where (y − x)k = 1 iff
i ≤ k < j and so ‖y − x‖1 = |j − i|. Essentially, the effect of moving both points
i and j to n cancels out along edges on which both points are being moved. The
following example illustrates that the theorem applies in a less trivial case.

Example 1. SupposeA = {2, 3, 10} andB = {3, 4, 8} and note that EMD(A,B) =
4. Then

x = (0, 1, 2, 2, 2, 2, 2, 2, 2) and y = (0, 0, 1, 2, 2, 2, 2, 3, 3)

and ‖x− y‖1 = 4 as required.

3 Cycles

Consider a cycle on n nodes {1, 2, . . . , n} and edges e1, e2, . . . , en where ei =
{i, i + 1} for i ∈ [n − 1] and en = {n, 1}. The basic idea for solving EMD on
the cycle is to reduce it to the one-dimensional, or path metric, case by simply
ignoring the last edge en. This has the effect of changing the distance between
nodes i and j from

d(i, j) = min(|i− j|, |i− n|+ 1 + |1− j|, |i− 1|+ 1 + |n− j|)

to a new distance
d′(i, j) = |i− j| .

Depending on the point sets, A and B, this can change the earth-mover distance
significantly since two points that were previously close may now be far apart.
For example, if A = {n} and B = {1} then the earth-mover distance increases
from EMDd(A,B) = 1 to EMDd′(A,B) = n− 1.

To rectify this issue, we will effectively make a series of guesses {−k,−k +
1, . . . , k − 1, k} for how many pairs of points will be paired using the edge en.
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(a) Original Cycle Instance where
EMDd(A,B) = 4.
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(b) Linear Instance with λ = 1 where
1 + EMDd′(A+ Cλ, B + C−λ) = 14.
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(c) Linear Instance with λ = −1 where
1 + EMDd′(A+ Cλ, B + C−λ) = 4.

Fig. 1. Reducing Cyclic EMD to Linear EMD. Points in A are denoted by circles and
points in B are denoted by stars. Dotted lines indicate a minimum cost matching.



Lemma 1. For λ ∈ {−k,−k+ 1, . . . , k− 1, k}, let Cλ be the multi-set consisting
of λ copies of “1” if λ > 0 and |λ| copies of “n” if λ < 0. Then,

EMDd(A,B) ≤ |λ|+ EMDd′(A+ Cλ, B + C−λ)

with equality for some λ ∈ {−k,−k + 1, . . . , k − 1, k}.

Proof. Consider a bijection π between A+ Cλ and B + C−λ. We first will show
that π induces a bijection σ between A and B such that∑

a∈A
d(a, σ(a)) ≤ |λ|+

∑
a∈A+Cλ

d′(a, π(a)) , (1)

and this establishes the first part of the lemma.
It will be convenient to enumerate the elements of Cλ = {c1, c2, . . . , cλ} and

C−λ = {d1, d2, . . . , dλ} such that we may assume that π(ci) = dj implies i = j.
We then define σ as follows. If π(a) ∈ B for a ∈ A then define σ(a) = π(a) and
hence

d(a, σ(a)) = d′(a, π(a)) . (2)

If π(a) = di for some a ∈ A and di ∈ C−λ then define σ(a) = π(ci). Hence,

d(a, σ(a)) ≤ d′(a, di) + 1 + d′(ci, π(ci)) .

Note that there are at most |λ| elements a ∈ A such that π(a) ∈ C−λ and
together with Eq. 2 this establishes Eq. 1.

To prove that there exists λ such that EMDd(A,B) = |λ| + EMDd′(A +
Cλ, B+C−λ) consider the bijection σ = argminσ

∑
a∈A d(a, σ(a)). Suppose there

are λ1 elements a ∈ A such that the shortest path from a to σ(a) visits n
then 1. Similarly, suppose there are λ2 elements a ∈ A such that the shortest
path from a to σ(a) visits 1 then n. Note that at most one of λ1 and λ2 is
non-zero since σ is the minimal cost bijection. Then setting λ = λ1 − λ2 ensures
EMDd(a, σ(a)) = |λ|+ EMDd′(A+ Cλ, B + C−λ) as required.

