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ABSTRACT
This paper describes a new method for helping students improve
their ability to develop proofs, a skill necessary for comprehending
and appreciating the foundational topics of computer science. Our
method transforms ordinary pen-and-paper homework problems
into a puzzle-like game, where students connect dots to justify
assertions, in a quest to reach a desired goal. We have implemented
a software tutoring system using this method, for students to use
at home as an optional study aid. Potentially, our system could
one day become a full replacement for traditional hand-written
homework, which has the additional benefit for course instructors
of automating the grading of student work. Our system is also easy
to adapt to any class that requires students to write proofs, and
it is easy for instructors to create new problems to use with this
system. This stands in contrast to many other educational tools for
teaching proofs, which are limited to specific topic domains. We
have demonstrated the versatility of our system by testing it in two
computer science classes at a large public university. One was a
Sophomore-level discrete mathematics course where the students
were learning first-order prepositional logic, and the other was
a Junior-level algorithms course where students were being first
exposed to the concept of NP-completeness. Students from our
experiments reported that they would like our system to be used
in more of their classes.
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1 INTRODUCTION
In 2014, when Maryam Mirzakhani became the first female mathe-
matician to win the prestigious Fields Medal, she explained how
she first developed a passion for mathematical proofs [4]:

"It is fun — it’s like solving a puzzle or connecting the
dots in a detective case."

Our goal is to inspire all students with that same passion, and we
aim to accomplish that goal by introducing a puzzle-based platform
for proof construction, where the pedagogical method is to have
students construct proofs by literally connecting the dots.

As computer science researchers, we specifically developed this
platform as part of a tutoring system for helping computer science
students in their theoretical courses [12].

Computer science educators have lamented the difficulty of
teaching students how to write rigorous proofs in discrete mathe-
matics courses [8, 10]. From our own experience grading student
papers, we have found that many students also struggle to write
rigorous proofs in more advanced theoretical computer science
courses as well, such as those covering algorithms and the theory
of computation.

Our proof construction platform provides the following benefits:
• Thepuzzle-like game structure should increase engage-
ment. Puzzles have a rich history of being used to teach
mathematics [15], and more recently Puzzle-Based Learning
has been adopted in computer science and engineering ped-
agogy [6]. Digital game-based learning has also been shown
to affectively motivate learners in numerous fields [18].

• Students are encouraged to be precise and meticulous.
Our platform constrains students to only construct rigor-
ous proofs. That way, students are guided away from the
common pitfalls that frequently plague informal student
proofs such as semantic ambiguity, insufficient detail, gaps
in justification, and logical inconsistency.

• Immediate feedback is provided to the student. Tradi-
tional homework practice is non-ideal because it does not
provide timely feedback for students to rectify learning defi-
ciencies. It may be weeks before students get their corrected
homework back, and some students may find themselves
pushed to the next topic in the course before they have mas-
tered the previous topic.

https://doi.org/10.1145/3159450.3159609
https://doi.org/10.1145/3159450.3159609


• Homework can be graded automatically.When our plat-
form is used to replace some or all of the traditional written
homework, it reduces the amount of resources needed for
manually grading student work. This could be a major bene-
fit for teaching very large courses such as MOOCs.

• It is easy to adopt the platform in a wide variety of
contexts. Instructors can easily adapt it to any topic that
involves proof instruction. The simplicity of the interface
makes it equally suitable for introducing logic problems to
K-12 students or teaching highly abstract mathematics to
college students.

In this paper, we describe the platform in detail and we report our
findings from a pilot study where we used the platform to provide
supplemental aid to students in a discrete mathematics course and
to students in an algorithms course.

2 BACKGROUND
2.1 Existing Proof Tools and Their Limitations
There are many Computer Assisted Instruction (CAI) systems de-
signed to help students construct proofs in formal logic courses,
including Wilfried Sieg’s AProS [20], Peter Andrew’s ETPS [1], and
the EPGY theorem proving environment [13]. An overview of these
and many more can be found in [19]. Many have a lengthy history
— for instance, Wilfried Sieg has been developing AProS for decades.
These tools automatically verify the correctness of each step of a
student’s proof. Some have been bundled with popular textbooks
[2, 21], while others are Intelligent Tutoring System [7, 11, 16] and
provide students with additional hints and feedback.

