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Abstract
We address the trade-off between the computational resources needed to process a large data set
and the number of samples available from the data set. Specifically, we consider the following
abstraction: we receive a potentially infinite stream of IID samples from some unknown distribu-
tion D, and are tasked with computing some function f(D). If the stream is observed for time t,
how much memory, s, is required to estimate f(D)? We refer to t as the sample complexity and
s as the space complexity. The main focus of this paper is investigating the trade-offs between
the space and sample complexity. We study these trade-offs for several canonical problems stud-
ied in the data stream model: estimating the collision probability, i.e., the second moment of a
distribution, deciding if a graph is connected, and approximating the dimension of an unknown
subspace. Our results are based on techniques for simulating different classical sampling proced-
ures in this model, emulating random walks given a sequence of IID samples, as well as leveraging
a characterization between communication bounded protocols and statistical query algorithms.
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1 Introduction

Big data systems must process data at multiple levels of a hierarchy, starting at local
per-process or per-container monitoring and extending up to aggregate statistics for entire
databases or data centers. When designing monitoring or analytics for these systems, some
of the first decisions which must be made are which levels of the hierarchy should hold
the analytics, and consequently what computational resources are available for processing
data without introducing significant overhead. In this paper, we initiate the theoretical
investigation of one of the fundamental trade-offs involved in architecting these systems: the
amount of memory needed to process incoming data and the total amount of data the system
must collect.

In algorithmic terms, we consider the following abstraction: we receive a stream of IID
samples from some unknown distribution D, and are tasked with estimating some function
f(D) of the distribution. Two natural questions about this task have been studied extensively:
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1. The statistics question is how to bound the sample complexity: how many samples are
required to estimate f(D) to some prescribed accuracy with high probability?

2. The data stream question is how to bound the space complexity: how much memory is
required to compute or approximate the estimator for f(D)?

In real systems, of course, both questions are important. Requiring more samples adds
processing overhead to the system, and increases the time necessary for the system to detect
and react to changes in the underlying distribution. Requiring additional memory increases
the overhead on the system, and may make some analytics impractical, or require them to
be relocated to separate machines or systems.

Despite the clear importance of this trade-off, our work is the first to our knowledge
which explicitly examines the trade-off between the number of samples which must be
taken from a stream and the amount of memory necessary to process these samples. We
begin this investigation with a study of three canonical problems from the data streaming
literature: estimating the collision probability, also known as the second frequency moment [2],
undirected connectivity [13, 14, 35], and rank estimation [10, 25, 6]. For all three problems,
we find trade-offs between the sample and space requirements.

Sufficient Statistics and Data Streams. The goal of space-efficiency in statistical
estimation is not new. In the study of sufficient statistics [15] the goal is to prove that it
suffices to maintain a small number of statistics about the input when estimating certain
parameters of the source distribution D. For example, to estimate µ if D ∼ N(µ, 1), it is
sufficient to maintain the sum and count of the samples; other information can be discarded.
However, for non-parametric problems sufficient statistics typically do not exist. Our work
could be seen as “approximate sufficient statistics” – statistics about the stream of samples
that can be computed online that will suffice to estimate the relevant properties of the input
with high probability.

In contrast to the majority of data stream research, in our setting we do not need to
consider adversarially-ordered streams since the assumption is that the input stream is
generated by a stochastic process. There is a growing body of work on randomly-ordered
streams [20, 33, 29, 8, 27, 17, 7]. Some work has also explicitly considered streams of IID
samples [9, 41, 19, 30]. There has also been work on hypothesis testing given limited space
[23, 21].

Subsampling vs. Supersampling. Other related work includes a paper by an over-
lapping set of authors [26] (see also [37]) that considered the problem of processing data
streams whose arrival rate was so high that it was not possible to observe every element of
the stream. Consequently, it was presumed that the stream was first subsampled and then
properties of the original stream had to be deduced from the samples. In contrast, in this
work we essentially consider oversampling, or supersampling the data set. The motivation is
two-fold. First, in many applications there is an abundance of redundant data, e.g., from
sensors that continually monitor a static environment, and it makes sense to find a way to
capitalize on this data. Second, it may be preferable from a computational point of view, to
run a fast light-weight algorithm on a lot of data rather than a computationally expensive
algorithm on a small amount of data.

