

More on Reconstructing from Random Traces: Insertions and Deletions

Sampath Kannan and Andrew McGregor, UPenn

Random Traces

- Transmit a length n binary string t
- Channel introduces errors:
- Delete a bit with probability qI
- Insert a bit with probability q2 $_{2}$
- Flip a bit with probability p
- Transmit m times to generate m independent received strings $r_{1}, r_{2}, \ldots, r_{m}$

Previous Work

- Levenshtein '01:

Combinatorial Channels - eg. how many distinct subsequences are required to uniquely determine t ?

Probabilistic Channels - only treatment of memoryless channels

- Dudik \& Shulman '03:

Combinatorial Channels - how large must k be such that knowing all length k subsequences (and their multiplicities) is sufficient to deduce k ?

- Batu, Kannan, Khanna \& McGregor '04:

Deletions only...

Our Results

	p	q_{1}	q_{2}	m	Comments
Previous Work	0	0	$O\left(\log ^{-1} n\right)$	$O(\log n)$	Almost all strings
	0	0	$O\left(n^{-1 / 2-\epsilon}\right)$	$O(1 / \epsilon)$	Long runs approximated
This Work	$O(1)$	$O\left(\log ^{-2} n\right)$	$O\left(\log ^{-2} n\right)$	$O(\log n)$	Almost all strings
	0	$O\left(n^{-1 / 2-\epsilon}\right)$	$O\left(n^{-1 / 2-\epsilon)}\right.$	$O(1 / \epsilon)$	No ong runs and long alternating sequences approximated

Defn:

A run: ... I I I I I I ... or ... 00000000 ...
An alternating sequence: ... $01010101010 .$.
A substring is long if its length is greater than n^{ϵ}

The "Bit-Wise
Majority"Algorithm

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$1110101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1010000101110101110 \ldots$
$r_{5}:$	$1100000001011010110 \ldots$
$r_{m}:$	$1100000010110010110 \ldots$

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$1110101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1010000101110101110 \ldots$
$r_{5}:$	$1100000001011010110 \ldots$
$r_{m}:$	$1100000010110010110 \ldots$
$:$	1

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{I}:$	$1110101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$1100000001011010110 \ldots$
$r_{m}:$	$1100000010110010110 \ldots$
	11

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$11 * 10101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$1100000001011010110 \ldots$
$r_{m}:$	$1100000010110010110 \ldots$
	110

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$11 * 10101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$110 * 0000001011010110 \ldots$
$r_{m}:$	$110 * 0000010110010110 \ldots$
$:$	1101

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$11 * 10101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$110 * 0000001011010110 \ldots$
$r_{m}:$	$110 * 0000010110010110 \ldots$
$t:$	11010

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{\mathrm{I}}:$	$11 * 10 * 101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$110 * 0000001011010110 \ldots$
$r_{m}:$	$110 * 0000010110010110 \ldots$
	110100

The "Bit-wise Alignment"Algorithm

- Frugally insert blanks to align the strings

$r_{1}:$	$11 * 10 * 101110100101110 \ldots$
$r_{2}:$	$1101001010110100101 \ldots$
$r_{3}:$	$1101000010010101110 \ldots$
$r_{4}:$	$1 * 010000101110101110 \ldots$
$r_{5}:$	$110 * 0000001011010110 \ldots$
$r_{m}:$	$110 * 0000010110010110 \ldots$
$:$	$110100 \ldots$

- Analysis for a randomly chosen t : alignment of r_{i} with t can be modeled using random walk

The "Velcro"Algorithm

The "Velcro"Algorithm

- Consider the middle k/ bits of r_{1} : k possible length / anchors

The "Velcro"Algorithm

- Consider the middle k/ bits of r : : k possible length / anchors

- For each a_{i}, find the "best" match in other received strings

The "Velcro"Algorithm

- Consider the middle k/ bits of r_{1} : k possible length / anchors
- For each a_{i}, find the "best" match in other received strings
- If a_{i} has a "good" match in all received strings, recurse on the strings either side of each match

The "Velcro"Algorithm

- Consider the middle k/ bits of r : k possible length / anchors
- For each a_{i}, find the "best" match in other received strings
- If a_{i} has a "good" match in all received strings, recurse on the strings either side of each match

Analysis

- Defn: Match is good if Hamming distance is less than $\left(p-p^{2}+1 / 4\right) l$
- Lemma:
a) One of k anchors has a good match with all received strings with probability at least

$$
1-\left(m q l+m\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\left(2 p-2 p^{2}\right) l}\right)^{k}
$$

b) If a_{i} has a good match with all received strings then "splittingoff" at a_{i} is legitimate with probability as least

$$
1-k n e^{-l\left(1 / 2-2 p+2 p^{2}\right) / 4}
$$

Analysis

- Defn: Match is good if Hamming distance is less than $\left(p-p^{2}+1 / 4\right) l$
- Lemma:
a) One of k anchors has a good match with all received strings with probability at least

$$
1-\left(m q l+m\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{\left(2 p-2 p^{2}\right) l}\right)^{k} \longrightarrow>1-1 / n^{2}
$$

b) If a_{i} has a good match with all received strings then "splittingoff" at a_{i} is legitimate with probability as least

$$
1-k n e^{-l\left(1 / 2-2 p+2 p^{2}\right) / 4} \quad \longrightarrow>1-1 / n^{2}
$$

The "Simple but Incredibly Tedious to Analyze"Algorithm

The "Simple but..."Algorithm Promises, promises...

