Checking \& Spot-Checking the Correctness of Priority Queues

Matthew Chu \& Sampath Kannan (UPenn) Andrew McGregor (UCSD)

Memory Checking

Memory Checking

- Your resources: A lot of cheap unreliable memory and a little expensive reliable memory.

Memory Checking

- Your resources: A lot of cheap unreliable memory and a little expensive reliable memory.
- Your challenge: Can you make use of the cheap memory? Want to identify (but not correct) any errors introduced by a malicious adversary.

Memory Checking

- Your resources: A lot of cheap unreliable memory and a little expensive reliable memory.
- Your challenge: Can you make use of the cheap memory? Want to identify (but not correct) any errors introduced by a malicious adversary.
- Related Work:
Program Checking
Memory Checking
Checking linked Data Structures
[Blum, Kannan '95]
[Blum et al.'94]
[Amato, Loui '94]

Priority Queues

Priority Queues

- Priority Queue:

Supports a sequence of inserts and extract-min's.
Is "correct" if each extract-min returns the smallest value inserted and not extracted.

Priority Queues

- Priority Queue:

Supports a sequence of inserts and extract-min's.
Is "correct" if each extract-min returns the smallest value inserted and not extracted.

- Interaction Sequence: $c_{1}, c_{2}, \ldots, c_{2 n}$ where c_{t} is either (u, t) if the user inserts u at step t $\left(u, t^{\prime}\right)$ if the user extract-min's at step t and $P Q$ claims u, inserted at time t^{\prime}, is the min.

Priority Queues

- Priority Queue:

Supports a sequence of inserts and extract-min's.
Is "correct" if each extract-min returns the smallest value inserted and not extracted.

- Interaction Sequence: $c_{1}, c_{2}, \ldots, c_{2 n}$ where c_{t} is either (u, t) if the user inserts u at step t $\left(u, t^{\prime}\right)$ if the user extract-min's at step t and $P Q$ claims u, inserted at time t^{\prime}, is the min.
- Example: Insert 5, Insert 4, Extract-min, Insert 7,... would correspond to the sequence $(5,1),(4,2)$, $(4,2),(7,4), \ldots$ if the $P Q$ was correct.

The Checking Problem

The Checking Problem

- Input: A sequence $c_{1}, c_{2}, \ldots, c_{2 n}$ with n inserts and n extract-mins.

The Checking Problem

- Input: A sequence $c_{1}, c_{2}, \ldots, c_{2 n}$ with n inserts and n extract-mins.
- Goal: Fail the stream with high probability if it is not correct and pass otherwise.

The Checking Problem

- Input: A sequence $c_{1}, c_{2}, \ldots, c_{2 n}$ with n inserts and n extract-mins.
- Goal: Fail the stream with high probability if it is not correct and pass otherwise.
- Constraints: The interaction sequence is observed as a stream and has limited space.

The Checking Problem

- Input: A sequence $c_{1}, c_{2}, \ldots, c_{2 n}$ with n inserts and n extract-mins.
- Goal: Fail the stream with high probability if it is not correct and pass otherwise.
- Constraints: The interaction sequence is observed as a stream and has limited space.
- We are interested in offline checkers that identify errors by the end of the interaction sequence.

Results

Results

- Checkers:

A randomized, offline, $O(\sqrt{ } n \log n)$-space checker that identifies errors with prob. I-I/n.
Any randomized, offline checker of a "certain type" requires $\Omega(\sqrt{ } n)$ space.
Online or deterministic requires $\Omega(n)$ space.

Results

- Checkers:

A randomized, offline, $O(\sqrt{ } n \log n)$-space checker that identifies errors with prob. I-I/n.
Any randomized, offline checker of a "certain type" requires $\Omega(\sqrt{ } n)$ space.

Online or deterministic requires $\Omega(n)$ space.

- Spot-Checker:

A randomized, offline, $O\left(\varepsilon^{-1} \log ^{2} n\right)$-space spotchecker that identifies a priority queue that is " ε-far" from correct with prob. I-I/n.

$$
\begin{aligned}
& \text { I: Preliminaries } \\
& \text { 2: Checking } \\
& \text { 3: Spot-Checking }
\end{aligned}
$$

I: Preliminaries
 2: Checking 3: Spot-Checking

Correctness

Correctness

- Thm: An interaction sequence is correct iff it satisfies:
$C l:\{(u, t)\}=\{(u, t)\}$
C2: For all $c_{s}=(u, t): \mathrm{t}<\mathrm{s}$
C3: For all $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$:

$$
((u, t a)<(v, s a)) \text { then }(s b<t a \text { or } t b<s a)
$$

- Proof Idea: If correct then clearly CI, C2, \& C3. For other direction consider first incorrect extractmin...