A number of early works consider learning in online settings, and we only mention a
few here. There is a line of work on hypothesis testing and statistical estimation with finite
memory, see, e.g., [11, 24], but the lower bounds in such models come from finite precision
constraints, and do not seem directly related to the model or problems that we study. Other
work [31] considers lower bounds for algorithms given data in a specific form, i.e., in so-called
oracle models, and the limitations of such assumptions on the model have been exploited to
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design faster algorithms in some cases [32].
More recently, [38, 39] consider the question of learning with memory or communication

constraints in the setting in which the algorithm has access to a stream of randomly drawn
labeled examples. Their algorithmic “memory bounded” model corresponds to our model.
We note that these works study a different set of problems than the ones from the data
stream literature that we focus on, reinforcing the naturalness of the model. The lower
bounds in these works use a more general communication model than our streaming machines:
given a communication bound of b bits per example, an algorithm must compress the ith
example according to an arbitrary function that may depend on the compressed versions
of the first i − 1 examples; the algorithm may then compute an arbitrary function of the
compressed examples. The authors show tight connections between communication bounded
protocols, and statistical query algorithms, and we leverage their characterization to show a
communication lower bound, and ultimately space lower bound in Section 4.

Our Results. We study the trade-off between sample and space complexity for canonical
problems in the data stream literature such as estimating the collision probability or second
frequency moment [2], undirected connectivity [13, 14, 35], and rank estimation [10, 25, 6];
see also the references therein. We obtain the following tradeoffs:
1. Collision Probability. Suppose D = Dp is a distribution (p1, . . . , pn) over [n]. Then,

to estimate F2(D) =
∑
i p

2
i up to a factor (1 + ε) with probability 1 − δ, for any1

t ≥ t∗ = Ω̃ε,δ(n1/2) it is sufficient for

s · t = Õε,δ(n)

Moreover, we show a lower bound that s · t1.5 = Ω̃(n5/4) space is necessary to return a
constant factor approximation with constant probability, which is tight when s and t are
Θ̃ε,δ(

√
n). We also point out an error in existing work, which if fixable, would result in

the tight s · t = Ω̃(n) tradeoff. We present these results in Section 2.
2. Graph Connectivity. Suppose D = DG is the uniform distribution of the set of edges of an

undirected, unweighted graph G. We show in Section 3 that for t ≥ t∗ = Ω(|E| log |E|),
it suffices for

s2 · t = Õ(|E| · |V |2)

3. Subspace Approximation. In Section 4 we consider the problem of determining whether a
set of samples from {0, 1}n is being drawn from the entire space or from some rank n/2
subspace. We first note an s = O(logn)-bit space streaming algorithm which achieves
sample complexity t = O(2n). More interestingly, we then show that this is near-optimal
by showing that any streaming algorithm using s ≤ n/8 space requires

2s · t = Ω(2n/8) .

So even if one allows say, s = n/16 bits of space, one still needs 2Ω(n) examples.
We believe one of the main contributions of our work is the new framework for analyzing
tradeoffs between the sample and space complexity of streaming algorithms. We have chosen
this set of problems because it is representative of well-studied sub-areas in the data stream
literature such as estimating statistical quantities such as frequency moments, graph problems
in the semi-streaming model, and numerical linear algebra problems.

1 Õε,δ(f(n)) and Ω̃ε,δ omit poly(log(n/δ), 1/ε) terms.
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2 Collision Probability

The collision probability is a fundamental quantity quantifying how far a distribution is
from the uniform distribution, the latter having the smallest possible collision probability.
Estimating the empirical collision probability is well-studied for worst case data streams of
a given length, dating back to the seminal work of Alon, Matias, and Szegedy [2]. It has
applications to estimating self-join sizes in databases, and is also known as the repeat rate or
Gini’s Index of homogeneity, which is used to compute the surprise index [16].

Here we consider a stream of independent samples 〈a1, a2, a3, . . .〉 from an unknown
discrete distribution p over [n]. Let pj = P [ai = j] and let F2 =

∑
j p

2
j .

2.1 The Upper Bound

I Theorem 1. For t = Ω̃ε,δ(n1/2), estimating F2 up to a factor (1± ε) given t samples with
probability at least 1− δ is possible in Õε,δ(1 + n/t) bits of space.

Proof. We can assume δ is a constant, since the algorithm generalizes to smaller δ simply
by increasing the sample complexity by a factor of log(1/δ), running our algorithm log(1/δ)
times in sequence on each of log(1/δ) independent groups of samples, and taking the median.
Note t = Ω(n1/2) was shown necessary by Bar-Yossef [4]; with fewer samples estimating F2
is information-theoretically impossible.