These tools have not been adapted much for use in computer
science courses other than to familiarize students with formal logic.
The one exception we are aware of is the equational logic system
that Gries and Schneider used to teach a whole course in discrete
mathematics [8].

There are technical challenges that make it difficult to adapt most
logic-based proof tools to new domains. These tools require proofs
to be constructed from a small set of primitive inference rules and
axioms. The tedious steps involved in using these rules to construct
even the most elementary of proofs taught in undergraduate math
and computer science classes is vaguely reminiscent of developing
a large software package in assembler code. Therefore, these tools
cannot be pedagogically useful outside of teaching pure logic, unless
they permit students to skip steps while still supporting the correct
verification of the student’s proof. This can be accomplished with
automated theorem proving as demonstrated in [13] but there is
still the problem of determining how many steps to let the student
skip. Marvin Schiller’s PhD Dissertation [19] looked at resolving
this problem, and he has made some progress, as demonstrated in
ActiveMath [14].

However, even when those challenges can be resolved, none of
these tools permit students to construct proofs in natural language.
Outside of formal logic courses, most instructors and textbooks use
natural language to describe proofs and expect their students to do
the same. Furthermore, a student’s ability to construct proofs with
a tool that only uses symbolic logic may not directly transfer to
their ability to reason correctly using natural language, without ex-
plicitly training them to use the same kind of reasoning for natural

language. The "Mental Models" theory of cognitive science predicts
that humans make systematic logical errors when reasoning, be-
cause our natural method of reasoning is inconsistent with formal
logic [9].

2.2 The Difference in Our Approach
Our proof construction platform allows students to construct proofs
in natural language as well as symbolic logic and is agnostic to the
many different flavors of formal systems. Informal proofs explained
by an instructor in class can easily be adapted to our platform.

The reason this is possible is because our platform gives the
student all the written assertions they need to construct a valid
proof of whatever problem they are working on. In other words,
they are given all the puzzle pieces they need to construct a proof
(as well as some pieces not needed) and are left with the task of
figuring out how those pieces connect together.

This is analogous to Parson’s Problems [17], a similar kind of
puzzle used to teach programming. With Parson’s Problems, stu-
dents are given blocks of code that they need to rearrange to create
a program with a desired functionality. A study found a strong
correlation between the ability to solve Parson’s Problems and the
ability to correctly write code from scratch, and concluded that
these tasks likely require the same skills [5]. Similarly, constructing
proofs with our platform may require much of the same deductive
skills needed to construct proofs without the platform.

3 HOW THE PROOF CONSTRUCTION
PLATFORMWORKS

We will illustrate how our platform works with the following logic
problem: "Emily and Catherine each have their own pizza. Using
the given assumptions, prove that Emily is not lactose intolerant."
Figure 1 is a screenshot of the completed proof construction using
our platform. We are given three assumptions:

(1) "Either Catherine’s pizza or Emily’s pizza, or both, has pep-
peroni, but Catherine’s pizza does not have cheese."

(2) "Any pizza that has pepperoni also has cheese."
(3) "If someone is lactose intolerant, then their pizza does not

have cheese."
Assumptions and assertions are used to complete the proof. An

assumption is a statement considered valid without need of sub-
stantiation, such as an axiom. An assertion is a statement that needs
substantiation before it is considered valid. Assertions may be vali-
dated by connecting them with assumptions and other assertions.

3.1 Placing the Dots
To solve the problem, a student will select assumptions and asser-
tions from prescribed lists on the screen. The student will drag
assertions and assumptions from the lists into a proof space shown
on the screen. When an assumption or assertion is moved into the
proof space, a specific dot will appear with written text stating
the assumption or assertion. The student will click individual dots
to select them and connect them to other dots with arrows in the
proof space.

Our platform allows a student to start the proof constructionwith
any assumption or assertion and complete the proof in a roundabout



Figure 1: Screenshot of completed Pizza Proof Problem with text toggled on, assumption text is in bold print.

manner, like approaching the proof backward or using a mixture
of going forward and backward to solve the proof problem.

