Crash Course in Data Stream Theory
Part 2. Graphs, Geometry, and Future Directions

Andrew McGregor
University of Massachusetts Amherst

Outline

Basic Definitions

Graph Spanners and Sparsifiers

Clustering

Counting Triangles

Research Directions: To Infinity and Beyond. ..

Outline

Basic Definitions

Graph Streams and Geometric Streams

» Graph Streams: Stream of edges E = {ey, €,..., ey} describe a
graph G on n nodes. Estimate properties of G.

Graph Streams and Geometric Streams

» Graph Streams: Stream of edges E = {ey, €,..., ey} describe a
graph G on n nodes. Estimate properties of G.

» Geometric Streams: Stream of points P = {p1, p2, ..., pm} from
some metric space (X, d), e.g., R*. Estimate properties of P.

Outline

Graph Spanners and Sparsifiers

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.
» Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.

» Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # £(v),

Lw) — €(u) for all w with £(w) = £(v)

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.
» Algorithm:

1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # ¢(v),

Lw) — €(u) for all w with £(w) = £(v)

3. The graph is connected iff every node ends up with the same label

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.
» Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # ¢(v),
Lw) — €(u) for all w with £(w) = £(v)

3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when £(u) # ¢(v) we maintain a spanning forest

Warm-Up: Connectivity

» Thm: Can determine if a graph is connected in O(nlog n) space.
» Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # ¢(v),
Lw) — €(u) for all w with £(w) = £(v)
3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when £(u) # ¢(v) we maintain a spanning forest

» Can do something similar to determine if graph is bipartite

Warm-Up: Connectivity

Thm: Can determine if a graph is connected in O(nlog n) space.

Algorithm:
1. Maintain label £(u) for each node u where labels are initially distinct
2. On seeing edge (u, v) with £(u) # ¢(v),

Lw) — €(u) for all w with £(w) = £(v)
3. The graph is connected iff every node ends up with the same label
4. If we collect (u, v) when £(u) # ¢(v) we maintain a spanning forest
Can do something similar to determine if graph is bipartite

Most graph problems require space roughly proportional to the
number of nodes. .. called the “semi-streaming space restriction”

Sparsify the graph as it arrives

» When an edge arrives, only store it if it satisfies some condition

Sparsify the graph as it arrives

» When an edge arrives, only store it if it satisfies some condition

> Graph Sparsfiers: Condition maintains O(ne~2) edges but the
resulting graph preserves all cuts up to a 1 + ¢ factor

Sparsify the graph as it arrives

» When an edge arrives, only store it if it satisfies some condition
> Graph Sparsfiers: Condition maintains O(ne~2) edges but the
resulting graph preserves all cuts up to a 1 + ¢ factor

» Matchings: Condition maintains é(n) edges preserves the maximum
weight matching up to a constant factor

Sparsify the graph as it arrives

When an edge arrives, only store it if it satisfies some condition

Graph Sparsfiers: Condition maintains O(ne~2) edges but the
resulting graph preserves all cuts up to a 1 + ¢ factor

Matchings: Condition maintains @(n) edges preserves the maximum
weight matching up to a constant factor

Graph Spanners: Condition maintains O(n'*1/*) edges but the
resulting graph preserves all graph distances up to a factor 2t — 1

Spanners and Distance Estimation

» The edges define a shortest path graph metric dg : V x V — N.

Spanners and Distance Estimation

» The edges define a shortest path graph metric dg : V x V — N.

» An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

Spanners and Distance Estimation

» The edges define a shortest path graph metric dg : V x V — N.
» An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

» Thm: Can construct a 2t — 1 spanner in O(n'*1/t) space.

Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

Thm: Can construct a 2t — 1 spanner in O(n**1/t) space.
Algorithm:
1. Let E’ be initially empty

Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

Thm: Can construct a 2t — 1 spanner in O(n**1/t) space.
Algorithm:

1. Let E’ be initially empty
2. On seeing (u,v), E' «— E' U (u,v) if du(u,v) >2t—1

Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

» Thm: Can construct a 2t — 1 spanner in O(n'*1/t) space.
» Algorithm:
1. Let E’ be initially empty
2. On seeing (u,v), E' «— E' U (u,v) if du(u,v) >2t—1
Analysis:

1. Every distance has grown by at most a factor 2t — 1

Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

» Thm: Can construct a 2t — 1 spanner in O(n'*1/t) space.
» Algorithm:
1. Let E’ be initially empty
2. On seeing (u,v), E' «— E' U (u,v) if du(u,v) >2t—1
Analysis:
1. Every distance has grown by at most a factor 2t — 1
2. |E') = O(n"*/*) because it's a graph with no cycles of length < 2t

Spanners and Distance Estimation

The edges define a shortest path graph metric dg : V x V — N.