Our algorithm partitions the input stream into t/w groups of w consecutive samples. We
now analyze one specific group of w samples. Suppose the samples are a1, . . . , aw. For each
pair i 6= j ∈ {1, 2, . . . , w}, let Xi,j be an indicator random variable which is 1 iff ai = aj . Let
X = 1

(w
2)
∑
i6=j Xi,j . Then E[X] is equal to E[Xi,j ] for an arbitrary i 6= j, and the latter is

precisely F2 =
∑
i p

2
i . We also have, assuming i 6= j and i′ 6= j′ in the following:

(
w

2

)2
Var[X] =

∑
(i,j)=(i′,j′)

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=4

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

=
∑
(i,j)

E[X2
i,j ]−E2[Xi,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

+
∑

|{i,j,i′,j′}|=4

E[Xi,j ]E[Xi′,j′ ]−E[Xi,j ]E[Xi′,j′ ]

≤
∑
(i,j)

E[X2
i,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]−E[Xi,j ]E[Xi′,j′ ],

where the first equality follows by expanding the variance into covariances, the second
equality uses independence of disjoint indices, and the inequality cancels the terms for which
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|{i, j, i′, j′}| = 4 and drops non-positive terms. Therefore,

Var[X] ≤ 1(
w
2
)2
∑

(i,j)

E[X2
i,j ] +

∑
|{i,j,i′,j′}|=3

E[Xi,jXi′,j′ ]


= E[X](

w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

E[Xi,jXj,k]

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

Pr[Xi,j = 1 | Xj,k = 1] · Pr[Xj,k = 1]

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

∑
`

Pr[Xi,j = 1 | aj = `] · Pr[aj = ` | Xj,k = 1] · F2

= F2(
w
2
) + Θ

(
1
w4

) ∑
distinct i,j,k

∑
`

p` ·
p2
`

F2
· F2

= F2(
w
2
) + Θ

(
F3

w

)
,

where we have used the law of total probability and the definitions, and here F3 =
∑
j p

3
j .

In the stream, we will use O(w logn) bits of space to compute X as above. Then, since
we have partitioned the samples into q = t/w groups (which we can assume is an integer
w.l.o.g.), we will compute an independent estimate X for each group, and take their average,
obtaining a random variable Y . Thus Y can be computed in O(w logn) bits of space. Then
E[Y ] = E[X] = F2 and Var[Y ] = Var[X]/q. By Chebyshev’s inequality,

Pr[|Y − F2| ≥ εF2] ≤ Var[X]
qε2F 2

2
≤ 1(

w
2
)
F2qε2

+O

(
F3

wqε2F2

)
= O

(
n

w2qε2

)
+O

( √
n

wqε2

)
,

where the final inequality uses that F2 ≥ 1/n in the first expression, while the second
expression uses Hölder’s inequality to show that F3 ≤

√
nF2.

Plugging in q = t/w, this probability is O(n/(twε2)+
√
n/(tε2)). Thus, for t = Ω(n1/2ε−2)

samples, we can set w = O(n/t) and have this probability be smaller than an arbirarily small
constant. Note that as a sanity check, we need t = Ω(n1/2) to ensure w ≤ t, as required by
the definition of these variables. This completes the proof. J

2.2 The Lower Bound
Our lower bound relies on a result by Andoni et al. [3] for the random order data stream model,
which is different than the model we consider in this paper. We note that an improvement
to the work of Andoni et al. [3] was claimed in [18]; however, after communication with the
authors, the proof given in [18] seems to have a bug and is currently not known to be fixable.
If the result in [18] is fixable, then we obtain an optimal tradeoff of s · t = Ω̃(n); otherwise
we obtain the slightly weaker tradeoff presented here.

The work of [3] concerns distinguishing between the following two cases with constant
probability, and shows that Ω(t/r2.5) space is required:
1. (Case 1:) A sequence of t samples from a distribution pno that is uniform on some subset

S ⊆ [t] of size Θ(t).
2. (Case 2:) A sequence of t samples from a distribution pyes such that pyesi = r/t for some

i ∈ [t] and uniform on some subset T ⊆ [t] \ {i}.

By combining this result with a hashing technique we establish the following result.

ESA 2016
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I Theorem 2. Any constant factor approximation of F2(D) with constant probability given
a sequence of t IID samples on [n] requires Ω(n5/4/((log2.5 n) · t1.5)) bits of space.

Proof. Let h : [t] → [n] be a fully-random hash function and consider the problem of
distinguishing pno and pyes where we set r = c logn · t · n−1/2 for some constant c > 0. By
applying h on each distribution (i.e., applying h to each observed sample) we generate two
new distributions qno and qyes over [n] where:

qnoi =
∑

j:h(j)=i

pnoj and qyesi =
∑

j:h(j)=i

pyesj

Note that with high probability maxi qnoi = O(logn · 1/n) and hence F2(qno) ≤ n ·O((logn ·
1/n)2) = O(log2 n·n−1/2). However, maxi qyesi ≥ r/t and so F2(qyes) ≥ r2/t2 = c2·log2 n·n1/2.
Hence, for a sufficiently large value of the constant c > 0 we can ensure that any constant
approximation of F2 distinguishes between qyes and qno and hence, also distinguishes between
pyes and pno. However, by the result of Andoni et al. [3] we know that this requires
Ω(t/r2.5) = Ω(n2.5(1/2)/((log2.5 n) · t1.5)) bits of space. J

3 Connectivity

In this section, we consider a graph model where our input stream is a sequence of t
random samples drawn (with replacement) from the graph’s entire edge set E. This model is
appropriate for random processes where the “graph” involved is defined only implicitly, and
is not available for querying. For example, on a large social network, we can imagine a graph
where nodes represent users and weighted edges represent user frequencies of interaction.
We may not have enough space or processing power to analyze the history of interactions
between users directly, or to provide random access to this history; according to [40] an
estimated 50 billion text messages per day were sent in 2014. However, the stream of ongoing
interactions approximates random samples from the weighted edge distribution.

