

CMPSCI 377 Exam (Sample)

You will have 90 minutes to work on this exam, which is closed book.

Please write your name on EVERY page.

You are to abide by the University of Massachusetts Academic Honesty Policy.

Name:______________________________

Problem 1 ______ out of 20
Problem 2 ______ out of 20
Problem 3 ______ out of 15
Problem 4 ______ out of 20
Problem 5 ______ out of 25
Total _______ out of 100

1

1. Problem 1: Multi-level page tables (approx. 15 minutes)

Consider a computer with the following properties:

• 32-bit addresses, byte addressing
• 256-byte pages
• A page table entry occupies 4 bytes
• No TLB (translation lookaside buffer)

The machine can use 1-level page tables, or 3-level paging (with 8 address bits devoted to
each level).

a. For 1-level paging, if all addresses are in use, how many page tables are needed and
how much memory is occupied by page tables?

b. For 3-level paging, if all addresses are in use, how many page tables are needed and
how much memory is occupied by page tables at each level?

2

c. For 1-level paging, if only the lowest 4,096 and highest 4,096 addresses are in use,
how many page tables are needed and how much memory is occupied by page tables?
(Recall that 4,096 equals 212)

d. For 3-level paging, if only the lowest 4,096 and highest 4,096 addresses are in use,
how many page tables are needed and how much memory is occupied by page tables at
each level?

3

e. Discuss the relative advantages and disadvantages of 1-level paging and 3-level
paging, assuming all addresses are used.

f. Discuss the relative advantages and disadvantages of 1-level paging and 3-level paging,
assuming only the lowest 4,096 and highest 4,096 addresses are used.

4

2. Lazy fork (approx. 18 minutes)

As discussed in class, Unix fork initializes the contents of the child’s address space by
copying the contents of the parent’s address space when fork is called. Your job is to
speed up fork by deferring or avoiding the work of copying data between the two
address spaces. Your solution should reduce the number of bytes copied as much as
possible for the two common ways of using fork: running two copies of the same
program, and starting a new program by using exec after fork. Other than increased
speed, user processes should not notice any difference between the old and new fork.
Assume that address spaces are represented by a simple page table, and that the MMU
respects read/write protection bits and sets reference and dirty bits appropriately. Hint:
think about sharing data between the parent and child. Describe how to modify fork to
defer or avoid copying. Be specific and concise in your answers.

a. What is the unit of copying, and why should/can the copy not be done on a larger or
smaller unit?

b. What events in the parent will trigger a copy? What events in the child will trigger a
copy?

5

c. Describe how the page tables and MMU data are manipulated and used when fork is
called.

d. Describe how the page tables and MMU data are manipulated and used when a copy
must be made.

6

3. Communications protocols for Project 3 (approx. 12 minutes)

This question asks about different aspects of the communication protocol used in Project
3. For your reference, the page following this question contains the sections from Project
3 that describe the communication protocol (for FS_APPEND requests, as an example).
Project 3 used TCP sockets to communicate between the client and server. You have
been asked to change the communication protocol to use UDP sockets instead. Assume
that a pair of UDP sockets (one on the client, one on the file server) are set up for each
client, and that this pair of sockets is used for ALL requests made by that client (this
differs from how Project 3 used TCP, which set up a new pair of sockets for each
REQUEST). Assume that UDP messages are unlimited in size.

a. The original cleartext request header includes a size field. Is this size field necessary
when using UDP? Why or why not?

b. TCP provides several abstractions that UDP does not. In particular, TCP provides four
abstractions that protect the receiver from seeing certain changes to a sequence of
network messages. State four changes to a message or sequence of messages that are
visible to UDP receivers, but not to TCP receivers (this question is independent of the
Project 3 communication protocol).

change 1:

change 2:

change 3:

change 4:

7

c. The existing communication protocol includes a sequence number in the request
message. Which one of the changes to messages in part b does this help the client and file
server to handle (if you think there are several, pick the change for which sequence
numbers helps the most)? Justify your answer.

d. The existing communication protocol encrypts the request message. Which one of the
changes to messages in part b does this help the client and file server to handle (if you
think there are several, pick the change for which encrypting the request helps the most)?
Justify your answer.

8

3.3 FS_APPEND

A client appends to an existing file by sending an FS_APPEND request to
the file server. An FS_APPEND request message is a string of the
following format:

"FS_APPEND <username> <session> <sequence> <filename>
<size><NULL>"<data>

<username> is the name of the user making the request
<session> is the session number for this request
<sequence> is the sequence number for this request
<filename> is the name of the file to which the data is being appended
<size> specifies the number of bytes to append to the file
<NULL> is the ascii character ’\0’ (terminating the string)
<data> is that data to append to the file. Note that <data> is outside
of the request string (i.e. after <NULL>). The size of <data> is given
in <size>.

Upon receiving an FS_APPEND request, the file server should check the
validity of its parameters. The server should also check that that the
file exists, is owned by <username>, and that there is sufficient disk
space to satisfy the request.