3.1 Sketch Details

To construct the sketch we first define the vectors x, y ∈ Rn where for i ∈ [n− 1]

xi = |{a ∈ A : i ≥ a}| and yi = |{b ∈ B : i ≥ b}| .

and xn = yn = 0. Define z = x− y and let c = (1, 1, . . . , 1, 1) ∈ Rn.

Lemma 2. min−k≤λ≤k ‖z + λc‖1 = EMD(A,B).

Proof. Let z[n−1] and c[n−1] be the vectors corresponding to the first n − 1
elements of z and c respectively and note that

‖z + λc‖1 = |λ|+ ‖z[n−1] + λc[n−1]‖1 .

The proof then follows from Theorem 2 and Lemma 1.



We define the function f(λ) = ‖z+λc‖1. From the above lemma, it suffices to
find minλ f(λ). From Theorem 1 (and the surrounding discussion), it is possible
to compute estimates {f̃λ}λ∈{−k,...,k} from a O(ε−2 log n log(kδ−1))-dimensional
sketch of z such that

P
[
∀λ ∈ {−k, . . . , k} : |f̃λ − f(λ)| ≤ εf(λ)

]
≥ 1− δ .

Hence, if we return min f̃λ then we have an (ε, δ)-approximation for EMD(A,B).
However, rather than evaluating every f̃λ to find the minimum, in the next section
we next show that it is possible to find minλ∈{−k,...,k} f̃λ while only evaluating
O(log k) of the terms.

3.2 Improved Post-Processing

The main observation is that since f(λ) =
∑
i |zi + λci| is a sum of convex

functions, f(λ) itself is convex and can therefore be minimized by using something
like a binary search.

Lemma 3. f(λ) = ‖z + λc‖1 is convex.

However, although f(λ) is convex, the errors in our estimates f̃λ of f(λ) may
violate the convexity property. To accommodate this we perform a quaternary
search that includes tolerances for these errors. See Algorithm 1.

Algorithm 1 Approximate Quaternary Search

(l, u)← (−k, k)
while l 6= u do

(a, b, c)←
(⌊

3l+u
4

⌋
,
⌊
2l+2u

4

⌋
,
⌊
l+3u
4

⌋)
if max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) <

1+ε
1−ε or f̃b = max(f̃a, f̃b, f̃c) then

return f̃b
else

(l, u)←

{
(a, u) if f̃a = max(f̃a, f̃b, f̃c)

(l, c) if f̃c = max(f̃a, f̃b, f̃c)

end if
end while
return f̃l

Lemma 4. Algorithm 1 returns a value that is within a factor 1 ± O(ε) of
minλ f(λ).



Proof. Let λ∗ = argminλ∈{−k,...,k} f(λ). We first prove the invariant that l and
u always satisfy l ≤ λ∗ ≤ u. Note that it is true initially since l = −k and u = k.
Suppose it is true at a given iteration, then (by symmetry) it suffices to show that
if max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) ≥ 1+ε

1−ε and f̃a = max(f̃a, f̃b, f̃c) then a ≤ λ∗.
Then,

f(a)

min(f(b), f(c))
≥ f̃a/(1 + ε)

min(f̃b/(1− ε), f̃c/(1− ε))
=

1− ε
1 + ε

· max(f̃a, f̃b, f̃c)

min(f̃a, f̃b, f̃c)
≥ 1 .

and hence f(a) ≥ min(f(b), f(c)). By the convexity of f we deduce that a ≤ λ∗
as required.

It remains to show that when the algorithm terminates, the return value is
sufficiently accurate.