We begin the study of this model by first examining unweighted graphs, and by examining
the canonical problem of determining connectivity for such graphs. Our algorithm uses the
sampled edges to simulate classical random walks on the graph. In Section 3.1, we discuss how
to simulate and tightly analyze random walks in our model. The main technical difficulty is
ensuring independence when simulating multiple random walks in parallel. Then, in Section
3.2, we adapt a connectivity algorithm of Feige [14] to achieve the required space/sample
trade-off. Since our algorithm provides a general technique for space/sample trade-offs in
simulating random walks, we believe it will be a useful starting point for examining additional
problems in this model.

For notational convenience, denote the graph by G = (V,E), the number of nodes by
n = |V |, and the number of edges by m = |E|.

3.1 Technique: Emulating Classical Random Walks
Consider the following basic algorithm: given a node v, we sample edges until we receive
an edge {v, u} for some u. At this point, we move to node u, and repeat. We refer to this
method as a sampling walk. Note that the expected time to leave v is m/d(v) samples2 where
d(v) is the degree of a node v, and so a single step of a classical random walk may require

2 This is because the number of samples is geometrically distributed with parameter d(v)/m.
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Ω(m) samples if v has low degree.

An Inefficient Connectivity Algorithm. This basic algorithm already leads to a O(logn)
space algorithm which uses O(m2n2) samples in expectation. This follows by starting a
sampling walk at node 1 and emulating a classical walk until it traverses nodes 2, 3, . . . , n
in order. The expected length of this walk is O(mn2) because the cover time of G, i.e., the
expected length of walk until it visits all nodes (see e.g., [28]), is O(mn) and there are n− 1
segments in the traversal. Hence, emulating the random walk takes O(m2n2) samples in
expectation. The space use is O(logn) bits because the algorithm just needs to remember
the current node and the furthest node that has been reached in the sequence. In what
follows, we will improve upon the number of samples required and generalize to algorithms
that use more space.

The Loopy Graph and an Improved Analysis. The first improvement comes via
a better analysis. At a node v with d(v) neighbors, there are d(v) possible samples which
would result in a move, and m − d(v) samples which would not. We can thus view our
sampling-based walk on G as a classical random walk on a new graph H formed by adding
m− d(v) self-loops to each vertex v in G. We call H the “loopy graph”.

This view of the sampling walk illuminates its properties. Specifically, H’s cover time
is O(mn2) since there are mn edges and n nodes. Hence, the above “inefficient” algorithm
actually only requires (n− 1)× cover-time(H) = O(mn3) samples. We will also subsequently
use the fact that since H is m-regular, its stable distribution is uniform across all nodes.

3.1.1 Multiple Independent Random Walks
Random walks experience dramatic speedups in cover time, hitting time, etc., when they are
split into multiple shorter walks; [12] provides a recent survey and results. These speedups
naturally require the walks to be independent. In this section, we consider performing p ≤ n
random walks in parallel, with the starting point of each walk chosen independently and
uniformly from the nodes (and thus according to the stationary distribution on H). Running
these p walks will require O(p logn) space. The main theorem of this section establishes that
it is possible to efficiently perform p independent, parallel walks in H.

I Theorem 3. Given p ≤ n parallel random walks in H, each starting at an independently-
chosen uniformly random node, we can simulate one independent step of each walk using
O(logn/ log logn) total samples.

Issue 1: Multiple Walks can use a Sampled Edge. The first issue we encounter is
that a single sample may be a valid move for multiple walks. If we allow multiple walks to
use the same sample, we introduce obvious dependence; if we only allow one of our walks
to use the sample, we are “slowing down” walks that have collisions, and again introducing
dependence.

When multiple walks are at the same node, we will handle them independently in the
following way. We partition the p walks into B1 ∪B2 ∪ . . . ∪Br where each Bi contains at
most one walk at each node. We process each batch in turn and hence the total number of
samples required equals the number of samples required for a batch multiplied by the number
of batches. The next lemma establishes that it suffices to consider r = O(logn/ log logn)
batches.

I Lemma 4. With high probability, no node ever contains more than O(logn/ log logn)
walks.