After studying the three assumptions and the assertions on the
prescribed lists adjacent to the proof space, in Figure 2, suppose
the student decides to drag the assumption "Either Catherine’s
pizza or Emily’s pizza, or both, has pepperoni, but Catherine’s pizza
does not have cheese." into the proof space. Notice that when this
assumption is moved into the proof space, the text of the assumption
appears with a dot "1" adjacent to the text. Also notice the text of
the assumption is displayed in bold print to distinguish it from
assertions which are displayed in regular print.

The student then determines what should follow this assumption.
The student peruses the list of assertions, in Figure 2, decides the
assertions "Either Catherine’s pizza or Emily’s pizza, or both, has
pepperoni." and "Catherine’s pizza does not have cheese." could
follow the assumption in the proof space, and drags these two
assertions into the proof space. The text of the two assertions appear
with partial dots "2" and "3". A partial dot means the associated
assertion needs substantiation to be validated. When an assertion
is validated, its partial dot will change to a complete dot.

3.2 Connecting the Dots
To see if the decision that the two assertions follow the assumption
was correct, the student left clicks dot "1" (assumption) followed
by a left click of partial dot "2" (assertion). An arrow will appear to
connect the dots with the arrow pointing at dot "2" as shown in Fig-
ure 3. Also notice that the partial dot "2" has changed to a complete

Figure 2: Moving assumptions and assertions into proof
space, assumptions are complete dots and assertions are par-
tial dots.

dot "2" indicating the assertion was validated by the connection
with the assumption dot "1". The student repeats this process to
connect dots "1" and "3". As shown in Figure 3, an arrow connects
the two dots and the partial dot "3" is changed to a complete dot
indicating the assertion associated with dot "3" was substantiated
and validated by the connection.



Figure 3: Connecting the dots, validated assertions become
complete dots, toggling text and relocating dots.

Notice in Figure 3 that dots "2" and "3" have moved from their
original locations shown in Figure 2. Our platform permits the
student to drag the dots to different locations in the proof space to
arrange the proof spatially in the way that makes the most sense
to them.

Also notice the text associated with dot "3" is not shown in Figure
3. The platform allows the student to make the text associated with
a dot disappear and reappear by double clicking the dot. This feature
allows the student to hide the text of dots they are not considering
at the moment. This can reduce cognitive load and promote better
focus and efficiency for the student to solve the part of the problem
they are currently working on [3]. Additionally, when students
hover their mouse pointer over any dot, it will intermittently display
the associated assertion, if it has been hidden.

3.3 Completing the Proof
The student continues selecting assertions and assumptions from
the lists, moving them into the proof space, and connecting them
until the proof is completed. The proof is completed when the goal
assertion is validated (its partial dot has been converted into a
complete dot) and all assertions leading to the goal assertion have
also been validated. Notice that Figure 1 shows the goal assertion
dot "4" and all of the other connected dots are complete dots. The
tutoring system will also display a message on the computer screen
that the proof has been successfully completed.

Notice the remaining assertions in the list even after the proof is
completed in Figure 1. These assertions are distractors, unnecessary
to complete the proof. Some of the distractors are valid assertions
that can actually be justified in the proof space, but will lead down
paths that do not connect with the goal. Others are "bugs" that get
denoted with hashed dots when dragged into the proof space.

3.4 Authoring New Problems
New problems can be authored for this platform using the Python
scripting language. The following is example code for the syllogism,
"All men are mortal. Socrates is a man. Therefore, Socrates is mortal."

ProblemDescription.Text = "Prove Socrates is mortal."

ax1 = ProofItem("All men are mortal.")
ax1.isAssumption = True
ax1.show()
ax2 = ProofItem("Socrates is a man.")
ax2.isAssumption = True
ax2.show()
goal = ProofItem("Socrates is mortal.")
goal.Requirements.Add(ax1)
goal.Requirements.Add(ax2)
goal.show()

In the future, we are considering creating a graphical tool for
constructing new problems.

4 EVALUATION
Over the course of two semesters, we did a study to evaluate stu-
dents using our proof construction platform to solve problems in
two different Computer Science courses at an R1 public university.
Overall, there were 59 students who got to test the platform and
their feedback is reported here.

