

More on Reconstructing from Random Traces: Insertions and Deletions Sampath Kannan and Andrew McGregor, UPenn

Random Traces

- Transmit a length *n* binary string *t*
- Channel introduces errors:
 - **Delete** a bit with probability q_1
 - Insert a bit with probability q_2
 - Flip a bit with probability p
- Transmit *m* times to generate *m* independent received strings r₁, r₂, ..., r_m

Previous Work

• Levenshtein '01:

Combinatorial Channels - eg. how many distinct subsequences are required to uniquely determine t?

Probabilistic Channels - only treatment of memoryless channels

• Dudik & Shulman '03:

Combinatorial Channels - how large must k be such that knowing all length k subsequences (and their multiplicities) is sufficient to deduce k?

• Batu, Kannan, Khanna & McGregor '04:

Deletions only...

Our Results

	Þ	٩ı	q 2	m	Comments
Previous Work	0	0	0(log ⁻¹ n)	O(log n)	Almost all strings
	0	0	$O(n^{-1/2-\epsilon})$	O(I/e)	Long runs approximated
This Work	<i>O</i> (I)	0(log ⁻² n)	0(log ⁻² n)	O(log n)	Almost all strings
	0	$O(n^{-1/2-\epsilon})$	$O(n^{-1/2-\epsilon})$	O(I/e)	No long runs and long alternating sequences approximated

Defn:

A run: ... I I I I I I I I I ... or ...00000000... An alternating sequence: ...01010101010... A substring is long if its length is greater than n^{ϵ} The "Bit-Wise Majority" Algorithm

• Frugally insert blanks to align the strings

- $r_{l}:$ 1110101110100101110...
- $r_2:$ 110100101010100101...
- *r*₃: 1101000010010101110...
- *r*₄: 1010000101110101110...
- *r*₅: 11000000101101010...
- $r_m:$ 110000010110010110...

• Frugally insert blanks to align the strings

- $r_{l}:$ 1110101110100101110...
- $r_2:$ 110100101010100101...
- *r*₃: 1101000010010101110...
- r_4 : 1010000101110101110...
- *r*₅: 11000000101101010...
- $r_m:$ 110000010110010110...

• Frugally insert blanks to align the strings

- $r_{l}:$ 1110101110100101110...
- r_2 : 110100101010100101...
- *r*₃: 1101000010010101110...
- $r_4:$ 1*010000101110101110...
- *r*₅: 110000001011010110...
- $r_m:$ 110000010110010110...

• Frugally insert blanks to align the strings

- $r_i: 11*10101110100101110...$
- r_2 : 110100101010100101...
- *r*₃: 1101000010010101110...
- $r_4:$ 1*010000101110101110...
- $r_5:$ 11000000101101010...
- $r_m:$ 110000010110010110...

• Frugally insert blanks to align the strings

- $r_{l}: 11*10101110100101110...$
- $r_2:$ 110100101010100101...
- *r*₃: 1101000010010101110...
- $r_4:$ 1*010000101110101110...
- $r_5:$ 110*00000101101010...
- $r_m:$ 110*000010110010110...

• Frugally insert blanks to align the strings

- $r_{l}: 11*10101110100101110...$
- r_2 : 110100101010100101...
- *r*₃: 1101000010010101110...
- $r_4:$ 1*010000101110101110...
- $r_5:$ 110*00000101101010...
- $r_m:$ 110*000010110010110...

• Frugally insert blanks to align the strings

- $r_{l}: 11*10*101110100101110...$
- r_2 : 110100101010100101...
- *r*₃: 1101000010010101110...
- $r_4:$ 1*010000101110101110...
- $r_5:$ 110*00000101101010...
- $r_m:$ 110*000010110010110...

• Frugally insert blanks to align the strings

r_1: 11*10*101110100101110...
r_2: 110100101010100101...
r_3: 1101000010010101110...
r_4: 1*010000101110101110...
r_5: 110*0000001011010110...
r_m: 110*000001011001010...

t: 110100...

 Analysis for a randomly chosen t: alignment of r_i with t can be modeled using random walk

• Consider the middle kl bits of r_1 : k possible length l anchors

• Consider the middle kl bits of r_1 : k possible length l anchors

- Consider the middle kl bits of r_l : k possible length l anchors
- For each *a_i*, find the "best" match in other received strings
- If a_i has a "good" match in all received strings, recurse on the strings either side of each match

- Consider the middle kl bits of r_l : k possible length l anchors
- For each *a_i*, find the "best" match in other received strings
- If a_i has a "good" match in all received strings, recurse on the strings either side of each match

Analysis

- Defn: Match is good if Hamming distance is less than $(p p^2 + 1/4)l$
- Lemma:

a) One of k anchors has a good match with all received strings with probability at least

$$1 - \left(mql + m\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{(2p-2p^2)l}\right)^k$$

b) If a_i has a good match with all received strings then "splitting-off" at a_i is legitimate with probability as least