ESA 2016
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Proof. Consider a fixed node at a fixed time. Let Z be the number of walks in this node.
Note that Z ∼ Bin(p, 1/n) since each walk is independent and is equally likely to be at any
node. Hence E [Z] = p/n ≤ 1. By an application of the Chernoff bound, for some large
constant c we have P [Z ≥ c logn/ log logn] ≤ n−10 . The lemma follows by taking the union
bound over the n nodes and polyn time-steps. J

Henceforth, we assume that at most one walk is at each node, i.e., we analyze how many
samples are required to process a single batch. The remaining case where a sampled edge
may be valid for multiple walks is if there are walks at both endpoints. To solve this problem,
we randomly orient each sampled edge so that it is valid for only one walk. This increases
the expected number of samples required by a factor of 2.

Issue 2: Negative Correlation. We have reduced the problem to the following situ-
ation: we have p distinct nodes u1, . . . , up and can sample arcs uv uniformly from the set
E+ = {uv : {u, v} ∈ EG}, i.e., the set of arcs formed by bidirecting each edge in EG. Note
that |E+| = 2|EG|. The goal is to generate a set of arcs {u1v1, . . . , upvp} such that each arc
is chosen independently and for each i,

vi =
{
v ∈R Γ(ui) with probability dG(vi)/|E+|
ui with probability 1− dG(vi)/|E+|

(1)

where Γ(ui) = {v : {u, v} ∈ E} is the neighborhood of ui in G, and where v ∈R Γ(ui) denotes
an edge drawn randomly from the uniform distribution over the set Γ(ui).

Consider the following procedure: draw a single sample uv ∈R E+ and, for each i, set
vi = v if u = ui, or vi = ui otherwise. This procedure picks each vi according to the desired
distribution:

P [vi = ui] = 1− dG(vi)/|E+|

and conditioned on {vi 6= ui}, vi is uniformly chosen from Γ(ui). Unfortunately, the procedure
obviously does not satisfy the independence requirement because the events {ui = vi} and
{uj = vj} are negatively correlated. However, the following theorem establishes that, with
only O(1) samples from E+ in expectation, it is possible to sample independently according
to the desired distribution.

I Theorem 5 (Efficient Parallel Sampling). There exists an algorithm that returns samples
(v1, . . . , vp) drawn from the desired distribution (1) while using at most 2e− 1 samples from
E+ in expectation.

Proof. Our algorithm operates in rounds; each round uses at most 2 samples from E+. At
the beginning of a round, suppose we have already assigned values to v1, . . . , vi for i ≥ 0.
Then the round proceeds as follows:
1. Sample uv ∈ E+:

a. If u 6∈ {ui+1, . . . , up} then set vi+1 = ui+1, . . . , vp = up
b. If u = uj for some j ∈ {i+ 1, . . . , p} then sample an additional arc wx ∈ E+

i. If w ∈ {ui+1, . . . , uj−1} then set vi+1 = ui+1, . . . , vj−1 = uj−1, vj = uj
ii. If w 6∈ {ui+1, . . . , uj−1} then set vi+1 = ui+1, . . . , vj−1 = uj−1, vj = v

and we repeat the process until all v1, . . . , vp have been assigned.
To analyze the algorithm we define Tj = {ujv : {uj , v} ∈ EG} to be the set of dG(uj)

arcs leaving uj and note that because u1, . . . , up are distinct, T1, . . . , Tp are disjoint. Also
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define Aj to be the event that {vj 6= uj}. Then, in any round in which vj hasn’t yet been
assigned:

P [vj is assigned and Aj |vj is assigned] = |Tj |
|E+| −

∑j−1
k=i+1 |Tk|

·
|E+| −

∑j−1
k=i+1 |Tk|

|E+|
= |Tj |
|E+|

(2)

and hence vj is chosen according the desired distribution.
We next show that each vj is chosen independently. First observe that, conditioned on

Aj , vj is independent of (v1, . . . , vj−1, vj+1, . . . , vp). Hence, it suffices to show that all Aj
are independent. Note that the RHS of (2) does not depend on decisions made in previous
rounds. Hence, we may deduce that Aj is independent of the outcome of rounds before vj is
assigned. Hence, for any 1 ≤ i1 < i2 < . . . < ir ≤ p,

P [Ai1 ∩ . . . ∩Air ] = P [Ai1 ]P [Ai2 |Ai1 ] . . .P
[
Air |Ai1 ∩ . . . ∩Air−1

]
= P [Ai1 ]P [Ai2 ] . . .P [Air ] .

