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The Streaming Model

• Classic Problem: Median Finding [Munro & Paterson]

• Parameters of the Model:

• How much memory?

• How many passes?

• How much computation time between data elements?

• Statistics, Norms and Histograms…

• What about graph problems?



Graph Streaming

• Instance of graph problem G = (V, E)

• Edges arrive in arbitrary order: e1, e2, e3, …, em

• Memory limit O(n polylog n) where n = |V|

• Spanner Construction, Bipartite Matching, Lower Bounds 
[Feigenbaum, Kannan, M. , Suri, Zhang ’04 &’05]

• “Annotation” Stream Model [Aggarwal, Datar, Rajagopalan, 
Ruhl ’04, Demetrescu, Finocchi, Ribichini ’05] 



Matching

• A matching - set of edges with no two edges sharing an end point. 

• Problems:
Find the matching of maximum cardinality (MCM)
Find the matching of maximum weight (MWM)

• (Non-streamable) Algorithms:
Exact polytime algorithm for both [Gabow ’90]

Linear-time 1+ε approx for MCM [Kalantari & Shokoufandeh ’95]

Linear-time 3/2+ε approx for MWM [Drake & Hougardy ’03]



Results

• Unweighted Matchings: 

1+ε approximation in constant passes.

• Weighted Matchings:

3+2√2 approximation in single pass.

2+ε approximation in constant passes.



Unweighted Matchings.



An Easy 2 Approximation

• Greedy Algorithm:

Store an edge if it is not adjacent to stored edge

• Construct a maximal matching - 2 Approximation
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Augmenting Paths

• Consider augmenting paths defined by taking the 
symmetric difference between current (maximal) 
matching and optimum matching.

• Let Pi be the number of length i augmenting paths

|M | +
∑

1≤i≤k

Pi ≥ OPT (1 − 1/k)



Algorithm Outline

1. Find a maximal matching

2. For 1 ≤ i ≤ k: 

Find a set, Si, of length i augmenting paths

3. Augment current matching with Sj where j = argmax Si 

4. Repeat from 2 unless Sj is small
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Lemma: If there are Pi length i augmenting paths in G 
then we expect Pi / 2(2i)i node disjoint paths in L(G).

Lemma:  A maximal set of node disjoint paths in L(G), 
is an i+2 approximation to the maximum set of node 
disjoint paths in L(G).

To find a constant fraction of length i augmenting 
paths Pi, create layered graph and greedily find node 
disjoint paths. 
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Limiting Backtracking

• Solution: If number of paths being grown falls below threshold 
δn then delete and backtrack. 

Good: Only backtrack a constant number of times

Bad: Don’t find a maximal set of node disjoint paths

• In a constant number of passes, we find a constant fraction of 
length i node disjoint paths/augmenting paths.
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Single Pass 3+2√2 Approximation

• At all times we store some matching M

• For each edge e:

Compute total weight W of edges e1, e2 in M incident to e

If w(e) > (1+γ) W then M ← M ∪ {e} \ {e1,e2}

• We say e is “born” and “killed” e1 and e2
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Proof (Sketch)

• We say an edge e is a survivor if it is born and was never killed. 

• Let S = all survivors.

• For survivor e we define the trail of the dead T(e) to be the 
transitive closure of edges killed by e.

• Claim 1: w(T(e)) ≤ w(e)/γ

• Claim 2: Can charge the weights of edges in OPT such that: 

• At most (1+ γ) w(T(e)) is charged to T(e) 

• At most 2(1+ γ) w(e) is charged to e

• Hence w(OPT) ≤ (1+ γ) w(T(S)) + 2(1+ γ) w(S)< (3+2√2) w(S)
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Multi-pass 2+ε Approximation

• First pass: find a constant approximate M1

• Subsequent passes: create Mi from Mi-1 by running the 
previous algorithm with γ(ε)

• Repeat if |Mi|/ |Mi-1|> 1+κ(ε)

• Claim 1:  A constant number of passes suffices

• Claim 2: When |Mi|/ |Mi-1| ≤ 1+κ we have a 2+ε approx. 



Conclusions

• Unweighted Matchings: 

1+ε approximation in constant passes.

• Weighted Matchings:

3+2√2 approximation in single pass.

2+ε approximation in constant passes.



Thanks.


