Declaring Independence via the Sketching of Sketches

Piotr Indyk
Massachusetts Institute of Technology

Andrew McGregor
University of California, San Diego Until August '08 - Hire Me!

The Problem

The Problem

> Center for Disease Control (CDC) has massive amounts of data on disease occurrences and their locations.

"How correlated is your zip code to the diseases you'll catch this year?"

The Problem

Center for Disease Control (CDC) has massive amounts of data on disease occurrences and their locations.
"How correlated is your zip code to the diseases you'll catch this year?"

- Sample (sub-linear time):

How many are required to distinguish independence from " ϵ-far" from independence? [Batu et al.'0 0], [Alon et al.' 07], [Valiant '08]

The Problem

Center for Disease Control (CDC) has massive amounts of data on disease occurrences and their locations.
"How correlated is your zip code to the diseases you'll catch this year?"

- Sample (sub-linear time):

How many are required to distinguish independence from " ϵ-far" from independence? [Batu et al.'0 0], [Alon et al.' 07], [Valiant '08]

- Stream (sub-linear space):

Access pairs sequentially or "online" and limited memory.

Formulation

Formulation

- Stream of m pairs in $[n] \times[n]$: $(3,5),(5,3),(2,7),(3,4),(7,1),(1,2),(3,9),(6,6), \ldots$

Formulation

- Stream of m pairs in $[n] \times[n]$: $(3,5),(5,3),(2,7),(3,4),(7,1),(1,2),(3,9),(6,6), \ldots$
- Define "empirical" distributions: Marginals: $\left(p_{1}, \ldots, p_{n}\right),\left(q \mid, \ldots, q_{n}\right)$ Joint: $\left(r_{1}, r_{12}, \ldots, r_{n n}\right)$
Product: $\left(s_{\|}, s_{\mid 2}, \ldots, s_{n n}\right)$ where $s_{i j}$ equals $p_{i} q_{j}$

Formulation

- Stream of m pairs in $[n] \times[n]$: $(3,5),(5,3),(2,7),(3,4),(7,1),(1,2),(3,9),(6,6), \ldots$
- Define "empirical" distributions: Marginals: $\left(p_{1}, \ldots, p_{n}\right),\left(q \mid, \ldots, q_{n}\right)$ Joint: $\left(r_{1}, r_{12}, \ldots, r_{n n}\right)$ Product: ($s_{\|}, s_{\mid 2}, \ldots, s_{n n}$) where $s_{i j}$ equals $p_{i} q_{j}$
- Question: How correlated are first and second terms?

Formulation

- Stream of m pairs in $[n] \times[n]$: $(3,5),(5,3),(2,7),(3,4),(7, \mid),(1,2),(3,9),(6,6), \ldots$
- Define "empirical" distributions:

Marginals: $\left(p_{1}, \ldots, p_{n}\right),\left(q \mid, \ldots, q_{n}\right)$
Joint: $\left(r_{1}, r_{12}, \ldots, r_{n n}\right)$
Product: $\left(s_{\|}, s_{\mid 2}, \ldots, s_{n n}\right)$ where $s_{i j}$ equals $p_{i} q_{j}$

- Question: How correlated are first and second terms?

$$
\text { E.g., } \quad \begin{aligned}
L_{1}(s-r) & =\sum_{i, j}\left|s_{i j}-r_{i j}\right| \\
L_{2}(s-r) & =\sqrt{ } \sum_{i, j}\left(s_{i j}-r_{i j}\right)^{2} \\
I(s, r) & =H(p)-H(p \mid q)
\end{aligned}
$$

Formulation

- Stream of m pairs in $[n] \times[n]$:

$$
(3,5),(5,3),(2,7),(3,4),(7, \mid),(1,2),(3,9),(6,6), \ldots
$$

- Define "empirical" distributions:

Marginals: $\left(p_{1}, \ldots, p_{n}\right),\left(q \mid, \ldots, q_{n}\right)$
Joint: ($r_{1}, r_{12}, \ldots, r_{n n}$)
Product: $\left(s_{\|}, s_{\mid 2}, \ldots, s_{n n}\right)$ where $s_{i j}$ equals $p_{i} q_{j}$

- Question: How correlated are first and second terms?

$$
\text { E.g., } \quad \begin{aligned}
L_{1}(s-r) & =\sum_{i, j}\left|s_{i j}-r_{i j}\right| \\
L_{2}(s-r) & =\sqrt{ } \sum_{i, j}\left(s_{i j}-r_{i j}\right)^{2} \\
I(s, r) & =H(p)-H(p \mid q)
\end{aligned}
$$

- Previous work: Can estimate L_{1} and L_{2} between marginals.

