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Chapter Outline

• Inheritance and how it facilitates code reuse
• How does Java find the “right” method to execute?

• (When more than one has the same name ...)
• Defining and using abstract classes
• Class Object: its methods and how to override them
• How to “clone” an object
• The difference between:

• A true clone (deep copy) and
• A shallow copy
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Chapter Outline (2)

• Why Java does not implement multiple inheritance
• Get some of the advantages of multiple inheritance:

• Interfaces
• Delegation

• Sample class hierarchy: drawable shapes
• An object factory and how to use it
• Creating packages

• Code visibility
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Inheritance and Class Hierarchies

• Object-oriented programming (OOP) is popular because:
• It enables reuse of previous code saved as classes

• All Java classes are arranged in a hierarchy
• Object is the superclass of all Java classes

• Inheritance and hierarchical organization capture idea:
• One thing is a refinement or extension of another
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Inheritance and Class Hierarchies (2)
superclass

subclass
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Is-a Versus Has-a Relationships

• Confusing has-a and is-a leads to misusing inheritance
• Model a has-a relationship with an attribute (variable)

public class C { ... private B part; ...}

• Model an is-a relationship with inheritance
• If every C is-a B then model C as a subclass of B
• Show this: in C include extends B:

public class C extends B { ... }
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A Superclass and a Subclass

• Consider two classes: Computer and Laptop
• A laptop is a kind of computer: therefore a subclass

variables of Computer
and all subclasses

additional variables for 
class Laptop

(and its subclasses)

methods of Computer
and all subclasses

additional Methods for 
class Laptop

(and its subclasses)
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Illustrating Has-a with Computer

public class Computer {
private Memory mem;
...

}

public class Memory {
private int size;
private int speed;
private String kind;
...

}

A Computer has only one Memory

But neither is-a the other
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Initializing Data Fields in a Subclass

• What about data fields of a superclass?
• Initialize them by invoking a superclass constructor 

with the appropriate parameters

• If the subclass constructor skips calling the superclass ...
• Java automatically calls the no-parameter one

• Point: Insure superclass fields initialized before
subclass starts to initialize its part of the object
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Example of Initializing Subclass Data
public class Computer {
private String manufacturer;  ...
public Computer (String manufacturer, ...) {
this.manufacturer = manufacturer; ...

}
}

public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer, ...,

double weight, ...) {
super(manufacturer, ...);
this.weight = weight;

}
}
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Protected Visibility for Superclass Data

• private data are not accessible to subclasses!
• protected data fields accessible in subclasses

(Technically, accessible in same package)

• Subclasses often written by others, and
• Subclasses should avoid relying on superclass details

• So ... in general, private is better
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Method Overriding
• If subclass has a method of a superclass (same signature),

that method overrides the superclass method:

public class A { ...
public int M (float f, String s) { bodyA }

}

public class B extends A { ...
public int M (float f, String s) { bodyB }

}

• If we call M on an instance of B (or subclass of B), bodyB runs
• In B we can access bodyA with:    super.M(...)
• The subclass M must have same return type as superclass M



Chapter 3: Inheritance and Class Hierarchies 13

Method Overloading

• Method overloading: multiple methods ...
• With the same name
• But different signatures
• In the same class

• Constructors are often overloaded
• Example:

• MyClass (int inputA, int inputB)
• MyClass (float inputA, float inputB)



Chapter 3: Inheritance and Class Hierarchies 14

Example of Overloaded Constructors
public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer,

String processor, ...,
double weight, ...) {

super(manufacturer, processor, ...);
this.weight = weight;

}
public Laptop (String manufacturer, ...,

double weight, ...) {
this(manufacturer, “Pentium”, ...,

weight, ...);
}

}
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Overloading Example From Java Library
ArrayList has two remove methods:

remove (int position)
• Removes object that is at a specified place in the list

remove (Object obj)
• Removes a specified object from the list

It also has two add methods:
add (Element e)

• Adds new object to the end of the list
add (int index, Element e)

• Adds new object at a specified place in the list
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Polymorphism

• Variable of superclass type can refer to object of subclass type
• Polymorphism means “many forms” or “many shapes”
• Polymorphism lets the JVM determine at run time which 

method to invoke
• At compile time:

• Java compiler cannot determine exact type of the object
• But it is known at run time

• Compiler knows enough for safety: the attributes of the type
• Subclasses guaranteed to obey
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Interfaces vs Abstract Classes vs Concrete Classes
• A Java interface can declare methods

• But cannot implement them
• Methods of an interface are called abstract methods