 $|1 - kne^{-l(1/2 - 2p + 2p^2)/4}|$

Analysis

- Defn: Match is good if Hamming distance is less than $(p p^2 + 1/4)l$
- Lemma:

a) One of k anchors has a good match with all received strings with probability at least

$$1 - \left(mql + m\left[\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right]^{(2p-2p^2)l}\right)^k \longrightarrow > 1 - 1/n^2$$

b) If a_i has a good match with all received strings then "splitting-off" at a_i is legitimate with probability as least

$$1 - kne^{-l(1/2 - 2p + 2p^2)/4} \longrightarrow > 1 - 1/n^2$$

Set $m = O(\log n), l = O(\log n), k = O(\log n)$ and $q = O(1/\log^2 n)$

The "Simple but Incredibly Tedious to Analyze" Algorithm

- Deletion and insertion probabilities are $q = O(n^{-1/2-\epsilon})$ and zero flip probability
- Lemma (Promises): With high probability, if m = O(1)

(PI): In each transmission, the first bit of t was transmitted without error

(P2): Among all transmissions, at most one error occurred in the transmission of any four consecutive runs

(P3): For all alternating sequence of length $l > \sqrt{n}$, if an error occurs at the start of the alternating sequence (in any transmission) then, in all transmissions, there are no errors during the transmission of the final $\log n \sqrt{l}$ bits of the maximal alternating sequence and the next two bits of the delimiting run

(P4): For all alternating sequence, if an error occurs at the start of the alternating sequence (in any of the *m* transmissions) then in all the *m* transmissions, there are no errors during the transmission of the final n^{ϵ} (or the rest of the alternating sequence if the length of the alternating sequence is less than n^{ϵ}) bits of the maximal alternating sequence and the next two bits of the delimiting run

(P5): For each length \sqrt{n} substring x of t, in the majority of transmissions, x is transmitted without errors

(P6): For each substring x of t of length > n^{ϵ} , in each transmission, there are fewer than $q |x| \log n$ errors in the transmission of x

• Given the promises we can usually locally correct the errors:

- *r*₁: 11101100...
- *r*₂: 11101100...
- *r*₃: 11111000...
- *r*₄: 11101100...
- *r*₅: 11101100...
- *r*_m: 11101100...

• Given the promises we can usually locally correct the errors:

- *r*_{*i*}: 11101100...
- *r*₂: 11101100...
- $r_3:$ 111*11000...
- *r*₄: 11101100...
- *r*₅: 11101100...
- *r*_m: 11101100...

• Given the promises we can usually locally correct the errors:

- *r*₁: 11101100...
- *r*₂: 11101100...
- *r*₃: 111*11000...
- *r*₄: 11101100...
- *r*₅: 11101100...
- $r_m:$ 11101100...

• But not always:

<i>r</i> ₁ :	10101010101
r ₂ :	10101010101
r 3:	110101010
r 4:	10101010101
r5:	10101010101
r _m :	10101010101

• Given the promises we can usually locally correct the errors:

- *r*₁: 11101100...
- *r*₂: 11101100...
- *r*₃: 111*11000...
- *r*₄: 11101100...
- *r*₅: 11101100...
- $r_m:$ 11101100...

• But not always:

 r1:
 10101010101...

 r2:
 10101010101...

 r3:
 11010101010...

 r4:
 10101010101...

 r5:
 10101010101...

 rm:
 10101010101...

"Delimitating" Run

Conclusions & Further Work

	Þ	٩ı	q 2	m	Comments
Previous Work	0	0	0(log ⁻¹ n)	O(log n)	Almost all strings
	0	0	$O(n^{-1/2-\epsilon})$	O(I/e)	Long runs approximated
This Work	<i>O</i> (I)	0(log ⁻² n)	0(log ⁻² n)	O(log n)	Almost all strings
	0	$O(n^{-1/2-\epsilon})$	$O(n^{-1/2-\epsilon})$	O(I/e)	No long runs and long alternating sequences approximated

• What about constant insert/delete probabilities?

• Thanks.

The "Simple but..."Algorithm Using the Promises

- Look at length of first run in each received string (wlog it's a run of I's)
- Lemma (Tedious Case Analysis): Let y be the average length of this run and xⁱ be the length of the run in received string i
 - $x^i = y$: No errors have occurred in the *i* th transmission of this run
 - xⁱ = y + 1: Either one "1" was inserted in the *i*th transmission of this run or that, on the condition that the next two runs are of length one, one "0" was deleted from next.
 - $x^i > y + I$: One "0" was deleted in the *i*th transmission of the next run.
 - xⁱ = y 1: Either one "1" was deleted in the *i*th transmission of this run or that one "0" was inserted before the last bit of this run was transmitted.
 - $x^i < y I$: One "0" was inserted into this run.