If the request is allowed, the file server should append the data to the
file (writing to disk in the order the bytes appear in the file). The
response message for a successful FS_APPEND follows the following
format: "<session> <sequence><NULL>"

<session> is the session number from the request message
<sequence> is the sequence from the request message
<NULL> is the ascii character ’\0’ (terminating the string)

No data should be appended to the file for unsuccessful requests.

4 Encryption

Each of the request messages described in Section 3 will be encrypted
using the password parameter that was passed to the client function. To
enable the file server to decrypt the request message, the client will
send a cleartext (i.e. un-encrypted) request header before sending the
request message. The cleartext request header follows the following
format:

"<username> <size><NULL>"

<username> is the name of the user that was passed to the client
function. The file server uses this information to choose which password
to use to decrypt the ensuing request message.
<size> is the size of the encrypted message that follows this cleartext
request header
<NULL> is the ascii character ’\0’ (terminating the string)

Each response message from the file server will be encrypted using the
user’s password. To enable the client to receive and decrypt the
response message, the file server will send a cleartext response header
before sending the response message. The cleartext response header
follows the following format:

"<size><NULL>"

<size> is the size of the encrypted message that follows this cleartext
response header
<NULL> is the ascii character ’\0’ (terminating the string)

9

4. Unix filesystems (approx. 15 minutes)

Consider a filesystem with the following characteristics:

• Hierarchical directories are supported.
• Directories and files use the same storage structure on disk (specified below). A

flag in the inode identifies whether the inode belongs to a file or to a directory.
• The data blocks in a directory contain (filename, disk-block pointer) tuples.
• The size of a disk block is 8192 bytes.
• Disk block pointers are 4-byte unsigned integers.

A non-uniform depth, multi-level indexed scheme is used, where the inode contains 15
disk block pointers as follows:

• 12 pointers directly to data blocks
• 1 pointer to a single indirect block (a single indirect block is filled with pointers to

data blocks)
• 1 pointer to a double indirect block (a double indirect block is filled with pointers

to single indirect blocks)
• 1 pointer to a triple indirect block (a triple indirect block is filled with pointers to

double indirect blocks)

a. Assume the location of the root inode on disk is known to the kernel, but no inodes or
other filesystem information is cached in memory. Also assume that all directories
happen to be small enough to fit in just one data block. The file /etc/bigfile is 128
kilobytes. To read the only the last byte of it, how many disk accesses are necessary?
Give a list that explains the function of each of these disk accesses.

10

b. Assuming the results of all the previous accesses are cached in memory, how many
disk accesses, if any, are needed to read one byte from the middle (offset 64 KB) of the
same file?

c. What is the smallest file size (in bytes) for which it would be necessary to use the triple
indirect block? (An approximate answer accurate to within 10% is acceptable, and it is
acceptable to state your answer as an expression, for example 2 raised to some power.)

11

d. What is the maximum size of a filesystem with these characteristics?

e.Would it ever be useful to add a quadruple indirect block to this filesystem (assuming
absolutely nothing else is changed)? Briefly explain why or why not.

12

5. Secure communication (approx. 20 minutes)

Alice and Bob want to use public-key encryption to establish a symmetric key K, then
use that symmetric key K to encrypt further communication. Your job is to analyze each
of the following protocols and explain how a malicious third party (Eve) can read
messages encrypted with K. Assumptions:

• All parties know the correct public key for each other party; each private key is
known only by its owner.

• Eve, a malicious third-party, can read all network traffic and can insert her own
messages, but can not modify or delete messages.

• Any party can initiate a key exchange protocol with Bob, and Bob will respond as
described.

• encrypt() == decrypt(), so the term crypt() is used for both in the protocols
described below

a. Protocol 1

Alice constructs a symmetric key, K and sends it to Bob:
“Alice to Bob” “The key is” K

Bob returns K to Alice:
“Bob to Alice” “The key is” K

What steps should Eve take in order to read subsequent messages between Alice and Bob
encrypted with K?

13

b. Protocol 2

Alice constructs a symmetric key K, encrypts it with her private key, and sends the result
to Bob:
“Alice to Bob” crypt(“The key is” K, Alice-private)

Bob recovers K by decrypting the message with Alice’s public key. Bob then encrypts K
with his private key, and sends the result to Alice: “Bob to Alice” crypt(“The
key is” K, Bob-private)

What steps should Eve take in order to read subsequent messages between Alice and Bob
encrypted with K?

14

c. Protocol 3

Alice constructs a symmetric key K, encrypts it with Bob’s public key, encrypts the result
with her private key, and sends the result to Bob.

“Alice to Bob” crypt(crypt(“The key is” K, Bob-public),
Alice-private)

Receiving this message, Bob encrypts it with Alice’s public key, then recovers K with his
private key, then encrypts and signs K and sends the result to Alice.

“Bob to Alice” crypt(crypt(“The key is” K, Alice-public),
Bob-private)

What steps should Eve take in order to read subsequent messages between Alice and Bob
encrypted with K?

15