The worst case for the expected number of samples is achieved when p = |E+| and each set
is of size 1. For the algorithm not to terminate in a given round, we need u ∈ {ui+1, . . . , up}
and hence the index of the sampled u needs to strictly increase over previous rounds. The
probability of this happening for r rounds is

(
m
r

)
/mr and the expected number of rounds

which do not terminate is
∑m
r=1

(
m
r

)
/mr ≤ e − 1. Because each non-terminating round

involves two samples, the expected total number of samples is thus at most 2e− 1. J

3.2 Connectivity Algorithm and Analysis
Our algorithm adapts a technique of Feige [13] for determining graph connectivity via a
two step process. We first test whether G contains any connected components containing
k or fewer nodes (for some k < n to be chosen). If all of the connected components of G
contain at least k nodes, we choose O((n logn)/k) nodes at random, and verify that they
are all connected to each other. Note that we can expect to have chosen a vertex from each
connected component. If we find that all of our chosen vertices are connected, we conclude
that G is connected; otherwise, we conclude that G is disconnected.

Our connectivity algorithm thus relies on algorithms for two problems: 1) determining
whether the graph has any connected components below a certain size, and 2) determining
whether a set of nodes is mutually connected in the graph. In the next two sections, we
develop algorithms with sample/space tradeoffs for each of these two problems. We then use
them in an algorithm for determining whether the graph G is connected.

3.2.1 Finding Small Components
Our first subproblem is to determine whether the graph has any connected components below
a certain size. Given a node v, let the set of nodes in the connected component containing v
be denoted cc(v).

I Lemma 6. Given a node v of G and a parameter r, we can distinguish between the case
where |cc(v)| < r and the case where |cc(v)| > 2r with constant probability using O(mr2)
samples and Õ(1) space.

Proof. We perform a sampling walk of length O(mr2) samples. During this walk, we maintain
a 1.1-approximation of the number of distinct vertices visited using an F0 estimator [22].
If the estimated number of vertices visited is at least 3r/2, we conclude that |cc(v)| ≥ r;
otherwise, we conclude that |cc(v)| ≤ 2r.
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If |cc(v)| ≤ r, we will clearly visit at most r nodes. Our algorithm correctly concludes
this so long as the F0 estimator returns the promised approximation. If |cc(v)| ≥ 2r, we
need to argue that in O(mr2) samples we will hit at least 2r distinct nodes (except with
constant probability). This follows from a result by Barnes [5, Thm 1.3] that states that for
any connected (multi-)graph, it takes O(MN ) time in expectation to hit either N distinct
nodes orM distinct edges. UsingM = 2mr and N = 2r establishes the result. J

I Theorem 7. We can determine whether G has a connected component of size less than 2k
using O(p) space and Õ(2k ·mn/p) samples for any p ≤ n.

Proof. Our algorithm has k rounds, each corresponding to a value r = 1, 2, 4, . . . , 2k−1. In
each round we reach one of two conclusions: 1) G has no connected components with size
in the range [r, 2r] or 2) there exists a connected component of G of size < 3r. All graphs
satisfy at least one of these conclusions. We then determine G has no connected component
of size less than 2k if we never reach the first conclusion.

At a given value of r, we choose O(n logn/r) nodes, so that we hit any connected
component of at least r nodes with high probability. From each node, we perform Õ(1)
random walks of length Õ(mr2) samples; from Lemma 6 this will suffice to determine with
high probability whether any of these nodes is in a connected component of size ≤ 2r.

We choose p nodes at a time, and perform p walks in parallel. From Theorem 3 we can
perform each set of p walks using Õ(mr2) samples. The number of samples required for
each r value is then O( nrpmr

2) = O(mnr/p), and we thus require a total number of samples
O(mn2k/p). J

3.2.2 Checking Mutual Connectivity
The remaining subproblem is to determine whether a set of randomly-chosen nodes is mutually
connected.

I Lemma 8. We can determine whether a set of O(p) randomly-chosen nodes is mutually
connected in G using Õ(p) space and Õ(mn2/p2) samples for any p ≤ n.

Proof. In the context of traditional random walks, Feige [14] provides a method for testing
whether two nodes s and t are connected using space Õ(p) and a total of Õ(mn/p) random-
walk steps. They proceed by choosing p “landmark” nodes; we then run O(logn) random
walks from each landmark and from s and t. Each walk is of length Õ(mn/p2). During
these walks we build a union-find data structure indicating which sets of landmark nodes are
connected. At the end of the algorithm, we conclude that s and t are connected if they are
in the same union-find component.

SinceH is regular, the landmark selection process chooses each node with equal probability.
Using Feige’s algorithm on the p randomly-chosen landmarks determines whether this set of
p nodes is mutually connected. The graph H has n nodes and mn edges, so from [14] each
walk should be of length Õ(mn2/p2). Using Theorem 3 we can simulate the p walks with a
total of Õ(mn2/p2) samples. J

We are now ready to prove our main connectivity result.