Our Results

Our Results

- Estimating L2 $(s-r)$:

$(1+\epsilon)$-factor approx. in $\tilde{O}\left(\epsilon^{-2} \ln \delta^{-1}\right)$ space.
"Neat" result extending AMS sketches

Our Results

- Estimating $L_{2}(s-r)$:
$(1+\epsilon)$-factor approx. in $\tilde{O}\left(\epsilon^{-2} \ln \delta^{-1}\right)$ space.
"Neat" result extending AMS sketches
- Estimating $L_{I}(s-r)$:
$O(\ln n)$-factor approx. in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
Sketches of sketches and sketches/embeddings

Our Results

- Estimating $L_{2}(s-r)$:
$(1+\epsilon)$-factor approx. in $\tilde{O}\left(\epsilon^{-2} \ln \delta^{-1}\right)$ space.
"Neat" result extending AMS sketches
- Estimating $L_{I}(s-r)$:
$O(\ln n)$-factor approx. in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
Sketches of sketches and sketches/embeddings
- Other Results:
$L_{l}(s-r)$: Additive approximations
Mutual Information: Additive but not (I+E)-factor approx.
Distributed Model: Pairs are observed by different parties.
a) Neat Result for L_{2}
b) Sketching Sketches
c) Other Results

a) Neat Result for L_{2}
b) Sketching Sketches
c) Other Results

First Attempt

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

- Correct in expectation and has small variance:

$$
\begin{array}{r}
\mathrm{E}[T]=\Sigma_{i_{1}, j_{1}, i_{2}, j_{2}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}} \\
\left(a_{i j}=r_{i j}-s_{i j}\right)
\end{array}
$$

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

- Correct in expectation and has small variance:

$$
\left.\left.\mathrm{E}[T]=\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}}=\left(L_{i j}=r_{i j}-s_{i j}\right)<\right)^{2}(r-s)\right)^{2}
$$

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

- Correct in expectation and has small variance:

$$
\left.\mathrm{E}[T]=\sum_{\substack{i_{1}, j_{1}, i_{2}, j_{2}}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}}=\left(a_{i j}=r_{i j}-s_{i j}\right)<L_{2}(r-s)\right)^{2}
$$

$$
\begin{aligned}
\operatorname{Var}[T] & \leq \mathrm{E}\left[T^{2}\right] \\
& =\Sigma_{i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}, i_{4}, j_{4}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}} z_{i_{3} j_{3}} z_{i_{4} j_{4}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}}
\end{aligned}
$$

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

- Correct in expectation and has small variance:

$$
\mathrm{E}[T]=\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}}=\left(L_{2}(r-s)\right)^{2}
$$

$$
\begin{aligned}
\operatorname{Var}[T] & \leq \mathrm{E}\left[T^{2}\right] \\
& =\Sigma_{i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}, i_{4}, j_{4}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}} z_{i_{3} j_{3}} z_{i_{4} j_{4}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \\
& \leq \mathrm{E}[T]^{2}
\end{aligned}
$$

First Attempt

- Random Projection: Let $z \in\{-1,1\}^{n \times n}$ where $\mathbf{z}_{i j}$ are unbiased 4-wise independent. [Alon, Matias, Szegedy '96]
- Estimator: Suppose we can compute estimator:

$$
T=(z . r-z . s)^{2}
$$

- Correct in expectation and has small variance:

$$
\left.\left.\mathrm{E}[T]=\sum_{i_{1}, j_{1}, i_{2}, j_{2}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}}=\left(L_{i j}=r_{i j}-s_{i j}\right)<\right)^{2}(r-s)\right)^{2}
$$

$$
\begin{aligned}
\operatorname{Var}[T] & \leq \mathrm{E}\left[T^{2}\right] \\
& =\Sigma_{i_{1}, j_{1}, i_{2}, j_{2}, i_{3}, j_{3}, i_{4}, j_{4}} \mathrm{E}\left[z_{i_{1} j_{1}} z_{i_{2} j_{2}} z_{i_{3} j_{3}} z_{i_{4} j_{4}}\right] a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \\
& \leq \mathrm{E}[T]^{2}
\end{aligned}
$$

- Repeating $O\left(\epsilon^{-2} \ln \delta^{-1}\right)$ times and take the mean.