Correctness

- Thm: An interaction sequence is correct iff it satisfies:
$C l:\{(u, t)\}=\{(u, t)\}$
C2: For all $c_{s}=(u, t): \mathrm{t}<\mathrm{s}$
C3: For all $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$:

$$
((u, t a)<(v, s a)) \text { then }(s b<t a \text { or } t b<s a)
$$

- Proof Idea: If correct then clearly CI, C2, \& C3. For other direction consider first incorrect extractmin...

Hashing

Hashing

- Thm (Naor \& Naor): Can construct a hash function h on length n strings such that

$$
\operatorname{Pr}[h(x)=h(y)] \leq \delta \quad \text { if } x \neq y .
$$

It uses $\mathrm{O}(\lg n)$ random bits and can be constructed in $\mathrm{O}(\lg n)$ space even if the characters of each string are revealed in an arbitrary order.

Hashing

- Thm (Naor \& Naor): Can construct a hash function h on length n strings such that

$$
\operatorname{Pr}[h(x)=h(y)] \leq \delta \quad \text { if } x \neq y .
$$

It uses $\mathrm{O}(\lg n)$ random bits and can be constructed in $\mathrm{O}(\lg n)$ space even if the characters of each string are revealed in an arbitrary order.

- What it means for us:

Let x_{t} be (u, t) if u was inserted at time t Let y_{t} be (u, t) if an extract returns (u, t) Hence can easily check $C I:\{(u, t)\}=\{(u, t)\}$

$$
\begin{aligned}
& \text { 1: Preliminaries } \\
& \text { 2: Checking } \\
& \text { 3: Spot-Checking } \\
& \text { ans }
\end{aligned}
$$

Checking Results

- Thm: A randomized, offline, $O(\sqrt{ } n \lg n)$-space checker that identifies errors with prob. I-I/n.
- Thm: Any randomized online checker that is correct with prob. $3 / 4$ requires $\Omega(n / \lg n)$ space.
- Thm: Any deterministic offline checker requires $\Omega(n)$ space.
- Outline why $\Omega(\sqrt{ } \mathrm{n})$ space looks necessary for randomized, offline checkers...

Algorithm Intuition

- Key Idea: $c_{t a}=(u, t)$ should imply that all elements inserted before ta and not extracted are greater than $c_{t a}$

Algorithm Intuition

- Key Idea: $c_{t a}=(u, t)$ should imply that all elements inserted before ta and not extracted are greater than $C_{t a}$

Value \uparrow

Algorithm Intuition

- Key Idea: $c_{t a}=(u, t)$ should imply that all elements inserted before ta and not extracted are greater than $C_{t a}$

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Outline

- Split sequence into $\sqrt{ }$ n-length Epochs
- Identify errors within present epoch immediately
- Maintain lower-bound on contents of past epochs.

Algorithm Detail

For k in $[2 \sqrt{n}]$, let $f(k)=0$
For $i=1$ to $2 \sqrt{ } \mathrm{n}$:
Let Buffer be empty
For j in Epoch-i=\{(i-1) $\sqrt{n}+1, \ldots, i \sqrt{n}\}$:
If $\mathrm{C}_{\mathrm{i}}=(\mathrm{u}, \mathrm{t})$, add C_{i} to B
If $\mathrm{C}_{\mathrm{i}}=(\mathrm{u}, \mathrm{t})$:
If t in Epoch-k ($k<i$) and $f(k)>C_{i}$ then FAIL!
If t in Epoch-i and $c_{i}>$ min Buffer then FAIL!
Remove C_{i} from Buffer (if present)
For $k<i$, let $f(k)=\max \left(f(k), C_{i}\right)$
Let $f(i)=m i n$ Buffer

Proof of Correctness

Proof of Correctness

- We may assume Cl and C2 are satisfied.

Proof of Correctness

- We may assume Cl and C2 are satisfied.
- Consider error: $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$ such that $(u, t a)<(v, s a)$ and $t a<s b<t b$:

$$
\begin{array}{cc}
\stackrel{10}{\circ} \stackrel{u}{ } \\
t a & \circ \\
\text { sb } & \text { tb }
\end{array}
$$

Proof of Correctness

- We may assume $C 1$ and $C 2$ are satisfied.
- Consider error: $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$ such that $(u, t a)<(v, s a)$ and $t a<s b<t b$:

\[

\]

- Let ta and sb be in Epoch-i and Epoch-j resp.

Proof of Correctness

- We may assume Cl and C2 are satisfied.
- Consider error: $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$ such that $(u, t a)<(v, s a)$ and $t a<s b<t b$:
- Let ta and sb be in Epoch-i and Epoch-j resp.
- Case I: If $i=j$ then $v>$ min Buffer and hence we fail at time sb (or before.)

