Approximating the Best–Fit Tree Under Lp Norms

Boulos Harb, Sampath Kannan and Andrew McGregor, UPenn

The Problem(s)

- Input: Distance Matrix D[i,j] on n items
- Output: Tree Metric *T*[*i*,*j*]
- Goal: Minimize the L_p cost-of-fit

$$L_p(D,T) = \left(\sum_{i,j} |D[i,j] - T[i,j]|^p\right)^{1/2}$$

The Problem(s)

- Input: Distance Matrix D[i,j] on n items
- Output: Ultrametric *T*[*i*,*j*]
- Goal: Minimize the L_p cost-of-fit

$$L_p(D,T) = \left(\sum_{i,j} |D[i,j] - T[i,j]|^p\right)^{1/2}$$

The Problem(s)

- Input: Distance Matrix D[i,j] on n items
- Output: Ultrametric *T*[*i*,*j*]
- Goal: Minimize the *L_{rel}* cost-of-fit

$$L_{\rm rel}(D,T) = \sum_{i,j} \max\left\{\frac{D[i,j]}{T[i,j]}, \frac{T[i,j]}{D[i,j]}\right\}$$

Tree Metric & Ultrametrics

- Tree Metric: Distances between the leaves of a weighted tree.
 ∀w, x, y, z ∈ [n] T[w, x] + T[y, z] ≤ max{T[w, y] + T[x, z], T[w, z] + T[x, y]}
- Ultrametric: Distance between the leaves of a rooted weighted tree in which all leaves are equidistance from root.
 ∀x, y, z ∈ [n] T[x, y] ≤ max{T[x, z], T[z, y]}

Tree Metric & Ultrametrics

- Tree Metric: Distances between the leaves of a weighted tree.
 ∀w, x, y, z ∈ [n] T[w, x] + T[y, z] ≤ max{T[w, y] + T[x, z], T[w, z] + T[x, y]}
- Ultrametric: Distance between the leaves of a rooted weighted tree in which all leaves are equidistance from root.
 ∀x, y, z ∈ [n] T[x, y] ≤ max{T[x, z], T[z, y]}

Biological Motivation

- View ultrametric as an evolutionary tree
- D[i,j] is estimate of time since species i and j diverged
- Goal: Reconcile contradictory estimates

Biological Motivation

- View ultrametric as an evolutionary tree
- D[i,j] is estimate of time since species i and j diverged
- Goal: Reconcile contradictory estimates

• Farach, Kannan & Warnow '95:

Exact construction of best-fit ultrametric under L_{∞}

- Farach, Kannan & Warnow '95:
 Exact construction of best-fit ultrametric under L∞
- Agarwala, Bafna, Farach, Paterson & Thorup '99:
 - 3 approximation of best-fit tree under L_{∞}

• Farach, Kannan & Warnow '95:

Exact construction of best-fit ultrametric under L_{∞}

- Agarwala, Bafna, Farach, Paterson & Thorup '99:
 - 3 approximation of best-fit tree under L_{∞}
- Ma, Wang & Zhang '99:

 $n^{1/p}$ approximation of best-fit non-contracting ultrametric under L_p

• Farach, Kannan & Warnow '95:

Exact construction of best-fit ultrametric under L_{∞}

- Agarwala, Bafna, Farach, Paterson & Thorup '99:
 - 3 approximation of best-fit tree under L_{∞}
- Ma, Wang & Zhang '99:

 $n^{1/p}$ approximation of best-fit non-contracting ultrametric under L_p

• Dhamdhere '04:

 $O(\log^{1/p} n)$ approximation of best-fit line metric under L_p

Our Results

• Algorithm #1:

 $L_p: O(k \log n)^{1/p}$ approximation to best-fit tree where k is the number of distinct distances in D $L_{rel}: O(\log^2 n)$ approximation to best-fit ultrametric

• Algorithm #2:

 $L_p: n^{1/p}$ approximation to best-fit tree

Algorithm #1

• Original distances are $d_1 < d_2 < ... < d_k$

- Original distances are $d_1 < d_2 < ... < d_k$
- Lemma:

- Original distances are $d_1 < d_2 < ... < d_k$
- Lemma:

a) There exists a best-fit (under L_1) ultrametric whose distances are a subset of $\{d_1, d_2, \dots, d_k\}$

- Original distances are $d_1 < d_2 < ... < d_k$
- Lemma:

a) There exists a best-fit (under L_I) ultrametric whose distances are a subset of $\{d_1, d_2, ..., d_k\}$ b) There exists an ultrametric whose distances are a subset of $\{d_1, d_2, ..., d_k\}$ whose cost-of-fit is at most twice optimal (under L_p).