An a-spanner of a graph G = (V, E) is a subgraph H = (V, E’)
such that for all u, v,

de(u,v) < dy(u,v) < adg(u, v)

» Thm: Can construct a 2t — 1 spanner in O(n'*1/t) space.
» Algorithm:
1. Let E’ be initially empty
2. On seeing (u,v), E' «— E' U (u,v) if du(u,v) >2t—1
Analysis:
1. Every distance has grown by at most a factor 2t — 1
2. |E') = O(n"*/*) because it's a graph with no cycles of length < 2t

Above algorithm is rather slow but faster algorithms exist

Outline

Clustering

k-center

» Given a stream of distinct points X = {py, ..., p,} from a metric
space (X, d), find the set of k points Y C X that minimizes:

.
max min (Pi,y)

k-center

» Given a stream of distinct points X = {py, ..., p,} from a metric
space (X, d), find the set of k points Y C X that minimizes:

.
max min (Pi,y)

» Can find 2 approx. in O(k) space if you know OPT ahead of time.

k-center

» Given a stream of distinct points X = {py, ..., p,} from a metric
space (X, d), find the set of k points Y C X that minimizes:

.
max min (Pi,y)

» Can find 2 approx. in O(k) space if you know OPT ahead of time.
» Can find (2 + €) approx. in O(ke ! log(a/b)) space if you know

a<opr<b

k-center

Given a stream of distinct points X = {py,..., p,} from a metric
space (X, d), find the set of k points Y C X that minimizes:

.
max min (Pi,y)

Can find 2 approx. in O(k) space if you know OPT ahead of time.
Can find (2 + €) approx. in O(ke !log(a/b)) space if you know

a<opr<b

Thm: (2 + €) approx. in O(ke !loge™!) space.

k-center: Algorithm and Analysis

» Consider first k 4+ 1 points: this gives a lower bound a on OPT.

k-center: Algorithm and Analysis

» Consider first k 4+ 1 points: this gives a lower bound a on OPT.

» Instantiate basic algorithm with guesses

Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

k-center: Algorithm and Analysis

» Consider first k 4+ 1 points: this gives a lower bound a on OPT.

» Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

» Say instantiation goes bad if it tries to open (k + 1)-th center

k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

Say instantiation goes bad if it tries to open (k + 1)-th center
If instantiation for guess £ goes bad when processing (j + 1)-th point

k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

Say instantiation goes bad if it tries to open (k + 1)-th center
If instantiation for guess £ goes bad when processing (j + 1)-th point
> Let q1,...,qx be centers chosen so far.

k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

Say instantiation goes bad if it tries to open (k + 1)-th center
If instantiation for guess £ goes bad when processing (j + 1)-th point

> Let q1,...,qx be centers chosen so far.
> Then pi,...,p; are all at most 2¢ from a g;.

k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

Say instantiation goes bad if it tries to open (k + 1)-th center
If instantiation for guess £ goes bad when processing (j + 1)-th point

> Let q1,...,qx be centers chosen so far.
> Then pi,...,p; are all at most 2¢ from a g;.
> Optimum for {q1,..., gk, Pj+1,- .-, Pn} iS at most OPT + 2.

k-center: Algorithm and Analysis

Consider first k + 1 points: this gives a lower bound a on OPT.

Instantiate basic algorithm with guesses
Uy =a, b= (]. + 6)3, l3 = (1 + 6)23, v b = 0(671)2

» Say instantiation goes bad if it tries to open (k + 1)-th center
» If instantiation for guess £ goes bad when processing (j + 1)-th point
> Let q1,...,qx be centers chosen so far.
> Then pi,...,p; are all at most 2¢ from a g;.
> Optimum for {q1,..., gk, Pj+1,- .-, Pn} iS at most OPT + 2.
Hence, for an instantiation with guess 2¢/¢ only incurs a small error
if we use {q1,...,qx, Pj+1,.-.,pn} rather than {p1,..., p,}.

Other computational geometry problems

Fixed-dimensional linear programming
Minimum enclosing balls

Convex hulls

Diameter

Clustering with other objective functions

Outline

Counting Triangles

Triangles

» Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + €) with probability 1 — § given promise that T3 > t.

Triangles

» Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + €) with probability 1 — § given promise that T3 > t.

» Thm: Q(n?) space required to determine if t = 0 (with § = 1/3).

Triangles

» Given a stream of edges, estimate the number of triangles T3 up to
a factor (1 + €) with probability 1 — § given promise that T3 > t.

» Thm: Q(n?) space required to determine if t = 0 (with § = 1/3).

» Thm: O(e~2(nm/t)) space is sufficient.

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:

1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i, j)?

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:

1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?
2. Problem requires Q(n?) bits of communication

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:
1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?
. Problem requires Q(n?) bits of communication
. Consider graph G = (V/, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:

1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?