Proof of Correctness

- We may assume Cl and C2 are satisfied.
- Consider error: $c_{t b}=(u, t a)$ and $c_{s b}=(v, s a)$ such that $(u, t a)<(v, s a)$ and $t a<s b<t b$:
- Let ta and sb be in Epoch-i and Epoch-j resp.
- Case I: If $i=j$ then $v>$ min Buffer and hence we fail at time sb (or before.)
- Case 2: If $i<j$ then $f(i) \geq(v, s b)$ and hence we fail at time tb (or before.)

Online or Deterministic?

- Thm: Any online checker that is correct with prob. $3 / 4$ requires $\Omega(n / \lg n)$ space.
- Thm: Any offline deterministic checker requires $\Omega(n)$ space.

Alice

length n
binary string x

Bob
length n
binary string y \& index i in [n]

Alice
length n
binary string x
"Is the length i prefix of x and y equal?"
Lemma: Needs $\Omega(n / \lg n)$ bits transmitted.

Bob
length n
binary string y
\& index i in [n]

Alice

length n
binary string x

- Assume there exists a S-space online checker that works with prob. 3/4.

Bob
length n
binary string y \& index i in [n]

```
(2+x।,l), (4+ +x,2), .., ,(2n+\mp@subsup{x}{n}{},n)
```


Alice

length n
binary string x

- Assume there exists a S-space online checker that works with prob. 3/4.

Bob
length n
binary string y \& index i in [$n]$

$$
\left(2+x_{l}, I\right),\left(4+x_{2}, 2\right), \ldots,\left(2 n+x_{n}, n\right)\left(2+y_{I}, I\right),\left(4+y_{2}, 2\right), \ldots,\left(2 n+y_{n}, n\right)
$$

"Is the length i prefix of x and y equal?"
Lemma: Needs $\Omega(n / \lg n)$ bits transmitted.
[Chakrabarti, Cormode, McGregor '07]

Alice

length n
binary string x

- Assume there exists a S-space online checker that works with prob. 3/4.

Bob
length n
binary string y \& index i in [n]

$$
\left(2+x_{l}, I\right),\left(4+x_{2}, 2\right), \ldots,\left(2 n+x_{n}, n\right)\left(2+y_{I}, I\right),\left(4+y_{2}, 2\right), \ldots,\left(2 n+y_{n}, n\right)
$$

"Is the length i prefix of x and y equal?"
Lemma: Needs $\Omega(n / \lg n)$ bits transmitted.
[Chakrabarti, Cormode, McGregor '07]

Alice

length n
ary string x
length n
binary string x

- Assume there exists a S-space online
 checker that works with prob. 3/4.
- Checker fails after $\left(4+y_{j}, j\right)$ iff prefixes equal.

$$
\left(2+x_{l}, I\right),\left(4+x_{2}, 2\right), \ldots,\left(2 n+x_{n}, n\right)\left(2+y_{I}, I\right),\left(4+y_{2}, 2\right), \ldots,\left(2 n+y_{n}, n\right)
$$

[Chakrabarti, Cormode, McGregor '07]

- Assume there exists a S-space online

Alice length n binary string x

"Is the length i prefix of x and y equal?"
Lemma: Needs $\Omega(n / \lg n)$ bits transmitted. checker that works with prob. 3/4.

- Checker fails after $\left(4+y_{j, j}\right)$ iff prefixes equal.

$$
\left(2+x_{l}, I\right),\left(4+x_{2}, 2\right), \ldots,\left(2 n+x_{n}, n\right)\left(2+y_{I}, I\right),\left(4+y_{2}, 2\right), \ldots,\left(2 n+y_{n}, n\right)
$$

"Is the length i prefix of x and y equal?"
Lemma: Needs $\Omega(n / \lg n)$ bits transmitted.
[Chakrabarti, Cormode, McGregor '07]

Alice length n binary string x

- Assume there exists a S-space online
 checker that works with prob. 3/4.
- Checker fails after $\left(4+y_{j}{ }_{j}\right)$ iff prefixes equal.
- Thm: $\mathrm{S}=\Omega(\mathrm{n} / \lg \mathrm{n})$

$$
\begin{aligned}
& \text { 1: Preliminaries } \\
& \text { 2: Checking } \\
& \text { 3: Spot-Checking } \\
& \text { and }
\end{aligned}
$$

Spot-Checking

Spot-Checking

- Thm: A randomized, offline, $\mathrm{O}\left(\varepsilon^{-1} \mathrm{Ig}^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.