• An abstract class can have:
• Abstract methods (no body)
• Concrete methods (with body)
• Data fields

• Unlike a concrete class, an abstract class ...
• Cannot be instantiated
• Can declare abstract methods

• Which must be implemented in all concrete subclasses
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Abstract Classes and Interfaces

• Abstract classes and interfaces cannot be instantiated

• An abstract class can have constructors!
• Purpose: initialize data fields when a subclass object 

is created
• Subclass uses super(…) to call the constructor

• An abstract class may implement an interface
• But need not define all methods of the interface
• Implementation of them is left to subclasses
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Example of an Abstract Class
public abstract class Food {
public final String name;
private double calories;
public double getCalories () {
return calories;

}
protected Food (String name, double calories) {
this.name = name;
this.calories = calories;

}
public abstract double percentProtein();
public abstract double percentFat();
public abstract double percentCarbs();

}
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Example of a Concrete Subclass

public class Meat extends Food {
private final double protCal; ...;
public Meat (String name, double protCal,

double fatCal double carbCal) {
super(name, protCal+fatCal+carbCal);
this.protCal = protCal;
...;

}
public double percentProtein () {
return 100.0 * (protCal / getCalories());

}
...;

}
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Example: Number and the Wrapper Classes

Declares what the 
(concrete) 

subclasses have in 
common
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Inheriting from Interfaces vs Classes

• A class can extend 0 or 1 superclass
• Called single inheritance

• An interface cannot extend a class at all
• (Because it is not a class)

• A class or interface can implement 0 or more 
interfaces
• Called multiple inheritance
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Summary of Features of Actual Classes, 
Abstract Classes, and Interfaces



Chapter 3: Inheritance and Class Hierarchies 24

Class Object

• Object is the root of the class hierarchy
• Every class has Object as a superclass

• All classes inherit the methods of Object
• But may override them
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The Method toString

• You should always override toString method if you 
want to print object state

• If you do not override it:
• Object.toString will return a String
• Just not the String you want!

Example: ArrayBasedPD@ef08879
... The name of the class, @, instance’s hash code
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Operations Determined by Type of 
Reference Variable

• Variable can refer to object whose type is a subclass of the 
variable’s declared type

• Type of the variable determines what operations are legal
• Java is strongly typed Object athing = new Integer(25);

• Compiler always verifies that variable’s type includes the 
class of every expression assigned to the variable
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Casting in a Class Hierarchy

• Casting obtains a reference of different, but matching, type
• Casting does not change the object!

• It creates an anonymous reference to the object

Integer aNum = (Integer)aThing;

• Downcast:
• Cast superclass type to subclass type
• Checks at run time to make sure it’s ok
• If not ok, throws ClassCastException
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Casting in a Class Hierarchy (2)

• instanceof can guard against ClassCastException

Object obj = ...;
if (obj instanceof Integer) {
Integer i = (Integer)obj;
int val = i.intValue();
...;

} else {
...

}
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Downcasting From an Interface Type

Collection c = new ArrayList();
...;
... ((ArrayList)c).get(3) ...
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Polymorphism Reduces Need For Type Tests

// Non OO style:
if (stuff[i] instanceof Integer)
sum += ((Integer) stuff[i]).doubleValue();

else if (stuff[i] instanceof Double)
sum += ((Double) stuff[i]).doubleValue();

...

// OO style:
sum += stuff[i].doubleValue();
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Polymorphism and Type Tests (2)

• Polymorphic code style is more extensible
• Works automatically with new subclasses

• Polymorphic code is more efficient
• System does one indirect branch vs many tests

• So ... uses of instanceof are suspect
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Java 5.0 Reduces Explicit Conversions
• Java 1.4 and earlier:
Character ch = new Character(‘x’);
char nextCh = ch.charValue();

• Java 5.0:
Character ch = ‘x’;     // called auto-box
char nextCh = ch;       // called auto-unbox

• Java 5.0 generics also reduce explicit casts
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The Method Object.equals

• Object.equals method has parameter of type Object
public boolean equals (Object other) { ... }

• Compares two objects to determine if they are equal
• Must override equals in order to support comparison
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Cloning

• Purpose analogous to cloning in biology:
• Create an independent copy of an object

• Initially, objects and clone store same information

• You can change one object without affecting the other
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The Shallow Copy Problem (Before)
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The Shallow Copy Problem (After)
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The Object.clone Method

• Object.clone addresses the shallow copy problem

• The initial copy is a shallow copy, but ...