Case 1: If l = u then
f̃l = (1± ε)f(l) = (1± ε)f(λ∗) .

Case 2: Suppose that max(f̃a, f̃b, f̃c)/min(f̃a, f̃b, f̃c) <
1+ε
1−ε and therefore

max(f(a), f(b), f(c))

min(f(a), f(b), f(c))
<

(
1 + ε

1− ε

)2

.

By symmetry, assume that λ∗ ≤ b. Then, by the convexity of f we have:

f(λ∗) ≥ f(b)− 1/2 · f(c)− f(b)

1/4
= f(b)(3− 2f(c)/f(b)) ≥ (1−O(ε))f̃b .

Case 3: Suppose that f̃b = max(f̃a, f̃b, f̃c), and assume by symmetry λ∗ ≤ b.
Then

(1 + ε)2f(b) ≥ (1 + ε)f̃b ≥ (1 + ε)f̃c ≥ f(c)

which gives us that the difference between f(c) and f(b) is at most (2ε+ε2)f(b).
By convexity, the difference between f(b) and f(λ∗) is at most twice this,
since λ∗ is at most twice as far from b as c is, so

f(λ∗) ≥ f(b)− 2(2ε+ ε2)f(b) = (1−O(ε))f(b) .

4 Trees

In this section, we generalize the one-dimensional case discussed in Section 2
to trees. Let T = (V,E) be a tree on n nodes. Suppose A,B ⊆ V where for
a ∈ A, b ∈ B, d(a, b) is the length of the unique path between a and b.

To relate EMDd with the tree metric to `1 norms we first pick an arbitrary
root r of T . Now define the vectors x, y ∈ RE where

xe = |{a ∈ A : e ∈ PT (a, r)}| and ye = |{b ∈ B : e ∈ PT (b, r)}| .

and define z = x− y. Recall that PT (u, v) is the set of edges on the unique path
in T between u and v. The following lemma generalizes Theorem 2 (the “root”
in the path case was implicitly chosen to be node n) and will play an important
role in the next section.



Lemma 5. ‖z‖1 = EMDd(A,B).

Proof. For each edge e = (u, v) ∈ T where u is a child of v, define the value

we =
∣∣|A ∩ Vu| − |B ∩ Vu|∣∣

where Vu is the set of nodes of the subtree rooted at u. Then EMDd(A,B) =∑
e∈E we since in the optimal bijection, either all points in A ∩ Vu will be

mapped to elements in B ∩ Vu or vice versa and hence the edge e appears in
exactly ||A ∩ Vu| − |B ∩ Vu|| of the shortest paths between matched points. But
we = |xe − ye| since e ∈ PT (v, r) iff v ∈ Vu. Hence, EMD(A,B) =

∑
e∈E we =∑

e∈E |xe − ye| = ‖z‖1 . as required.

Therefore, appealing to the `1 sketch result in Theorem 1, it immediately
follows that there is an O(ε−2 log n log δ−1)-dimensional sketch that returns an
(ε, δ) approximation for EMDd(A,B) when d is a tree metric.

4.1 Improved Update Time

A naive implementation of the above algorithm requires Ω(n) update time since
every update requires updating as many as n− 1 entries of the vector. However,
this can be reduced to O(polylog n) time using the range-efficient `1 sketching
algorithm of Tirthapura and Woodruff [16]. This allows contiguous segments of
the vector z to be updated in O(polylog n) time rather than O(w polylog n) time
where w is the length of the segment. Hence, if we can ensure that any update
of z involves updating O(log n) contiguous segments we enable any update to
be performed in O(polylog n) time. To do this, we will use the following path
decomposition of the tree.

Lemma 6. For any tree T = (V,E) on n nodes with ` leaves and root r, it is
possible to decompose E into ` paths P1, . . . , P` such that for any u ∈ V , PT (u, r)
intersects at most O(log `) paths.

