More on the Reliability Function of the BSC

Alexander Barg
DIMACS, Rutgers University
Andrew McGregor
University of Pennsylvania

Some Definitions

Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.

Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
- We use a length n binary code $C=\left\{x_{1}, x_{2}, \ldots\right.$ $\left.x_{|C|}\right\}$ with rate $\geq R$ ie.

Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
- We use a length n binary code $C=\left\{x_{1}, x_{2}, \ldots\right.$ $\left.x_{|C|}\right\}$ with rate $\geq R$ ie.

$$
|C| \geq 2^{n R}
$$

Some Definitions

- Communicating over a binary symmetric channel with cross-over probability p.
- We use a length n binary code $C=\left\{x_{1}, x_{2}, \ldots\right.$ $\left.x_{|C|}\right\}$ with rate $\geq R$ ie.

$$
|C| \geq 2^{n R}
$$

- No matter what code we use there is the possibility of making errors - for a given rate of transmission there is some degree of error that is inherent to the channel itself.

Making Decoding Errors

- Maximum Likelihood Decoding: When we receive a word y we'll guess that the sent codeword is the codeword that lies closest to it.
- For each codeword x we define the Voronoi region:
- Let $P_{e}(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have

Making Decoding Errors

- Maximum Likelihood Decoding: When we receive a word y we'll guess that the sent codeword is the codeword that lies closest to it.
- For each codeword x we define the Voronoi region:

$$
D(x)=\left\{y \in\{0,1\}^{n}: d(x, y)<d\left(x_{j}, y\right) \forall x_{j} \in C \backslash x\right\}
$$

- Let $P_{e}(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have

Making Decoding Errors

- Maximum Likelihood Decoding: When we receive a word y we'll guess that the sent codeword is the codeword that lies closest to it.
- For each codeword x we define the Voronoi region:

$$
D(x)=\left\{y \in\{0,1\}^{n}: d(x, y)<d\left(x_{j}, y\right) \forall x_{j} \in C \backslash x\right\}
$$

- Let $P_{e}(x)$ be the probability that, when codeword x is transmitted, this decoding procedure leads to an error. Therefore we have

$$
P_{e}(x)=P_{x}\left(\{0,1\}^{n} \backslash D(x)\right)
$$

The Reliability Function

- The average error probability of decoding is
- We're interested in
- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:

The Reliability Function

- The average error probability of decoding is

$$
P_{e}(C)=\frac{1}{|C|} \sum_{x \in C} P_{e}(x)
$$

- We're interested in
- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:

The Reliability Function

- The average error probability of decoding is

$$
P_{e}(C)=\frac{1}{|C|} \sum_{x \in C} P_{e}(x)
$$

- We're interested in

$$
P_{e}(R)=\min _{C: R \operatorname{Rate}(C)>R} P_{e}(C)
$$

- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:

The Reliability Function

- The average error probability of decoding is

$$
P_{e}(C)=\frac{1}{|C|} \sum_{x \in C} P_{e}(x)
$$

- We're interested in

$$
P_{e}(R)=\min _{C: \operatorname{Rate}(C)>R} P_{e}(C)
$$

- We present a new lower bound for this quantity, or equivalently, an upper bound on the reliability function or error exponent of the channel:

$$
E(R, p)=-\lim _{n \rightarrow \infty} \frac{1}{n} \log \left[\min _{C: R(C)>R} P_{e}(C)\right]
$$

Bounds on the Error Exponent:

$$
p=0.01
$$

Litsyn's Distance Distribution Bound

■ Define

- Litsyn's Distance Distribution Bound: For any code C of rate R there exists a w such that

Litsyn's Distance Distribution Bound

- Define

$$
B_{w}(x)=\left|\left\{x_{j}: d\left(x, x_{j}\right)=w\right\}\right|
$$

■ Litsyn's Distance Distribution Bound: For any code C of rate R there exists a w such that

Litsyn's Distance Distribution Bound

- Define

$$
B_{w}(x)=\left|\left\{x_{j}: d\left(x, x_{j}\right)=w\right\}\right|
$$

■ Litsyn's Distance Distribution Bound: For any code C of rate R there exists a w such that

$$
B_{w}(x) \geq \mu(R, w)
$$

Estimating $P_{e}(x)$

$$
P_{e}(x)=P_{x}\left(\{0,1\}^{n} \backslash D(x)\right)
$$

Estimating $P_{e}(x)$

The Voronoi Region

Estimating $P_{e}(x)$

Use the distance distribution result ...

Estimating $P_{e}(x)$

Approximating the Voronoi Region...

Estimating $P_{e}(x)$

 Introducing the $X_{j} \ldots$For each neighbour
 x_{j} define a set X_{j} such that

$d\left(y, x_{j}\right) \leq d(y, x)$

$$
P_{e}(x) \geq P_{x}\left(\bigcup_{j: d\left(x, x_{j}\right)=w} X_{j}\right)
$$

Estimating $P_{e}(x)$

 "Pruning" the X_{j}...

