

CMPSCI 377 Midterm (Sample)

You will have 90 minutes to work on this exam, which is closed book. There are 4
problems on 9 pages.

Please write your name on EVERY page.

You are to abide by the University of Massachusetts Academic Honesty Policy.

Name:______________________________

Problem 1 ______ out of 25
Problem 2 ______ out of 25
Problem 3 ______ out of 25
Problem 4 ______ out of 25
Total _______ out of 100

1

Name ____________________________

1. Analyzing a Concurrent Program (approx. 20 minutes)

The following is an implementation of an atomic transfer function. transfer should
atomically dequeue an item from one queue and enqueue it on another. By atomically, we
mean that there must be no interval of time during which an external thread can
determine that an item has been removed from one queue but not yet placed on another
(assuming the external thread locks a queue before examining it). transfer must
complete in a finite amount of time, and must allow multiple transfers between unrelated
queues to happen in parallel. You may assume the following:

• queue1 and queue2 never refer to the same queue.
• queue1 always has an item to dequeue (so dequeue(queue1) succeeds).
• dequeue, enqueue, thread_lock, and thread_unlock are all written

correctly.
• thread_lock is fair. That is, lock requests are granted in the order of the calls.

State whether the implementation (i) works, (ii) doesn’t work, or (iii) sometimes works
and sometimes doesn’t work.

• If you claim it works, present your reasoning about how you came to this
conclusion.

• If you claim it doesn’t work (or only works sometimes), describe the
circumstances that cause it not to work, and re-write transfer so it always
works (and still meets all the requirements).

struct queue {

int lockNum; /* a unique lock number per queue */
item *headPtr; /* pointer to the head of the queue */

};

void transfer(struct queue *queue1, struct queue *queue2) {

item *thing; /* the item being transferred */
thread_lock(queue1->lockNum);
thread_lock(queue2->lockNum);
thing = dequeue(queue1);
enqueue(queue2, thing);
thread_unlock(queue2->lockNum);
thread_unlock(queue1->lockNum);

}

2

Name ____________________________

3

Name ____________________________

2. Writing a Concurrent Program (approx. 20 minutes)

You have joined a software company that is writing an implementation of the Banker’s
algorithm for the UMass Credit Union. They have defined the global variables below.
They have also written the function isDangerous(int customer, int
amount), which returns 1 if letting the specified customer borrow the specified amount
may allow deadlock (otherwise isDangerous returns 0). isDangerous does not
modify any global variables.

int cash; /* amount of cash currently at the Credit Union */

int creditLimit[CUSTOMERS]; /* each customer’s credit limit (the maximum

each customer can borrow) */

int currentBorrowed[CUSTOMERS]; /* the current amount borrowed by each

customer */

Recall the general structure of a thread that uses the Banker’s algorithm:

declareCreditLimit /* sets creditLimit[customer] */
while (not done) {

getCash(customer, amount)/* borrow money against credit limit */
do work

}

returnAllCash(customer)

Your job is to implement the getCash and returnAllCash functions. Assume a
customer never calls getCash with an amount that would cause him/her to exceed his
credit limit. Use monitors (thread_lock, thread_unlock, threadWait,
threadSignal, and threadBroadcast) to handle synchronization. Keep your
solution as simple as possible.

4

Name ____________________________

getCash(int customer, int amount)
{

}
returnAllCash(int customer)
{

}

5

Name ____________________________

3. Modified Monitors (approx. 20 minutes)

Standard condition variables have no memory of past signals. That is, threadSignal
has no effect on threads that call threadWait in the future.

Your task is to implement a modified condition variable that remembers past signals. A
signal should be delivered to a waiting thread if there are any threads waiting on this
condition variable; otherwise, a signal should be saved and delivered to a thread that later
waits on this condition variable.
Each signal should be delivered to exactly one thread. Assume there is only 1 lock and 1
condition variable.

Write pseudo-code for thread_wait_new and thread_signal_new. Here are
library functions you may use:

• Use the “test&set” instruction (not interrupt_disable) to ensure
atomicity in your thread library code. You do not need to worry about interrupts
occurring.

• Use enqueue and dequeue to manipulate thread queues. enqueue adds a
thread onto the tail of a queue. dequeue returns the thread at the head of a
queue and deletes that thread from the queue. State clearly which queue and
thread is being manipulated.

• Use swapcontext to switch to a new thread. State clearly which thread you
are switching to.

• Use thread_lock_internal and thread_unlock_internal to
acquire and release the lock. These are internal versions of thread_lock and
thread_unlock that assume atomicity is ensured at the time they are called.

State any assumptions you make about how other functions (particularly those that call
swapcontext) use test&set.

6

Name ____________________________

7

Name ____________________________

4. Test case design (approx. 20 minutes)

Consider the following pseudo-code of thread_lock() and thread_unlock(), which allows
a lock to be acquired in non-FIFO order (i.e. not in the order of calls to thread_lock()).

thread_lock(int lockid)
{

while (lock[lockid] == BUSY) {
add self to this lock’s queue;
switchToNextReadyThread(); // current thread goes to sleep

}
lock[lockid] = BUSY;

}

thread_unlock(int lockid)
{

lock[lockid] = FREE;
if (lock’s queue is not empty) {

remove first thread off this lock’s queue,
and put that thread on the ready queue;

}
}

Your task is to design a test case that will illustrate that the locks are not always acquired
in FIFO order by the above design. The next page has a partially complete test case using
three threads T1, T2, and T3. Assume that initially T1, T2, and T3 are added to the ready
queue so that T1 will run first, followed by T2, and then T3. The thread library is non-
preemptive.

Your task is to modify the code for one or more threads below by inserting at most three
thread_yield() operations so that threads request locks in the order T1, T2, T3 but end up
acquiring locks in the non-FIFO order of T1, T3, T2. No other code besides
thread_yield() should be inserted.

8

Name ____________________________

// Function called by thread T1
void T1_testLocks()
{

thread_lock(1);

... print out the lock owner ...;

thread_unlock(1);

}

// Function called by thread T2
void T2_testLocks()
{

thread_lock(1);

... print out the lock owner ...;

thread_unlock(1);

}

// Function called by thread T3
void T3_testLocks()
{

thread_lock(1);

... print out the lock owner ...;

thread_unlock(1);

}

9