Proof. We define the segments P1, . . . , P` as follows. Start a segment for each
leaf consisting of the edge incident on it, and associate a value of 1 with the
segment. Extend these segments in the direction of the root until each reaches a
node of degree ≥ 3. At each such node, we continue the segment with the highest
value (ties broken arbitrarily) but add the sum of the values of the concluded
segments to the value of the continued segment. Note that this value is now at
least twice the value of any of the segments that were concluded. We continue
in this manner until we reach the root. In the end, each edge will belong to
exactly one segment. Note that the path from an arbitrary node u ∈ V to the
root can intersect with at most log ` of the resulting segments because the value
of successive intersecting segments at least doubles and the maximum value is `.

Then, if we let the first |P1| elements of z correspond to P1, the next |P2|
elements correspond to P2, etc. we ensure that when we add (or subtract) 1
to each entry corresponding to PT (u, r) for some u, this involves only O(log n)
updates of contiguous intervals.



5 Arbitrary Graphs

In this final section, we generalize all our previous results and design a sketch for
earth-mover distance for arbitrary graph metrics. Let G = (V,E) be a graph on
n nodes. Define a metric d where for a, b ∈ V , d(a, b) is the length of the shortest
path between a and b in G.

The approach to estimating EMDd(A,B) is to reduce to the tree-metric case
solved in the previous section. This naturally extends the approach in Section
3 where we reduced the cycle case to the path-metric case. Specifically, let
T = (V,ET ) be an arbitrary spanning tree and let F = E \ ET . For example,
see Figure 2 where ET = {e1, e2, e3, e4} and F = {f1, f2}. The tree T defines a
metric d′ where for a, b ∈ V , d′(a, b) is the length of the shortest path between a
and b in T .

The next lemma shows that it is possible to express EMDd(A,B) in terms
of EMDd′(A

′, B′) where A ⊆ A′ and B ⊆ B′. The lemma is a generalization of
Lemma 1.

Lemma 7. For f = (u, v) ∈ F and λ ∈ {−k,−k+ 1, . . . , k− 1, k}, let Cfλ be the
multi-set consisting of λ copies of “u” if λ > 0 and |λ| copies of “v” if λ < 0.
Then,

EMDd(A,B) ≤
∑
f∈F

|λf |+ EMDd′(A+
∑
f∈F

Cfλf , B +
∑
f∈F

Cf−λf ) (3)

with equality for some set of coefficients λf .

Proof. Consider a bijection π between A′ = A +
∑
f∈F C

f
λf

and B′ = B +∑
f∈F C

f
−λf . We will show that π induces a bijection σ between A and B such

that ∑
a∈A

d(a, σ(a)) ≤
∑
f∈F

|λf |+
∑
a∈A′

d′(a, π(a)) , (4)

and this will establish the first part of the lemma.
It will be convenient to enumerate the elements of Cfλf and Cf−λf :

Cfλf = {cf1 , c
f
2 , . . .} and Cf−λf = {df1 , d

f
2 , . . .}

such that we may assume that π(cfi ) = dfj implies i = j. If π(a) ∈ B, let
σ(a) = π(a). Otherwise, define the sequence:

sa = (a, df1i1 , c
f1
i1
, df2i2 . . . , c

fk−1

ik−1
, dfkik , c

fk
ik
, b)

where each successive element is uniquely defined by π and the indexing of the
elements in each Cfλf and Cf−λf :

df1i1 = π(a) , df2i2 = π(cf1i1 ) , . . . , dfkik = π(c
fk−1

ik−1
) , and b = π(cfkik ) .



Given sa, define σ(a) = b, i.e., we match a with the last element of the sequence.
Note that

d(a, π(a)) ≤ d′(a, df1i1 ) + 1 + d′(cf1i1 , d
f2
i2

) + 1 + . . .+ 1 + d′(cfkik , b) .