I Theorem 9. Given sampling access to a graph G, we can determine with high probability
whether G is connected using O(p logn) space and Õ(mn2/p2) samples, for any p ≤ n.

Proof. We use Theorem 7 with 2k = n/p to verify that G has no connected components of
size less than n/p. If it has such a component, then G is disconnected. If not, we choose
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O(p logn) random vertices, hitting each remaining component with high probability. Using
Lemma 8, we test that these vertices are mutually connected. Since we have chosen enough
vertices to hit every connected component, this suffices to show that the graph is connected.
Each of the two subproblems requires O(mn2/p2) samples and Õ(p) space, so these are the
sample and space requirements of our algorithm. J

4 Rank Estimation

In this section we study the rank estimation problem, namely, that of distinguishing if a
stream of vectors is coming from a full dimensional subspace or a subspace of low rank. This
is quite useful in data streams and machine learning tasks, for which the vectors correspond
to examples. If the subspace is rank-deficient, then one might be interested in a low rank
approximation to it. This problem is also relevant in testing codewords, which has been
studied in the streaming model in [36].

We will start with a lower bound and then mention a simple matching upper bound for
a natural setting of parameters. The lower bound is described in terms of communication
complexity, though it yields a lower bound on the memory for data stream algorithms via a
standard simulation whereby the state of the streaming algorithm is the message between
players in a communication protocol. We mention this after presenting the lower bound for
the communication game.

The authors of [39] show a tight connection between learning tasks that can be accom-
plished via bounded communication algorithms and learning tasks that can be accomplished
via “statistical query” algorithms. They operate in the following quite general communication
model, and we leverage their result to show a space-sample lower bound trade-off for a
streaming version of the rank estimation problem: the task is to distinguish
1. (Case 1): A sequence of t samples chosen uniformly from some rank n/2 subspace

S ⊆ {0, 1}n.
2. (Case 2): A sequence of t samples chosen uniformly from {0, 1}n.

A “statistical query” algorithm for this task, in the language of [39], is an algorithm
that adaptively proposes a sequence of functions f1, f2, . . . with fi : {0, 1}n → [−1, 1], and
receives estimates of Ex[fi(x)] that have been corrupted via some adversarial noise. We say
that there exists an n-query statistical query algorithm with tolerance τ for this testing task
if, for every rank n/2 subspace S, after asking n statistical queries f1, . . . , fn, with responses
r1, . . . , rn that satisfy |ri − Ex←unif [S][fi(x)]| ≤ τ , the algorithm will output rank n/2 with
probability at least 3/4, and if the responses satisfy |ri − Ex←unif [{0,1}n][fi(x)]| ≤ τ , then
the algorithm will output full rank with probability at least 3/4, where the probability is
over the randomness of the algorithm that decides on the next query fi given f1, . . . , fi−1
and r1, . . . , ri−1.

I Proposition 10. Any statistical query algorithm for distinguishing the uniform distribution
over rank n/2 subspaces of {0, 1}n from a uniform distribution over {0, 1}n using statistical
queries of tolerance τ > 1

2n/8 requires at least Θ(2n/4) statistical queries.
The following lemma is the core to the proof.

I Lemma 11. Let f : {0, 1}n → [−1, 1] be a function with
∑
x∈{0,1}n

f(x)
2n = µ, and let S be

a rank n/2 subspace of {0, 1}n. Define the random variable Xf by choosing S uniformly at
random from the set of all rank n/2 subspaces of {0, 1}n, and then set Xf = Ex←S [f(x)].

Pr[|Xf − µ| >
1

2n/8
] = O(1/2n/4).
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Proof. First note that E[Xf ] ∈ [µ − 1/2n/2, µ + 1/2n/2], as the distribution obtained by
selecting a random rank n/2 subspace S, then choosing a random x ∈ S places probability
1/2n/2 on the zero vector ~0, and the remaining 2n− 1 vectors have equal weight. We will now
upper bound Var[Xf ], and then apply Chebyshev’s inequality. In the following calculations,
#S denotes the number of rank n/2 subspaces of {0, 1}n.

E[X2
f ] = ES

( 1
2n/2

∑
x∈S

f(x)
)2
 = ES

 1
2n
∑
x∈S

f(x)2 + 1
2n

∑
x,x′∈S,x 6=x′

f(x)f(x′)


≤ 1/2n/2 + 1

2n
1

#S
∑
S

∑
x,x′∈S,x 6=x′

f(x)f(x′),

which is equal to

2−n/2 + 2−n

#S

2f(~0) #S
2n/2 − 1

∑
x′ 6=0

f(x′) +
∑
x 6=~0

f(x) #S
(2n/2 − 1)(2n/2 − 2)

∑
x′ 6∈{~0,x}

f(x′)

 .