For each neighbour x_{j} assign a priority n_{j} at random. Let

$$
Y_{j}=X_{j} \backslash \bigcup_{k: n_{k}>n_{j}} X_{k}
$$

$$
P_{e}(x) \geq \sum_{j: d\left(x, x_{j}\right)=w} P_{x}\left(Y_{j}\right)
$$

Estimating $P_{e}(x)$

 Applying the Reverse Union Bound...The Reverse Union Bound:

Giving us our final shape of our bound:

Estimating $P_{e}(x)$

 Applying the Reverse Union Bound...The Reverse Union Bound:

$$
\begin{aligned}
P_{x}\left(Y_{j}\right) & =P_{x}\left(X_{j} \backslash \bigcup_{k: n_{k}>n_{j}} X_{k}\right) \\
& \geq P_{x}\left(X_{j}\right)\left(1-\sum_{k: n_{k}>n_{j}} P_{x}\left(X_{k} \mid X_{j}\right)\right)
\end{aligned}
$$

Giving us our final shape of our bound:

Estimating $P_{e}(x)$

 Applying the Reverse Union Bound...The Reverse Union Bound:

$$
\begin{aligned}
P_{x}\left(Y_{j}\right) & =P_{x}\left(X_{j} \backslash \bigcup_{k: n_{k}>n_{j}} X_{k}\right) \\
& \geq P_{x}\left(X_{j}\right)\left(1-\sum_{k: n_{k}>n_{j}} P_{x}\left(X_{k} \mid X_{j}\right)\right)
\end{aligned}
$$

Giving us our final shape of our bound:

$$
P_{e}(x) \geq \sum_{j: d\left(x, x_{j}\right)=w} P_{x}\left(X_{j}\right)\left(1-\sum_{k: n_{k}>n_{j}} P_{x}\left(X_{k} \mid X_{j}\right)\right)
$$

- Now look across the entire code. Let $X_{i j}$ and $Y_{i j}$ be the sets for the neighbourhood of codeword x_{i}.
- Therefore we have:
and
where, the amount of "pruning" is
- What we do now depends on the values of the $K_{i j} \ldots$
- Now look across the entire code. Let $X_{i j}$ and $Y_{i j}$ be the sets for the neighbourhood of codeword x_{i}.
- Therefore we have:

$$
P_{e}\left(x_{i}\right) \geq \sum_{j: d\left(x_{i}, x_{j}\right)=w} P_{i}\left(Y_{i j}\right)
$$

and
where, the amount of "pruning" is

- What we do now depends on the values of the $K_{i j} \ldots$
- Now look across the entire code. Let $X_{i j}$ and $Y_{i j}$ be the sets for the neighbourhood of codeword x_{i}.
- Therefore we have:
and

$$
P_{e}\left(x_{i}\right) \geq \sum_{j: d\left(x_{i}, x_{j}\right)=w} P_{i}\left(Y_{i j}\right)
$$

$$
P\left(Y_{i j}\right) \geq P_{i}\left(X_{i j}\right)\left(1-K_{i j}\right)
$$

where, the amount of "pruning" is

- What we do now depends on the values of the $K_{i j} \ldots$
- Now look across the entire code. Let $X_{i j}$ and $Y_{i j}$ be the sets for the neighbourhood of codeword x_{i}.
- Therefore we have:
and

$$
P_{e}\left(x_{i}\right) \geq \sum_{j: d\left(x_{i}, x_{j}\right)=w} P_{i}\left(Y_{i j}\right)
$$

$$
P\left(Y_{i j}\right) \geq P_{i}\left(X_{i j}\right)\left(1-K_{i j}\right)
$$

where, the amount of "pruning" is

$$
K_{i j}=\sum_{k: n_{i k}>n_{i j}} P_{i}\left(X_{i k} \mid X_{i j}\right)
$$

- What we do now depends on the values of the $K_{i j} \ldots$

- Consider the set of codewords
- Consider the set of codewords

$$
S=\left\{x_{j}: K_{i j}>1 / 2 \text { for some } i\right\}
$$

\square Consider the set of codewords

$$
S=\left\{x_{j}: K_{i j}>1 / 2 \text { for some } i\right\}
$$

\square Either this is a "substantially" sized subcode or it isn't.
\square Consider the set of codewords

$$
S=\left\{x_{j}: K_{i j}>1 / 2 \text { for some } i\right\}
$$

\square Either this is a "substantially" sized subcode or it isn't.

- le, either we had to do a lot of pruning or we didn't have to do a lot of pruning.

If S was not substantially sized...

