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» Graph Streams: Stream of edges E = {ey, €,..., ey} describe a
graph G on n nodes. Estimate properties of G.

» Geometric Streams: Stream of points P = {p1, p2, ..., pm} from
some metric space (X, d), e.g., R*. Estimate properties of P.
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Warm-Up: Connectivity

Thm: Can determine if a graph is connected in O(nlog n) space.

Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # ¢(v),

Lw) — €(u) for all w with £(w) = £(v)
3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when £(u) # ¢(v) we maintain a spanning forest
Can do something similar to determine if graph is bipartite

Most graph problems require space roughly proportional to the
number of nodes. .. called the “semi-streaming space restriction”
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Sparsify the graph as it arrives

When an edge arrives, only store it if it satisfies some condition

Graph Sparsfiers: Condition maintains O(ne~2) edges but the
resulting graph preserves all cuts up to a 1 + ¢ factor

Matchings: Condition maintains @(n) edges preserves the maximum
weight matching up to a constant factor

Graph Spanners: Condition maintains O(n'*1/*) edges but the
resulting graph preserves all graph distances up to a factor 2t — 1
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Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

» Thm: Can construct a 2t — 1 spanner in O(n'*1/t) space.
» Algorithm:
1. Let E’ be initially empty
2. On seeing (u,v), E' «— E' U (u,v) if du(u,v) >2t—1
Analysis:
1. Every distance has grown by at most a factor 2t — 1
2. |E') = O(n"*/*) because it's a graph with no cycles of length < 2t

Above algorithm is rather slow but faster algorithms exist
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k-center

Given a stream of distinct points X = {py,..., p,} from a metric
space (X, d), find the set of k points Y C X that minimizes:

.
max min (Pi,y)

Can find 2 approx. in O(k) space if you know OPT ahead of time.
Can find (2 + €) approx. in O(ke !log(a/b)) space if you know

a<opr<b

Thm: (2 + €) approx. in O(ke !loge™!) space.
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k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

» Say instantiation goes bad if it tries to open (k + 1)-th center
» If instantiation for guess £ goes bad when processing (j + 1)-th point
> Let q1,...,qx be centers chosen so far.
> Then pi,...,p; are all at most 2¢ from a g;.
> Optimum for {q1,..., gk, Pj+1,- .-, Pn} iS at most OPT + 2.
Hence, for an instantiation with guess 2¢/¢ only incurs a small error
if we use {q1,...,qx, Pj+1,.-.,pn} rather than {p1,..., p,}.




Other computational geometry problems

Fixed-dimensional linear programming
Minimum enclosing balls

Convex hulls

Diameter

Clustering with other objective functions
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Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:
1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i, )?
2. Problem requires Q(n?) bits of communication
3. Consider graph G = (V, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

. Alice emulates streams algorithm on G and edges {(ui,w;) : Aj =1}
. Sends the memory state of the algorithm to Bob

. Bob continues algorithm on edges {(vi, w;) : B;j = 1}

. Memory is Q(n?) bits since T3 > 0 iff Aj = B;j = 1 for some i, j
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An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:

> Pick an edge e; = (u, v) uniformly at random from the stream.

> Pick w uniformly at random from V \ {u, v}

> If ¢ = (u,w), ex = (v, w) for j, k > i exist return 3m(n — 2); else 0.
> Analysis:

» Expected outcome of algorithm is T3

> Repeat O(e?(mn/t)) times in parallel and average




Outline

Research Directions: To Infinity and Beyond. ..




Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary




Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary

» Can we design smaller-space algorithms if we assume random order?




Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary
» Can we design smaller-space algorithms if we assume random order?

» Perform average-case analysis to understand performance in practice




Random Order Streams and Space-Efficient Sampling

Past work assumes stream is ordered by an all-powerful adversary
Can we design smaller-space algorithms if we assume random order?
Perform average-case analysis to understand performance in practice

What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. ..
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Probabilistic Data

» Previous work assumes all input is specified exactly
» What if each data item has some inherent uncertainty

» Can we compute the expected value or distribution of aggregates?
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Annotations and Stream Verification

> Suppose we have help processing the stream by a third party who
“annotates” the stream

<X13X27X37X47 e 7Xm> - <X17X2; dn, X3, X4, ..., Xm, am)

» Can we reduce our space use if assisted by an honest helper but not
be misled by a malicious helper?




Thanks!

> Blog: http://polylogblog.wordpress.com

» Lectures: Piotr Indyk, MIT
http://stellar.mit.edu/S/course/6/£a07/6.895/

» Books:

“Data Streams: Algorithms and Applications”
S. Muthukrishnan (2005)

“Algorithms and Complexity of Stream Processing”
A. McGregor, S. Muthukrishnan (forthcoming)
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