We started with a pilot experiment in the Fall 2016 semester in a
Junior-level algorithms course. The experiment commenced near
the end of the semester, and we gave participants a problem related
to the topic of NP-Completeness. This was one of the last topics
covered in the course, and students had virtually no practice with
or assessment on this topic before they participated in the study. A
total of 26 students used the platform in this experiment, and an
additional 22 students were part of a control group.

In Spring 2017, we continuedwith an experiment in a Sophomore-
level discrete math course. This experiment also occurred near the
end of the semester. We gave participants three pure logic problems.
Two were written in plain English, and a third used a mixture of
English and symbolic formulas. These problems were similar to
many practice problems that the students had already completed
in their homework. They had also been given a similar problem
on their midterm exam. A total of 33 students used the platform in
this experiment, and additional 36 students were part of a control
group.

4.1 Methodology
Students received a small amount of extra credit on their final exam
for participating in the study, but were not required to participate
and could drop out at any time without penalty. We followed the
same general protocol for both Fall 2016 and Spring 2017 experi-
ments.

We announced our study at the beginning of a lecture. We told
the students general details about the study, but to avoid biasing
the distribution of volunteers, we did not tell students what kind of
problems they would be given or even the nature of the software
they would be using, besides indicating that it was designed to help
them in the course.

Volunteers were assigned to one of two groups, experimental
or control. We asked the instructor to ensure that both groups
were equal in size and were randomly selected in a way to ensure
that both groups had the same grade distributions based on their
performance from a midterm exam. After the groups were selected,



some students dropped out, resulting in the groups being slightly
unequal in size but this did not change the distribution much. We
believe that slightly more students may have dropped from the
experimental groups because they could not run the software if
they did not have Windows.

The experimental group solved problems with the proof con-
struction platform. They were instructed to download the software
with the selected problems, watch a short instructional tutorial1
on the software, and attempt to solve the problems. While they
were using the platform, we automatically video recorded their
screen interactions and asked them to upload the videos to us. After
uploading their data, they were asked to do an online survey.

The control group worked the same problems, but without the
platform, either writing or typing their solutions as they would a
normal homework assignment. They uploaded PDF copies of their
written work to us, and we returned feedback similar to what they
would receive on a homework assignment in the course.

Both groups were graded on how well they performed on the
problems in the experiment. The control group was graded using
the same standards normally used for homework problems in the
course. The experimental group was graded based on what we
observed in the videos, with variable scores assigned for incomplete
proofs based on how many connections were missing.

We took extreme care to ensure that all participants in the study
were anonymous to us. They generated random identifiers that
tracked them anonymously throughout the study. We setup an
anonymous file drop service for them to upload their data to us,
which was either videos files for the experimental group or PDF
files for the control group. The feedback given to the control group
was also delivered via anonymous email drops. Most importantly,
the survey responses were also anonymous and only linked to the
anonymous identifiers.

4.2 Description of Problems
The following problem was given for the experiment in the al-
gorithms course: “Let PATH = {⟨G, s, t⟩| G is a graph with a path
from s to t }. We know PATH is in P . Prove that if P = NP , PATH is
NP-Complete.”

We had three logic problems used in the discrete math course,
which we refer to as the "Pizza Problem", the "Muddy Dog Problem"
and the "Murder Mystery Problem". The "Pizza Problem" is de-
scribed in Section 3, and we omit the full descriptions of the others
to save space. "Muddy Dog" is moderately difficult, requiring 42 dot
connections for successful completion. The "Murder Mystery Prob-
lem" required 55 dot connections for successful completion, and
was challenging because it mixed symbolic formulas with English
descriptions. The others were written completely in English.