Computing Estimator

Computing Estimator

- Need to compute: $z . r$ and $z . s$

Computing Estimator

- Need to compute: z.r and z.s
- Good News: First term is easy

1) Let $A=0$
2) For each stream element:
2.1) If stream element $=(i, j)$ then $A \leftarrow A+z_{i j} / m$

Computing Estimator

- Need to compute: z.r and z.s
- Good News: First term is easy

1) Let $A=0$
2) For each stream element:
2.1) If stream element $=(i, j)$ then $A \leftarrow A+z_{i j} / m$

- Bad News: Can't compute second term!

Computing Estimator

- Need to compute: z.r and z.s
- Good News: First term is easy

1) Let $A=0$
2) For each stream element:
2.1) If stream element $=(i, j)$ then $A \leftarrow A+z_{i j} / m$

- Bad News: Can't compute second term!
- Good News: Use bilinear sketch: If $z_{i j}=x_{i} y_{j}$ for $x, y \in\{-1,1\}^{n}$

$$
z . s=\sum_{i j} z_{i j} s_{i j}=(x . p)(y . q)
$$

i.e., product of sketches is sketch of product.

Computing Estimator

- Need to compute: z.r and z.s
- Good News: First term is easy

1) Let $A=0$
2) For each stream element:
2.1) If stream element $=(i, j)$ then $A \leftarrow A+z_{i j} / m$

- Bad News: Can't compute second term!
- Good News: Use bilinear sketch: If $z_{i j}=x_{i} y_{j}$ for $x, y \in\{-1,1\}^{n}$

$$
z . s=\sum_{i j} z_{i j} s_{i j}=(x . p)(y . q)
$$

i.e., product of sketches is sketch of product.

- Bad News: z is no longer 4-wise independent even if x and y are fully random, e.g.,

$$
z_{11} z_{12} z_{21} z_{22}=\left(x_{1}\right)^{2}\left(x_{2}\right)^{2}\left(y_{1}\right)^{2}\left(y_{2}\right)^{2}=1
$$

Still Get Low Variance

Still Get Low Variance

- Lemma: Variance has at most tripled.

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \ldots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \ldots & \cdots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \ldots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \ldots & \cdots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

- Product of four entries is biased iff entries lie in rectangle

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \ldots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \ldots & \ldots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

- Product of four entries is biased iff entries lie in rectangle
- Hence, $\operatorname{Var}[T] \leq \quad \sum \quad a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}}$

$$
\begin{gathered}
\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right) \\
\left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right) \\
\text { in rectangle }
\end{gathered}
$$

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \ldots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \ldots & \ldots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

- Product of four entries is biased iff entries lie in rectangle
- Hence, $\operatorname{Var}[T] \leq \quad \sum \quad a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}}$

$$
\begin{gathered}
\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \\
\left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right) \\
\text { in rectangle }
\end{gathered}
$$

since a rectangle is uniquely specified by a diagonal and

$$
2 a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \leq\left(a_{i_{1} j_{1}} a_{i_{2} j_{2}}\right)^{2}+\left(a_{i_{3} j_{3}} a_{i_{4} j_{4}}\right)^{2}
$$

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \ldots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \ldots & \ldots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

- Product of four entries is biased iff entries lie in rectangle
- Hence, $\operatorname{Var}[T] \leq \quad \sum \quad a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \leq 3 \mathrm{E}[T]^{2}$

$$
\begin{gathered}
\left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \\
\left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right) \\
\text { in rectangle }
\end{gathered}
$$

since a rectangle is uniquely specified by a diagonal and

$$
2 a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \leq\left(a_{i_{1} j_{1}} a_{i_{2} j_{2}}\right)^{2}+\left(a_{i_{3} j_{3}} a_{i_{4} j_{4}}\right)^{2}
$$