• For a deep copy:
• Create cloned copies of all components by ...
• Invoking their respective clone methods
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The Object.clone Method (2)
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The Object.clone Method (3)
public class Employee implements Cloneable {
...
public Object clone () {
try {
Employee cloned = (Employee)super.clone();
cloned.address = (Address)address.clone();
return cloned;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}
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The Object.clone Method (4)
public class Address implements Cloneable {
...
public Object clone () {
try {
Address cloned = (Address)super.clone();
return cloned;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}
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The Object.clone Method (5)
Employee[] company = new Employee[10];
...
Employee[] newCompany =

(Employee[])company.clone();
// need loop below for deep copy
for (int i = 0; i < newCompany.length; i++) {
newCompany[i] =

(Employee)newCompany[i].clone();
}
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Multiple Inheritance, Multiple Interfaces,
and Delegation

• Multiple inheritance: the ability to extend more 
than one class

• Multiple inheritance ...
• Is difficult to implement efficiently
• Can lead to ambiguity: if two parents 

implement the same method, which to use?
• Therefore, Java does not allow a class to 

extend more than one class
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Multiple Interfaces can Emulate
Multiple Inheritance

• A class can implement two or more interfaces
• Multiple interfaces emulate multiple inheritance

Desired, 
but illegal,
situation
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Multiple Interfaces can Emulate
Multiple Inheritance

• Approximating the desire with interfaces:
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Supporting Reuse Using Delegation

• Reduce “cut and paste polymorphism”: copied code
• Idea: Object of another class does the work
• Delegation: original object delegates to the other
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Delegation: Implementing It

• Class StudentWorker implements interfaces 
StudentInt and EmployeeInt

• Class StudentWorker has-a Student and has-an 
Employee

• StudentWorker implements (some) StudentInt
methods with calls to its Student object

• Likewise for EmployeeInt methods
• StudentWorker implements getName() itself, etc.
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Delegation: More About It

• Delegation is like applying hierarchy ideas to 
instances rather than classes

• There have been whole OO languages based more on 
delegation than on classes

• Opinion: Classes are better, when they can do what 
you need

• Downside of delegation: Not as efficient, because of 
level of indirection, and need for separate objects
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Packages and Directories

• A Java package is a group of cooperating classes
• Java programs are organized into packages
• The Java API is also organized as packages
• Indicate the package of a class at the top of the file:

package thePackageForThisClass;
• Classes of the same package should be

in the same directory (folder)
• Classes in the same folder must be

in the same package
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Packages and Visibility

• Classes not part of a package can access only 
public members of classes in the package

• The default visibility is package visbility
• Has no keyword: indicate by not using another
• Others are: public, protected, private

• Package visibility: between private and protected
• Items with package visibility: visible in package, 

invisible outside package
• Items with protected visibility: visible in package and

in subclasses outside the package
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The No-Package-Declared Environment

• There is a default package
• It contains files that have no package declared

• Default package ok for small projects
• Packages good for larger groups of classes
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Visibility Supports Encapsulation

• Visibility rules enforce encapsulation in Java
• private: Good for members that should be 

invisible even in subclasses
• package: Good to shield classes and members 

from classes outside the package
• protected: Good for visibility to extenders of  

classes in the package
• public: Good for visibility to all
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Visibility Supports Encapsulation (2)

• Encapsulation provides insulation against change
• Greater visibility means less encapsulation

• So: use minimum visibility possible for getting the 
job done!
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Visibility Supports Encapsulation (3)



Chapter 3: Inheritance and Class Hierarchies 54

A Shape Class Hierarchy
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A Shape Class Hierarchy (2)
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A Shape Class Hierarchy (3)

Abstract 
classes
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A Shape Class Hierarchy (4)
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A Shape Class Hierarchy (5)

DrawableRectangle
delegates shape methods,

such as ComputeArea,
to Rectangle
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A Shape Class Hierarchy (6)
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A Shape Class Hierarchy (7)
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A Shape Class Hierarchy (8)
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A Shape Class Hierarchy (9)
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Object Factories

• Object factory: method that creates instances 
of other classes

• Object factories are useful when:
• The necessary parameters are not known or 

must be derived via computation
• The appropriate implementation should be 

selected at run time as the result of some 
computation
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Example Object Factory

public static ShapeInt getShape () {
String figType = JOptionPane....();
if (figType.equalsIgnoreCase(“c”)) {
return new Circle();

} else if (figType.equalsIgnoreCase(“r”)) {
return new Rectangle();

} else if (figType.equalsIgnoreCase(“t”)) {
return new RtTriangle();

} else {
return null;

}
}
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Next Lecture: On to Lists!
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