4.3 Results and Discussion
The video recordings submitted by the experimental students were
analyzed to determine if the students encountered difficulties in us-
ing the software or user interface, and if they were able to solve the
proof problems with the tutoring system. No significant difficulties
were observed in the students using the software. Table 1 gives sta-
tistics for how the control and experimental groups performed on
1https://youtu.be/3jQM_T1qZvY

Table 1: Performance comparison of Experimental and Con-
trol Groups. N = NP-Completeness Problem, P = Pizza Prob-
lem, D =Muddy Dog Problem,M =MurderMystery Problem.
For each problem, scores ranged from 0-100. The “Perfect"
row indicates the percentage of students who got a perfect
score amongst those who attempted the problem.
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Mean 94 59 95 96 79 82 49 46
Median 100 55 100 100 95 100 50 50
Perfect 88 27 90 92 55 60 44 31

the problems. For most of the problems, the statistics are very simi-
lar for both groups, with the exception of the "NP-Completeness
Problem". Students in the control group had significant conceptual
difficulties with that problem, and often conflated the concepts
of NP and NP-Complete in their proofs. Many tried to argue that
PATH was NP-Complete because it can be verified in polynomial
time, which indicates that PATH is in NP but not that it is NP-
Complete. We think that the guided help that the platform gives the
experimental group kept them from getting lost, and helped them
solve what is an easy problem for students who have no conceptual
difficulties with the material.

However, for the other problems given to the students in the
discrete math course, we do not believe that many of the students in
either group had conceptual difficulties. The differences in perfor-
mance seem to be more indicative of the innate challenge provided
to students in figuring out the proof, not difficulty understanding
the material. Given that the statistics are so similar for both groups,
we theorize that our puzzle-based method of discovering proofs
is just as challenging and rewarding as the normal pen and paper
method.

The data from the surveys were analyzed and the results that
mainly pertain to the usefulness of the platform are shown in Figure
4. Student comments from the surveys are italicized below.

One attraction of the proof construction platform is it could be
amusing and entertaining to the students using it. One student
stated that it was a "fun way to learn" and another said, "It is way
more interesting than traditional homework." But the main benefit
of the proof construction platform is exemplified by this survey
comment: "I think if I had more practice using this application, it
would be beneficial to my proof construction skills."

Other students elaborated on what they found helpful:
"It’s very helpful in visualizing the proofs."
"Having the pieces already helps to understand what parts are

required whereas with a pen and paper you are on your own."
"One thing that is useful is being able to do the forward backward

proof method. It was very straightforward to do backward proofs.
Another thing that I thought was useful was being able to solve the
problem in chunks. E.g. I could solve two different parts of a problem
then use the ‘backward’ proof method to link the two parts together."

https://youtu.be/3jQM_T1qZvY


(a) Did you find the tutoring system helpful in
your learning proof construction?

(b) Do you want the tutoring system to be avail-
able in other courses with proof construction?

(c) Would you recommend the tutoring system
to others learning proof construction?

Figure 4: Responses from Questionnaires

Many of the surveys comment on how the platform forced them
to be meticulous: "It was good at making me remember the smaller
steps. You aren’t allowed to jump, you really have justify everything.",
and "It takes much more time than do it by hand." With pen and
paper, many students skip lots of steps. In the future, a feature may
be developed for the platform to assess a student’s ability to solve
specific types of proofs by looking at past performance. When a
student has mastered a particular proof type, we can reduce the
granularity of proof steps to allow abbreviated proofs for those
types of proofs.

There were many comments requesting the provision of hints
when using the proof construction platform; e.g., "If there is a hint
while I am stuck in a problem, it will be great. Otherwise I will just
give up after many tries." This is also a feature we plan to introduce
in the future.

The results of the experiments show the proof construction
platform is indeed helpful to students learning proof construction.

5 CONCLUSION AND FUTUREWORK
In this paper, we have presented and evaluated a new tool for
helping students learn the process of constructing proofs from
assertions in two different computer science theory classes. Overall
feedback from students who used the tool was positive, and our
empirical results indicate that students who use our software were
able to overcome conceptual difficulties that the control group
struggled with, as illustrated with the NP-completeness problem.
In the future, we plan to look at how the use of the software affects
exam performance as an indicator of retention of critical proof
construction skills. We also plan to add a hint feature to guide
students in the construction process, and a search feature that will
allow students to find specific assertions more rapidly. We aim for
our tool to become an indispensable asset to students of computer
science.

Acknowledgements: We thank Dave Barrington for providing
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