Finding Graph Matchings in Data Streams

Andrew McGregor, UPenn

The Streaming Model

The Streaming Model

- Classic Problem: Median Finding [Munro \& Paterson]

The Streaming Model

- Classic Problem: Median Finding [Munro \& Paterson]
- Parameters of the Model:
- How much memory?
- How many passes?
- How much computation time between data elements?

The Streaming Model

- Classic Problem: Median Finding [Munro \& Paterson]
- Parameters of the Model:
- How much memory?
- How many passes?
- How much computation time between data elements?
- Statistics, Norms and Histograms...

The Streaming Model

- Classic Problem: Median Finding [Munro \& Paterson]
- Parameters of the Model:
- How much memory?
- How many passes?
- How much computation time between data elements?
- Statistics, Norms and Histograms...
- What about graph problems?

Graph Streaming

- Instance of graph problem $G=(V, E)$
- Edges arrive in arbitrary order: $\mathrm{e}_{1}, \mathrm{e}_{2}, \mathrm{e}_{3}, \ldots, \mathrm{e}_{m}$
- Memory limit $O(n$ polylog $n)$ where $n=|V|$
- Spanner Construction, Bipartite Matching, Lower Bounds [Feigenbaum, Kannan, M. , Suri, Zhang '04 \&'05]
- "Annotation" Stream Model [Aggarwal, Datar, Rajagopalan, Ruhl '04, Demetrescu, Finocchi, Ribichini '05]

Matching

- A matching - set of edges with no two edges sharing an end point.
- Problems:

Find the matching of maximum cardinality (MCM)
Find the matching of maximum weight (MWM)

- (Non-streamable) Algorithms:

Exact polytime algorithm for both [Gabow '90]
Linear-time I+є approx for MCM [Kalantari \& Shokoufandeh '95]
Linear-time 3/2+є approx for MWM [Drake \& Hougardy '03]

Results

- Unweighted Matchings:

I+€ approximation in constant passes.

- Weighted Matchings:
$3+2 \sqrt{ } 2$ approximation in single pass.
$2+\epsilon$ approximation in constant passes.

Unweighted Matchings.

An Easy 2 Approximation

- Greedy Algorithm:

Store an edge if it is not adjacent to stored edge

- Construct a maximal matching - 2 Approximation

Augmenting Paths

Augmenting Paths

Augmenting Paths

Augmenting Paths

- Augmenting Path: simple path starting and ending at unmatched nodes such that edges alternate between M and $E M$.

Augmenting Paths

- Augmenting Path: simple path starting and ending at unmatched nodes such that edges alternate between M and $E M$.

Augmenting Paths

- Augmenting Path: simple path starting and ending at unmatched nodes such that edges alternate between M and $E M$.

Augmenting Paths

- Consider augmenting paths defined by taking the symmetric difference between current (maximal) matching and optimum matching.
- Let P_{i} be the number of length i augmenting paths

$$
|M|+\sum_{1 \leq i \leq k} P_{i} \geq O P T(1-1 / k)
$$

Algorithm Outline

I. Find a maximal matching
2. For $I \leq i \leq k$:

Find a set, S_{i}, of length i augmenting paths
3. Augment current matching with S_{j} where $j=\operatorname{argmax} S_{i}$
4. Repeat from 2 unless S_{j} is small

Projecting to Layered Graphs

G

> Projecting to Layered Graphs

> Projecting to Layered Graphs
Projecting to Layered Graphs

Projecting to Layered Graphs

Projecting to Layered Graphs

$$
G
$$

Projecting to Layered Graphs

Lemma: If there are P_{i} length i augmenting paths in G then we expect $P_{i} / 2(2 i)^{i}$ node disjoint paths in $L(G)$.

Lemma: If there are P_{i} length i augmenting paths in G then we expect $P_{i} / 2(2 i)^{i}$ node disjoint paths in $L(G)$.

Lemma: A maximal set of node disjoint paths in $L(G)$, is an $i+2$ approximation to the maximum set of node disjoint paths in $L(G)$.

Lemma: If there are P_{i} length i augmenting paths in G then we expect $P_{i} / 2(2 i)^{i}$ node disjoint paths in $L(G)$.

Lemma: A maximal set of node disjoint paths in $L(G)$, is an $i+2$ approximation to the maximum set of node disjoint paths in $L(G)$.

To find a constant fraction of length i augmenting paths P_{i}, create layered graph and greedily find node disjoint paths.

Limiting Backtracking

- Solution: If number of paths being grown falls below threshold δn then delete and backtrack.

Good: Only backtrack a constant number of times
Bad: Don't find a maximal set of node disjoint paths

- In a constant number of passes, we find a constant fraction of length i node disjoint paths/augmenting paths.