Summing over all a ∈ A, gives Eq. 4 since each pair (dfi , c
f
i ) appears in at most

one sequence because π is a bijection.
To prove that there exists a set of coefficients such that Eq. 3 is tight, consider

the bijection σ = argminσ
∑
a∈A d(a, σ(a)). Then, for each f = (u, v), let

λf = |{a ∈ A : u appears before v on path between a and σ(a)}|
−|{a ∈ A : u appears before v on path between σ(a) and a}| .

Then,

EMDd′(A+ Cfλf , B + Cf−λf ) ≤ EMDd(A,B)−
∑
f∈F

|λf |

since with the addition of the Cfλf and Cf−λf sets we can consider the matching

between A+ Cfλf and B + Cf−λf induced by removing all edges f ∈ F .

5.1 Sketch Details

For a graph G = (V,E), let T = (V,ET ) be an arbitrary spanning tree with root
r. Define the vectors x, y ∈ RE and z = x− y where

xe =

{
|{a ∈ A : e ∈ PT (a, r)}| if e ∈ ET
0 otherwise

ye =

{
|{b ∈ B : e ∈ PT (b, r)}| if e ∈ ET
0 otherwise

.

For each f = (u, v) ∈ F , we define a vector cf where

cfe =


1 if e ∈ PT (u, r) \ PT (v, r)

−1 if e ∈ PT (v, r) \ PT (u, r)

1 if e = f

0 otherwise

The intuition behind the definition of cf is that if z corresponds to point sets
A and B, then z + λfc

f corresponds to point sets A+ Cfλf and B + Cf−λf .

Example 2. Consider the instance in Figure 2. In this case

x = (1, 1, 0, 1, 0, 0) , y = (0, 1, 1, 0, 0, 0) , z = (1, 0,−1, 1, 0, 0)

cf1 = (1, 1,−1, 0, 1, 0) and cf2 = (0, 0, 1,−1, 0, 1) .

Note that ‖z+0cf1 +1cf2‖1 = ‖(1, 0, 0, 0, 0, 1)‖1 = EMDd(A,B) and for arbitrary
λ1, λ2 we have

‖z + λ1c
f1 + λ2c

f2‖1 ≥ EMD(A,B) .
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Fig. 2. An instance of earth-mover distance on an arbitrary graph metric. See the text
in Example 2. Points in A are denoted by circles and points in B are denoted by stars.

Lemma 8. min−k≤λ1,...,λt≤k ‖z +
∑
f∈F λfc

f‖1 = EMDd(A,B).

Proof. Let z[n−1] and cf[n−1] be the vectors corresponding to the first n − 1

elements of z and cf for each f . Note that

‖z +
∑
f∈F

λfc
f‖1 =

∑
f∈F

|λf |+ ‖z[n−1] +
∑
f∈F

λfc
f
[n−1]‖1 .

The proof then follows from Lemma 7 and Theorem 2.

Extending the idea in Section 3, we now define the function f(λ1, . . . , λt) =
‖z +

∑
f∈F λfc

f‖1. From the above lemma, it suffices to estimate

min
−k≤λ1,...,λt≤k

f(λ1, . . . , λt) .

From Theorem 1 (and the surrounding discussion), it is possible to compute esti-
mates {f̃λ1,...,λt}−k≤λ1,...,λt≤k from a O(tε−2 log n log(kδ−1))-dimensional sketch
of z such that with probability at least 1− δ, for all −k ≤ λ1, . . . , λt ≤ k

|f(λ1, . . . , λt)− f̃λ1,...,λt | ≤ εf(λ1, . . . , λt) .

Hence, if we return the minimum estimate then we have an (ε, δ) approximation
for EMD(A,B). However, as in the cycle case, rather than evaluating every
f̃λ1,...,λt to find the minimum, it is possible to find the minimum more efficiently.
One option is to exploit the convexity of f as in Section 3 using a recursive
regression algorithm [13] or to use recent results on robust regression via sub-space
embeddings [6, 15].
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