- Just remove codewords in S from the code!
- Then in the remaining code we have for all $Y_{i j}$

$$
P_{i}\left(Y_{i j}\right) \geq P_{i}\left(X_{i j}\right) / 2
$$

- Hence, modulo constant factors, the average error probability satisfies

$$
P_{e}(C, p) \geq A(w) \mu(w)
$$

- where $A(w)=P_{i}\left(X_{i j}\right)$

If S was substantially sized...

- Consider
where
- Consider a codeword x_{j} such that $K_{i j}>1 / 2$. Then there exists an l ' such that

$$
B_{l}\left(x_{j}\right)>1 /\left(2 n B\left(w, l^{\prime}\right)\right)
$$

- The upshot of S being substantial is that we discover a nuisance level l_{l}, such that

$$
P_{e}\left(x_{j}\right) \geq A(w) / B\left(w, l_{l}\right)
$$

and a substantial number of codewords have the

$$
B_{l_{l}}\left(x_{j}\right)>1 / B\left(w, l_{l}\right)
$$

If S was substantially sized...

- Consider
where

$$
K_{i j}=\sum_{k: n_{k}>n_{i j}} P_{i}\left(X_{i k} \mid X_{i j}\right)=\sum_{l=0}^{n}\left(\sum_{k: n_{i k}>n_{i j}, d\left(x_{j}, x_{k}\right)=l} B(w, l)\right)
$$

- Consider a codeword x_{j} such that $K_{i j}>1 / 2$. Then there exists an l ' such that

$$
B_{l}\left(x_{j}\right)>1 /\left(2 n B\left(w, l^{\prime}\right)\right)
$$

- The upshot of S being substantial is that we discover a nuisance level l_{l}, such that

$$
P_{e}\left(x_{j}\right) \geq A(w) / B\left(w, l_{l}\right)
$$

and a substantial number of codewords have the

$$
B_{l_{l}}\left(x_{j}\right)>1 / B\left(w, l_{l}\right)
$$

If S was substantially sized...

- Consider
where

$$
K_{i j}=\sum_{k: n_{i}>n_{i j}} P_{i}\left(X_{i k} \mid X_{i j}\right)=\sum_{l=0}^{n}\left(\sum_{k: n_{i k}>n_{i j}, d\left(x_{j}, x_{k}\right)=l} B(w, l)\right)
$$

$$
B(w, l)=P_{i}\left(X_{i k} \mid X_{i j}\right) \text { where } d\left(x_{i}, x_{j}\right)=d\left(x_{i}, x_{k}\right)=w, d\left(x_{j}, x_{k}\right)=l
$$

- Consider a codeword x_{j} such that $K_{i j}>1 / 2$. Then there exists an l ' such that

$$
B_{l}\left(x_{j}\right)>1 /\left(2 n B\left(w, l^{\prime}\right)\right)
$$

- The upshot of S being substantial is that we discover a nuisance level l_{l}, such that

$$
P_{e}\left(x_{j}\right) \geq A(w) / B\left(w, l_{l}\right)
$$

and a substantial number of codewords have the

$$
B_{l_{l}}\left(x_{j}\right)>1 / B\left(w, l_{l}\right)
$$

- A priori we don't know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:
- But if there existed a nuisance level l_{l} then we know that for a substantial number codewords such that
- Hence we can repeat the process with this new bound on the distribution.
- A priori we don't know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:

$$
P_{e}(C, p) \geq \min \left[A(w) \mu(w), \frac{A(w)}{B\left(w, l_{1}\right)}\right]
$$

- But if there existed a nuisance level l_{l} then we know that for a substantial number codewords such that
- Hence we can repeat the process with this new bound on the distribution.
- A priori we don't know whether we required a lot or a little pruning. We therefore take the weaker of the two bounds:

$$
P_{e}(C, p) \geq \min \left[A(w) \mu(w), \frac{A(w)}{B\left(w, l_{1}\right)}\right]
$$

- But if there existed a nuisance level l_{l} then we know that for a substantial number codewords such that

$$
B_{l_{1}}(x) \geq \frac{1}{B\left(w, l_{1}\right)}
$$

- Hence we can repeat the process with this new bound on the distribution.

Our Bound

- Continuing in this way we eventually get

$$
\begin{aligned}
& P_{e}(C, p) \geq \min \left[A(w) \mu(w), \frac{A(l)}{B(w, l)}\right] \\
& \text { where } 0 \leq l \leq w \leq \delta_{L P} n
\end{aligned}
$$

■ Minimizing over l and w gives us our final bound.

Random Linear Codes

- It can be shown that, with high probability, the weight distribution of a random linear code converges to

$$
B_{w}=\exp [n(R+h(w)-l)]
$$

- Using this instead of Litsyn's expression μ leads us to believe that the expurgation bound

$$
E(R, p) \geq-\delta_{G V}(p) / 2 \log 2 p(1-p)
$$

is tight for a random linear code for very low rates.