- Deletion and insertion probabilities are $q=O\left(n^{-1 / 2-\epsilon}\right)$ and zero flip probability
- Lemma (Promises):With high probability, if $m=O(I)$
(PI): In each transmission, the first bit of t was transmitted without error
(P2):Among all transmissions, at most one error occurred in the transmission of any four consecutive runs
(P3): For all alternating sequence of length $/>\sqrt{n}$, if an error occurs at the start of the alternating sequence (in any transmission) then, in all transmissions, there are no errors during the transmission of the final $\log n \sqrt{ } /$ bits of the maximal alternating sequence and the next two bits of the delimiting run
(P4): For all alternating sequence, if an error occurs at the start of the alternating sequence (in any of the m transmissions) then in all the m transmissions, there are no errors during the transmission of the final n^{ϵ} (or the rest of the alternating sequence if the length of the alternating sequence is less than n^{ϵ}) bits of the maximal alternating sequence and the next two bits of the delimiting run
(P5): For each length \sqrt{n} substring x of t, in the majority of transmissions, x is transmitted without errors
(P6): For each substring x of t of length $>n^{\epsilon}$, in each transmission, there are fewer than $q|x|$ $\log n$ errors in the transmission of x

The "Simple but..."Algorithm Promises, promises...

- Given the promises we can usually locally correct the errors:

$r_{l}:$	$11101100 \ldots$
$r_{2}:$	$11101100 \ldots$
$r_{3}:$	$11111000 \ldots$
$r_{4}:$	$11101100 \ldots$
$r_{5}:$	$11101100 \ldots$
$r_{m}:$	$11101100 \ldots$

The "Simple but..."Algorithm Promises, promises...

- Given the promises we can usually locally correct the errors:

$r_{l}:$	$11101100 \ldots$
$r_{2}:$	$11101100 \ldots$
$r_{3}:$	$111 * 11000 \ldots$
$r_{4}:$	$11101100 \ldots$
$r_{5}:$	$11101100 \ldots$
$r_{m}:$	$11101100 \ldots$

The "Simple but..."Algorithm Promises, promises...

- Given the promises we can usually locally correct the errors:

$r_{1}:$	$11101100 \ldots$
$r_{2}:$	$11101100 \ldots$
$r_{3}:$	$111 * 11000 \ldots$
$r_{4}:$	$11101100 \ldots$
$r_{5}:$	$11101100 \ldots$
$r_{m}:$	$11101100 \ldots$

- But not always:

$r_{1}:$	$10101010101 \ldots$
$r_{2}:$	$10101010101 \ldots$
$r_{3}:$	$11010101010 \ldots$
$r_{4}:$	$10101010101 \ldots$
$r_{5}:$	$10101010101 \ldots$
$r_{m}:$	$10101010101 \ldots$

The "Simple but..."Algorithm Promises, promises...

- Given the promises we can usually locally correct the errors:

$r_{1}:$	$11101100 \ldots$
$r_{2}:$	$11101100 \ldots$
$r_{3}:$	$111 * 11000 \ldots$
$r_{4}:$	$11101100 \ldots$
$r_{5}:$	$11101100 \ldots$
$r_{m}:$	$11101100 \ldots$

- But not always:
"Delimitating" Run

$r_{1}:$	$10101010101 \ldots$	$\ldots 101010101101$
$r_{2}:$	$10101010101 \ldots$	$\ldots 101010101101$
$r_{3}:$	$11010101010 \ldots$	$\ldots 110101010110$
$r_{4}:$	$10101010101 \ldots$	$\ldots 101010110101$
$r_{5}:$	$10101010101 \ldots$	$\ldots 101010101101$
$r_{m}:$	$10101010101 \ldots$	$\ldots 101010101101$

Conclusions \& Further Work

	p	q_{1}	q_{2}	m	Comments
Previous Work	0	0	$O\left(\log ^{-1} n\right)$	$O(\log n)$	Almost all strings
	0	0	$O\left(n^{-1 / 2-\epsilon}\right)$	$O(1 / \epsilon)$	Long runs approximated
This Work	$O(1)$	$O\left(\log ^{-2} n\right)$	$O\left(\log ^{-2} n\right)$	$O(\log n)$	Almost all strings
	0	$O\left(n^{-1 / 2-\epsilon}\right)$	$O\left(n^{-1 / 2-\epsilon}\right)$	$O(1 / \epsilon)$	No long runs and long alternating sequences approximated

- What about constant insert/delete probabilities?

The "Simple but..."Algorithm Using the Promises

- Look at length of first run in each received string (wlog it's a run of I's)
- Lemma (Tedious Case Analysis): Let y be the average length of this run and x^{i} be the length of the run in received string i
- $x^{i}=y$: No errors have occurred in the i th transmission of this run
- $x^{i}=y+1$: Either one "I" was inserted in the ith transmission of this run or that, on the condition that the next two runs are of length one, one " 0 " was deleted from next .
- $x^{i}>y+1$: One " 0 " was deleted in the ith transmission of the next run.
- $x^{i}=y-I$: Either one "I" was deleted in the ith transmission of this run or that one " 0 " was inserted before the last bit of this run was transmitted.
- $x^{i}<y-1$: One " 0 " was inserted into this run.