Noting that |f(x)| ≤ 1, and
∑
x6=~0 f(x) ∈ [2nµ− 1, 2nµ+ 1], and

∑
x′ 6∈{~0,x} f(x′) ∈ [2nµ−

2, 2nµ+2], the above expression lies in the range µ±O(1/2n/2). Hence Var[Xf ] = O(1/2n/2),
and Pr[|Xf − µ| ≥ 1/2n/8] ≤ O(1/2n/4), as desired. J

Proof of Proposition 10. Let distribution D be defined to be the uniform distribution over
{0, 1}n, and let S be a rank n/2 subspace that has been chosen uniformly at random from the
set of rank n/2 subspaces of {0, 1}n, and define DS to be the uniform distribution over S. Let
f1, . . . , fn be a sequence of n = Θ(2n/4) statistical queries, corresponding to the responses
r1, . . . , rn with ri = Ex←D[f(x)]. We will now show that, with probability greater than 1/2
over the randomness of the choice of subspace S, it will hold that |ri−Ex←DS

[fi(x)]| ≤ 1/2n/8.
Indeed, this follows immediately from Lemma 11 via a union bound over the n events. To
conclude, this shows that after n queries of tolerance at most 1/2n/8, with probability at
least 1/2, no information is given regarding whether the responses correspond to D versus
DS for some S, hence the probability of correctly guessing “D” versus “DS” can be at most
3/4 in one of the two cases. J

For the purposes of our lower bound, Lemma 3.3 from [39] (restated below) immediately
translates the statistical query lower bound of Proposition 10 into a lower bound on the
number of samples required by any algorithm in the following bounded communication model:
there is one player per example, and the t players each speak once, one after the other. The
i-th player sees the message sent of each of the first i− 1 players, and then sends its message.

I Lemma 12 (Lemma 3.3 from [39] (restated)). If a given testing (or learning) task can be
solved with probability > 1− δ using t examples via a communication bounded protocol that
employs s bits of communication per example then it can be solved with probability > 1− 2δ
via a statistical query algorithm that asks 2st statistical queries of tolerance τ = δ/(t2s).

Proposition 10 and Lemma 12 yield the following:

I Theorem 13. Any bounded-communication protocol that distinguishes samples from a rank
n/2 subspace of {0, 1}n with constant probability of success above 1/2 that uses s ≤ n/8 bits
of communication per example requires at least Θ(2n/8−s) samples.
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Streaming Lower Bound: This communication bound implies an equivalent bound on the
bits of memory required by any streaming algorithm, via the standard technique of noting that
the memory contents of the streaming algorithm after seeing each example “communicates”
information between examples of the input stream. Note that this lower bound holds even if
the lower bound of Theorem 13 were instead only to hold in the communication model in
which the i-th player only sees the message sent of the (i− 1)-st player.

Nearly Matching Upper Bound: Our lower bound is tight to within constant factors
for the natural case of s = O(logn) and t = O(2n), where a naïve algorithm suffices: choose
a random coordinate unit vector x = ei. Note that for any rank n/2 space, at most n/2
of these can lie in it. Take O(2n) samples, looking to see if any of them equal x. If we are
sampling from a rank-n space, then we will find x with high constant probability; if we are
sampling from a rank n/2 space, we will find it with probability at most 1/2.

We note that very recently the work of Raz [34] improves upon the framework of [39]. It
may be possible to apply it to strengthen the above theorem to require b = Ω(n2) bits of
space with fewer than 2Ω(n) samples, though it is not immediate. In either case, our result
shows an exponential number of samples is needed to achieve polylogarithmic memory by a
data stream algorithm, and we do not know how to prove this in a different way, e.g., by
using more standard reductions from communication complexity.

5 Conclusions

We have introduced a new model for analyzing tradeoffs between sample and space complexity
of streaming algorithms.

There are a number of open questions, a few of which we list here:
1. (Collision Probability) For the collision probability question, what is the optimal space

complexity? We conjecture that s · t = Ω̃(n) should hold. After resolving the dependence
on n, a next natural question would be to understand the dependence on ε and δ. Recent
work [1] may be helpful in this regard.

2. (Frequeny Moments) Can one obtain optimal tradeoffs for other frequency moments
Fk =

∑
j p

k
j ? In this work we focused solely on F2. Perhaps more generally one could

provide a general set of techniques for analyzing various distribution learning problems
in this framework.

3. (Connectivity) What lower bounds can one show for testing connectivity? It seems we can
show some preliminary lower bounds via a reduction from the set disjointness problem,
though currently they are far from the upper bounds.

4. (General) The techniques used for the different problems studied here are not directly
related to each other. Is it possible to develop a more general framework which unifies
the results for these problems?

Acknowledgments: We thank the anonymous referees for their helpful comments.
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