Weighted Matching.

Single Pass $3+2 \sqrt{ } 2$ Approximation

Single Pass $3+2 \sqrt{ } 2$ Approximation

- At all times we store some matching M

Single Pass $3+2 \sqrt{ } 2$ Approximation

- At all times we store some matching M
- For each edge e:

Compute total weight W of edges $\mathrm{e}_{1}, \mathrm{e}_{2}$ in M incident to e If $w(e)>(I+\gamma) W$ then $M \leftarrow M \cup\{e\} \backslash\left\{e,, e_{2}\right\}$

Single Pass $3+2 \sqrt{ } 2$ Approximation

- At all times we store some matching M
- For each edge e:

Compute total weight W of edges $\mathrm{e}_{1}, \mathrm{e}_{2}$ in M incident to e If $w(e)>(I+\gamma) W$ then $M \leftarrow M \cup\{e\} \backslash\left\{e,, e_{2}\right\}$

- We say e is "30R1" and "KILLEE!" e_{l} and e_{2}

Proof (Sketch)

Proof (Sketch)

- We say an edge e is a GURYIYOR if it is born and was never killed.

Proof (Sketch)

- We say an edge e is a SURYIYOR if it is born and was never killed.
- Let $S=$ all survivors.

Proof (Sketch)

- We say an edge e is a GURYIVOR if it is born and was never killed.
- Let $S=$ all survivors.
- For survivor e we define the TRALL OF THE DEAD T(e) to be the transitive closure of edges killed by e.

Proof (Sketch)

- We say an edge e is a GURYIVOR if it is born and was never killed.
- Let $S=$ all survivors.
- For survivor e we define the TRALL OF THE DEAD T(e) to be the transitive closure of edges killed by e.
- Claim I: $w(T(e)) \leq w(e) / \gamma$

Proof (Sketch)

- We say an edge e is a SURYMYOR if it is born and was never killed.
- Let $S=$ all survivors.
- For survivor e we define the TRALL OF THE DEAD T(e) to be the transitive closure of edges killed by e.
- Claim I: $w(T(e)) \leq w(e) / \gamma$
- Claim 2: Can charge the weights of edges in OPT such that:
- At most $(I+\gamma) w(T(e))$ is charged to $T(e)$
- At most $2(I+\gamma) w(e)$ is charged to e

Proof (Sketch)

- We say an edge e is a SURYIYOR if it is born and was never killed.
- Let $S=$ all survivors.
- For survivor e we define the TRALL OF THE DEAD T(e) to be the transitive closure of edges killed by e.
- Claim I: $w(T(e)) \leq w(e) / \gamma$
- Claim 2: Can charge the weights of edges in OPT such that:
- At most $(I+\gamma) w(T(e))$ is charged to $T(e)$
- At most $2(I+\gamma) w(e)$ is charged to e
- Hence $w(O P T) \leq(I+\gamma) w(T(S))+2(I+\gamma) w(S)<(3+2 \sqrt{ } 2) w(S)$

Multi-pass $2+\epsilon$ Approximation

Multi-pass 2+є Approximation

- First pass: find a constant approximate M_{l}

Multi-pass 2+є Approximation

- First pass: find a constant approximate M_{l}
- Subsequent passes: create M_{i} from M_{i-I} by running the previous algorithm with $\gamma(\epsilon)$

Multi-pass 2+є Approximation

- First pass: find a constant approximate M_{I}
- Subsequent passes: create M_{i} from M_{i-I} by running the previous algorithm with $\gamma(\epsilon)$
- Repeat if $\left|M_{i}\right| /\left|M_{i-1}\right|>\mid+K(\epsilon)$

Multi-pass 2+є Approximation

- First pass: find a constant approximate M_{I}
- Subsequent passes: create M_{i} from M_{i-I} by running the previous algorithm with $\gamma(\epsilon)$
- Repeat if $\left|M_{i}\right| /\left|M_{i-1}\right|>I+K(\epsilon)$
- Claim I: A constant number of passes suffices

Multi-pass 2+є Approximation

- First pass: find a constant approximate M_{l}
- Subsequent passes: create M_{i} from M_{i-l} by running the previous algorithm with $\gamma(\epsilon)$
- Repeat if $\left|M_{i}\right| /\left|M_{i-1}\right|>\mid+K(\epsilon)$
- Claim I: A constant number of passes suffices
- Claim 2:When $\left|M_{j}\right|\left|M_{i-1}\right| \leq I+K$ we have a $2+\epsilon$ approx.

Conclusions

- Unweighted Matchings:

I+€ approximation in constant passes.

- Weighted Matchings:
$3+2 \sqrt{ } 2$ approximation in single pass.
$2+\epsilon$ approximation in constant passes.

Thanks.