- Original distances are $d_1 < d_2 < ... < d_k$
- Lemma:

a) There exists a best-fit (under L_1) ultrametric whose distances are a subset of $\{d_1, d_2, \dots, d_k\}$

b) There exists an ultrametric whose distances are a subset of $\{d_1, d_2, ..., d_k\}$ whose cost-of-fit is at most twice optimal (under L_p).

c)There exists an ultrametric with O(log n) distances whose cost-of-fit is at most twice optimal (under L_{rel}). [Assuming d_k/d_l is polynomial in n.]

"Splitting Distance" of internal node v = Distance between leaves of subtree rooted a v

"Splitting Distance" of internal node v = Distance between leaves of subtree rooted a v

"Splitting Distance" of internal node v =Distance between leaves of subtree rooted a v

Algorithm Outline

- Construct top partition G → G₁, G₂, G₃, ...
 Set length of inter-cluster edges to d_k
 All other lengths will be set to ≤ d_{k-1}
- Construct trees for $G_1, G_2, G_3, ...$

Correlation Clustering

- Input: Weighted (positive and negative) graph
- Output: A partitioning of nodes
- Goal: Minimize,

$$\sum_{e:w_e>0} (|w_e| \text{ if } e \text{ is split}) + \sum_{e:w_e<0} (|w_e| \text{ if } e \text{ is not split})$$

• O(log n) approximation [Charikar, Guruswami and Wirth '03]

Correlation Clustering

- Input: Weighted (positive and negative) graph
- Output: A partitioning of nodes
- Goal: Minimize,

 $\sum_{e:w_e>0} (|w_e| \text{ if } e \text{ is split}) + \sum_{e:w_e<0} (|w_e| \text{ if } e \text{ is not split})$

• O(log n) approximation [Charikar, Guruswami and Wirth '03]
Correlation Clustering

- Input: Weighted (positive and negative) graph
- Output: A partitioning of nodes
- Goal: Minimize,

 $\sum_{e:w_e>0} (|w_e| \text{ if } e \text{ is split}) + \sum_{e:w_e<0} (|w_e| \text{ if } e \text{ is not split})$

• O(log n) approximation [Charikar, Guruswami and Wirth '03]

Best-Fit Ultrametric Instance:

Best-Fit Ultrametric Instance:

Possible Splitting Distances: 20, 18, 17, 14, 11

Best-Fit Ultrametric Instance:

Possible Splitting Distances: 20, 18, 17, 14, 11

Top level clustering:

Increase some lengths to 20 and decrease some length 20 edges to 18

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Best-Fit Ultrametric Instance:

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Cost of length changes = Cost of disagreements during clustering

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Cost of length changes = Cost of disagreements during clustering

Recurse:

Best-Fit Ultrametric Instance:

Correlation Clustering Instance:

Cost of length changes = Cost of disagreements during clustering

Recurse:

• Let OPT be cost of fit of best-fit tree (under L₁)

- Let OPT be cost of fit of best-fit tree (under L₁)
- In each of k steps:

Cost of optimal clustering is $\leq OPT$ Cost of our clustering is $\leq O(\log n) OPT$

- Let OPT be cost of fit of best-fit tree (under L₁)
- In each of k steps:

Cost of optimal clustering is $\leq OPT$

Cost of our clustering is $\leq O(\log n) \text{ OPT}$

• Total cost of clusterings = $L_1(T, D) \leq O(k \log n) \text{ OPT}$

- Let OPT be cost of fit of best-fit tree (under L₁)
- In each of k steps:

Cost of optimal clustering is $\leq OPT$

Cost of our clustering is $\leq O(\log n) \text{ OPT}$

• Total cost of clusterings = $L_1(T, D) \leq O(k \log n) \text{ OPT}$

- Let OPT be cost of fit of best-fit tree (under L_1)
- In each of k steps:

Cost of optimal clustering is $\leq OPT$

- Cost of our clustering is $\leq O(\log n) \text{ OPT}$
- Total cost of clusterings = $L_1(T, D) \leq O(k \log n) \text{ OPT}$
- For L_p : seek to minimize $L_p^p(T, D)$

- Let OPT be cost of fit of best-fit tree (under L_1)
- In each of k steps:

Cost of optimal clustering is $\leq OPT$ Cost of our clustering is $\leq O(\log n) OPT$

- Total cost of clusterings = $L_1(T, D) \leq O(k \log n) \text{ OPT}$
- For L_p : seek to minimize L_p^p (T, D)
- Similar analysis yields an $O(\log^2 n)$ approx under L_{rel}

Algorithm #2

Algorithm

• For $d = d_k$ to d_l :

Consider reducing maximum length to d and forcing a partition "Push-down-cost(d)" - cost of reducing each length $\geq d$ to d "Cutting-cost(d)" - cost of increasing cut edge's length to d

- Split at d such that Push-down-cost(d)+ Cutting-cost(d)
- Recurse on each side of the cut

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3 Split at 19: Push-down cost = 1, Cut-cost = 1

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3 Split at 19: Push-down cost = 1, Cut-cost = 1

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3 Split at 19: Push-down cost = 1, Cut-cost = 1

Best-Fit Ultrametric Instance:


```
Split at 20:

Push-down cost = 0, Cut-cost = 3

Split at 19:

Push-down cost = 1, Cut-cost = 1

Split at 18:
```

```
Push-down cost = 5, Cut-cost = 0
```

Best-Fit Ultrametric Instance:

Split at 20: Push-down cost = 0, Cut-cost = 3 Split at 19: Push-down cost = 1, Cut-cost = 1 Split at 18:

```
Push-down cost = 5, Cut-cost = 0
```

Best-Fit Ultrametric Instance:


```
Split at 20:

Push-down cost = 0, Cut-cost = 3

Split at 19:

Push-down cost = 1, Cut-cost = 1

Split at 18:
```

```
Push-down cost = 5, Cut-cost = 0
```


Analysis (Outline)

- There are at most *n* cuts to be found
- For each cut:

 min_d Push-down-cost(d) + Cutting-cost(d) \leq OPT

• Total Cost = $L_p(T,D)$

Extending to Trees

Extending to Trees

 Theorem [Agarwala, Bafna, Farach, Paterson, Thorup '99]: An α-approx to the optimal "*a*-restricted ultrametric" (under L_p) can be used to construct an 3α-approx to the optimal tree metric under (under L_p).

Extending to Trees

 Theorem [Agarwala, Bafna, Farach, Paterson, Thorup '99]: An α-approx to the optimal "*a*-restricted ultrametric" (under L_p) can be used to construct an 3α-approx to the optimal tree metric under (under L_p).

 Definition: An *a*-restricted ultrametric satisfies: For all *i*, *T*[*a*,*i*] = 2µ For all *i*,*j*, 2µ ≥ *T*[*i*,*j*] ≥2 (µ-min (*D*[*a*,*i*], *D*[*a*,*j*])) where µ=max_i *D*[*a*,*i*]

Conclusions

 L_p : O(min(*n*, *k* log *n*))^{1/p} approximation where *k* is the number of distinct distances in *D*

 L_{rel} : O(log² n) approximation

• Best-fit Tree:

 $L_p: n^{1/p}$ approximation

Conclusions

 $L_p: O(\min(n, k \log n))^{1/p}$ approximation where k is the number of distinct distances in D

 $L_{rel}: O(\log^2 n)$ approximation

• Best-fit Tree:

 $L_p: n^{1/p}$ approximation

Late Breaking News: Upcoming FOCS paper byAilon and Charikar has improved results!