2. Problem requires Q(n?) bits of communication

3. Consider graph G = (V, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

4. Alice emulates streams algorithm on G and edges {(u;, w;) : Aj = 1}

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:
1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?
2. Problem requires Q(n?) bits of communication
3. Consider graph G = (V, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

. Alice emulates streams algorithm on G and edges {(ui,w;) : Aj =1}
. Sends the memory state of the algorithm to Bob

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0

> Analysis:
1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?
2. Problem requires Q(n?) bits of communication
3. Consider graph G = (V, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

. Alice emulates streams algorithm on G and edges {(ui,w;) : Aj =1}
. Sends the memory state of the algorithm to Bob
. Bob continues algorithm on edges {(vi, w;) : B; = 1}

Lower Bound

» Thm: Q(n?) space required to determine if T3 # 0
> Analysis:
1. Suppose Alice has n x n binary matrix A, Bob has n x n binary
matrix B. Is Aj = Bj = 1 for some (i,)?
2. Problem requires Q(n?) bits of communication
3. Consider graph G = (V, E) with

V={vi,...,Va,tt,...,Un,wi,...,wo}t and E = {(vi,u;) : i € [n]}

. Alice emulates streams algorithm on G and edges {(ui,w;) : Aj =1}
. Sends the memory state of the algorithm to Bob

. Bob continues algorithm on edges {(vi, w;) : B;j = 1}

. Memory is Q(n?) bits since T3 > 0 iff Aj = B;j = 1 for some i, j

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:
> Pick an edge e; = (u, v) uniformly at random from the stream.

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:

> Pick an edge e; = (u, v) uniformly at random from the stream.
> Pick w uniformly at random from V \ {u, v}

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:

> Pick an edge e; = (u, v) uniformly at random from the stream.
> Pick w uniformly at random from V \ {u, v}
> If ¢ = (u,w), ex = (v, w) for j, k > i exist return 3m(n — 2); else 0.

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:

> Pick an edge e; = (u, v) uniformly at random from the stream.

> Pick w uniformly at random from V \ {u, v}

> If ¢ = (u,w), ex = (v, w) for j, k > i exist return 3m(n — 2); else 0.
> Analysis:

» Expected outcome of algorithm is T3

An Algorithm

» Thm: O(e~2(nm/t)) space is sufficient if T3 > t.
» Algorithm:

> Pick an edge e; = (u, v) uniformly at random from the stream.

> Pick w uniformly at random from V \ {u, v}

> If ¢ = (u,w), ex = (v, w) for j, k > i exist return 3m(n — 2); else 0.
> Analysis:

» Expected outcome of algorithm is T3

> Repeat O(e?(mn/t)) times in parallel and average

Outline

Research Directions: To Infinity and Beyond. ..

Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary

Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary

» Can we design smaller-space algorithms if we assume random order?

Random Order Streams and Space-Efficient Sampling

» Past work assumes stream is ordered by an all-powerful adversary
» Can we design smaller-space algorithms if we assume random order?

» Perform average-case analysis to understand performance in practice

Random Order Streams and Space-Efficient Sampling

Past work assumes stream is ordered by an all-powerful adversary
Can we design smaller-space algorithms if we assume random order?
Perform average-case analysis to understand performance in practice

What about processing stochastically generated streams such as a
stream of i.i.d. samples? Learning algorithms. ..

Probabilistic Data

» Previous work assumes all input is specified exactly

Probabilistic Data

» Previous work assumes all input is specified exactly

» What if each data item has some inherent uncertainty

Probabilistic Data

» Previous work assumes all input is specified exactly
» What if each data item has some inherent uncertainty

» Can we compute the expected value or distribution of aggregates?

Annotations and Stream Verification

> Suppose we have help processing the stream by a third party who
“annotates” the stream

<X13X27X37X47 e 7Xm> - <X17X2; dn, X3, X4, ..., Xm, am)

Annotations and Stream Verification

> Suppose we have help processing the stream by a third party who
“annotates” the stream

<X13X27X37X47 e 7Xm> - <X17X2; dn, X3, X4, ..., Xm, am)

» Can we reduce our space use if assisted by an honest helper but not
be misled by a malicious helper?

Thanks!

> Blog: http://polylogblog.wordpress.com

» Lectures: Piotr Indyk, MIT
http://stellar.mit.edu/S/course/6/£a07/6.895/

» Books:

“Data Streams: Algorithms and Applications”
S. Muthukrishnan (2005)

“Algorithms and Complexity of Stream Processing”
A. McGregor, S. Muthukrishnan (forthcoming)

http://polylogblog.wordpress.com
http://stellar.mit.edu/S/course/6/fa07/6.895/

	Basic Definitions
	Graph Spanners and Sparsifiers
	Clustering
	Counting Triangles
	Research Directions: To Infinity and Beyond…