Still Get Low Variance

- Lemma: Variance has at most tripled.
- Proof:

$$
z=\left(\begin{array}{ccccc}
x_{1} y_{1} & x_{2} y_{1} & \cdots & \cdots & x_{n} y_{1} \\
x_{1} y_{2} & x_{2} y_{2} & \cdots & \cdots & x_{n} y_{2} \\
\vdots & \vdots & & & \vdots \\
x_{1} y_{n} & x_{2} y_{n} & \cdots & \cdots & x_{n} y_{n}
\end{array}\right)
$$

- Product of four entries is biased iff entries lie in rectangle
- Hence, $\operatorname{Var}[T] \leq \quad \sum \quad a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \leq 3 \mathrm{E}[T]^{2}$

$$
\begin{aligned}
& \left(i_{1}, j_{1}\right),\left(i_{2}, j_{2}\right), \\
& \left(i_{3}, j_{3}\right),\left(i_{4}, j_{4}\right) \\
& \text { in rectangle }
\end{aligned}
$$

since a rectangle is uniquely specified by a diagonal and

$$
2 a_{i_{1} j_{1}} a_{i_{2} j_{2}} a_{i_{3} j_{3}} a_{i_{4} j_{4}} \leq\left(a_{i_{1} j_{1}} a_{i_{2} j_{2}}\right)^{2}+\left(a_{i_{3} j_{3}} a_{i_{4} j_{4}}\right)^{2}
$$

- Less independence useful for range-sums. [Rusu, Dobra '06]

Summary of L_{2} Result

- Thm: $(I+\epsilon)$-factor approx. $(\mathrm{w} / \mathrm{p} \mathrm{I}-\delta)$ in $\tilde{O}\left(\epsilon^{-2} \ln \delta^{-1}\right)$ space.
- Proof Ideas:
I) First attempt: Use AMS technique.

2) Road block: Can't sketch product distribution.
3) Bilinear sketch: Product of sketches was sketch of product!
4) PANIC: No longer 4 -wise independence.
5) Relax: We didn't need full 4-wise independence.

a) Neat Result for L_{2}
 b) Sketching Sketches c) Other Results

L/ Result

L/ Result

- Thm: $O(\ln n)$-factor approx. of $L_{1}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.

L/ Result

- Thm: $O(\ln n)$-factor approx. of $L_{l}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Why not $(I+\epsilon)$-factor using Indyk's p-stable technique?
[Indyk, '00]

L, Result

- Thm: $O(\ln n)$-factor approx. of $L_{l}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Why not $(I+\epsilon)$-factor using Indyk's p-stable technique?
[Indyk, '00]
- Review of LI sketching:

Let entries of z be Cauchy $(0, I)$
Compute estimator |z.a|
Repeat $k=O\left(\epsilon^{-2} \ln \delta^{-1}\right)$ times with different z.
Take the median and appeal to concentration lemmas.

L/ Result

- Thm: $O(\ln n)$-factor approx. of $L_{l}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Why not $(I+\epsilon)$-factor using Indyk's p-stable technique?
[lndyk, '00]
- Review of LI sketching:

Let entries of z be Cauchy $(0, I)$
Compute estimator |z.a|
Repeat $k=O\left(\epsilon^{-2} \ln \delta^{-1}\right)$ times with different z.
Take the median and appeal to concentration lemmas.

- N.B. If median were mean we'd have a dimensionality reduction result that doesn't exist. [Brinkman, Charikar '03]

Sketching Sketches

Sketching Sketches

- To sketch product distribution need $z=y M_{x}$

$$
z=\underbrace{(y}_{n}) \underbrace{\left(\begin{array}{ccccc}
x &) & 0 & \cdots & 0 \\
0 & \left(\begin{array}{cc}
x & \\
0 & \cdots
\end{array}\right. & 0 \\
\vdots & \vdots & \vdots & \vdots \\
0 & 0 & \cdots & \left(\begin{array}{l}
x
\end{array}\right)
\end{array}\right)}_{n^{2}}
$$