Spot-Checking

- Thm: A randomized, offline, $O\left(\varepsilon^{-1} \mid g^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Consider interaction sequence $c_{1}, \ldots, c_{2 n}$ and perm. π of [2n]. Define new interaction sequence $d_{1}, \ldots, d_{2 n}$ where

$$
\begin{aligned}
& d_{\pi(i)}=(u, \pi(i)) \text { if } c_{i}=(u, i) \\
& d_{\pi(i)}=(u, \pi(j)) \text { if } c_{i}=(u, j)
\end{aligned}
$$

Spot-Checking

- Thm: A randomized, offline, $\mathrm{O}\left(\varepsilon^{-1} \mathrm{Ig}^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Consider interaction sequence $c_{1}, \ldots, c_{2 n}$ and perm. π of [2n]. Define new interaction sequence $d_{1}, \ldots, d_{2 n}$ where

$$
\begin{aligned}
& d_{\pi(i)}=(u, \pi(i)) \text { if } c_{i}=(u, i) \\
& d_{\pi(i)}=(u, \pi(j)) \text { if } c_{i}=(u, j)
\end{aligned}
$$

- Say interaction sequence $c_{1}, \ldots, c_{2 n}$ is ε-far if no permutation with less than εn rearrangements results in a correct interaction sequence.

Revealing Tuples

Revealing Tuples

- Say $(u, t a)$ is a revealing if there exists $c_{s b}=(v, s a)>(u, t a)$ and $c_{t b}=(u, t a)$ such that $t a<s b<t b$:

Revealing Tuples

- Say $(u, t a)$ is a revealing if there exists $c_{s b}=(v, s a)>(u, t a)$ and $c_{t b}=(u, t a)$ such that $t a<s b<t b$:

- Thm: An interaction sequence that is ε-far from being correct has at least εn revealing tuples.

Revealing Tuples

- Say $(u, t a)$ is a revealing if there exists $c_{s b}=(v, s a)>(u, t a)$ and $c_{t b}=(u, t a)$ such that $t a<s b<t b$:

$$
\stackrel{\bullet}{\circ} \stackrel{u_{u}^{\circ}}{t a} \stackrel{\circ}{s b} \stackrel{ }{t}
$$

- Thm: An interaction sequence that is ε-far from being correct has at least ε n revealing tuples.
- Proof:

Find first incorrect extract-min, say $c_{s b}=(v, s a)$.
Since this isn't minimum element, there exists ($u, t a$) and $c_{t b}=(u, t a)$ such that $t a<s b<t b$.
Moving tb to sb reduces \# of revealing tuples.
Continue until sequence is correct.

Correctness

Correctness

- Thm: A randomized, offline, $O\left(\varepsilon^{-1} \lg ^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.

Correctness

- Thm: A randomized, offline, $O\left(\varepsilon^{-1} \lg ^{2} n\right)$-space spot-checker that fails a $P Q$ queue that is " ε-far" from correct w.h.p.
- Proof:

Correctness

- Thm: A randomized, offline, $O\left(\varepsilon^{-1} \lg ^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Proof:

Samples $O\left(\varepsilon^{-1} \mid g^{2} n\right)$ insertions. Call these S.

Correctness

- Thm: A randomized, offline, $\mathrm{O}\left(\varepsilon^{-1} \mathrm{Ig}^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Proof:

Samples $O\left(\varepsilon^{-1} g^{2} n\right)$ insertions. Call these S. W.h.p. there exists a revealing tuple $(u, t a)$ in S.

Correctness

- Thm: A randomized, offline, $\mathrm{O}\left(\varepsilon^{-1} \mathrm{Ig}^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Proof:

Samples $O\left(\varepsilon^{-1} g^{2} n\right)$ insertions. Call these S. W.h.p. there exists a revealing tuple ($u, t a$) in S. Monitor elements between the insertion and extraction of each element in S.

Correctness

- Thm: A randomized, offline, $\mathrm{O}\left(\varepsilon^{-1} \mathrm{Ig}^{2} n\right)$-space spot-checker that fails a PQ queue that is " ε-far" from correct w.h.p.
- Proof:

Samples $O\left(\varepsilon^{-1} \lg ^{2} n\right)$ insertions. Call these S.
W.h.p. there exists a revealing tuple ($u, t a$) in S.

Monitor elements between the insertion and extraction of each element in S.

Will identify $c_{s b}=(v, s a)>(u, t a)$ and $c_{t b}=(u, t a)$ such that $t a<s b<t b$.

Summary

- Checkers:

A randomized, offline, $O(\sqrt{ } n \log n)$-space checker that identifies errors with prob. I-I/n.
Any randomized, offline checker of a "certain type" requires $\Omega(\sqrt{ } n)$ space.

Online or deterministic requires $\Omega(n)$ space.

- Spot-Checker:

A randomized, offline, $O\left(\varepsilon^{-1} \mid g^{2} n\right)$-space spotchecker that identifies a priority queue that is " ε-far" from correct with prob. I-I/n.

- ... and that's how you mind you P.Q.'s!