Sketching Sketches

- To sketch product distribution need $z=y M_{x}$

Sketching Sketches

- To sketch product distribution need $z=y M_{x}$

$$
\begin{aligned}
\mathbb{R}^{n^{2}} & \longmapsto \mathbb{R}^{n} & \mathbb{R}^{n} & \longmapsto \mathbb{R} \\
a & \longrightarrow & M_{x} a & M_{x} a
\end{aligned} \longrightarrow y M_{x} a
$$

Sketching Sketches

- To sketch product distribution need $z=y M_{x}$

$$
\begin{aligned}
\mathbb{R}^{n^{2}} & \longmapsto \mathbb{R}^{n} & \mathbb{R}^{n} & \longmapsto \mathbb{R} \\
a & \longrightarrow & M_{x} a & M_{x} a
\end{aligned} \longrightarrow y M_{x} a
$$

- The Problem:

Need to take median of multiple inner sketches before taking outer sketch.

Sketching Sketches

- To sketch product distribution need $z=y M_{x}$

- The Problem:

Need to take median of multiple inner sketches before taking outer sketch.
The size of the inner sketch is large.

L/ Result

L/ Result

- Thm: $O(\ln n)$-factor approx. of $L_{1}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.

L/ Result

- Thm: $O(\ln n)$-factor approx. of $L_{l}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Proof:

Outer sketch: Entries y are Cauchy $(0,1)$
Inner sketch: Entries x are "truncated" Cauchy $(0, \mathrm{I})$

L, Result

- Thm: $O(\ln n)$-factor approx. of $L_{1}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Proof:

Outer sketch: Entries y are Cauchy $(0,1)$
Inner sketch: Entries x are "truncated" Cauchy $(0, \mathrm{I})$

$$
\operatorname{Pr}\left[\Omega(1) \leq \frac{|M(x) \cdot a|}{|a|} \leq O(\log n)\right] \geq 9 / 10
$$

L, Result

- Thm: $O(\ln n)$-factor approx. of $L_{l}(s-r)$ in $\tilde{O}\left(\ln \delta^{-1}\right)$ space.
- Proof:

Outer sketch: Entries y are Cauchy $(0,1)$
Inner sketch: Entries x are "truncated" Cauchy $(0, \mathrm{I})$

$$
\operatorname{Pr}\left[\Omega(1) \leq \frac{|M(x) \cdot a|}{|a|} \leq O(\log n)\right] \geq 9 / 10
$$

Repeat $\tilde{O}\left(\ln \delta^{-1}\right)$ times and take median.
a) Neat Result for L_{2}
b) Sketching Sketches
c) Other Results

Other Results

Other Results

- Mutual Information:

Can't $(I+\epsilon)$-factor approximate in $o(n)$ space
Can $\pm \epsilon$ using algorithms for approx. entropy.
[Chakrabarti, Cormode, McGregor '07]

Other Results

- Mutual Information:

Can't (I+e)-factor approximate in o(n) space
Can $\pm \epsilon$ using algorithms for approx. entropy.
[Chakrabarti, Cormode, McGregor '07]

- Distributed Model: Player I sees (3,), (5,), (2,), (3,), (7,;), (I,), (3,), (6,), ... Player 2 sees (;5), (;3), (;7), (;4), (; I), (;2), (;9), (;6), ... Very hard in general, e.g., can't check if $L_{l}(s-r)=0$

Other Results

- Mutual Information:

Can't (I+e)-factor approximate in o(n) space
Can $\pm \epsilon$ using algorithms for approx. entropy.
[Chakrabarti, Cormode, McGregor '07]

- Distributed Model:

Player I sees (3,), (5,), (2,), (3,), (7,;), (I,), (3,), (6,), ...
Player 2 sees (;5), (;3), (;7), (;4), (; I), (;2), (;9), (;6), ...
Very hard in general, e.g., can't check if $L_{l}(s-r)=0$

- Additive Approximation for $L_{1}(s-r)$:

$$
L_{1}(p-q)=\sum_{i} p_{i} L_{1}\left(q-q^{i}\right)
$$

where q^{i} is q conditioned on first term equals i .

Main Results

Can estimate $L_{2}(r-s)$ well using neat extension of AMS sketch.

Can estimate $L_{1}(r-s)$ up to $O(\log n)$ factor using p-stable distributions.

Can estimate mutual information additively using entropy algorithms.

Questions?

