
Inheritance and Class Hierarchies

Based on Koffmann and Wolfgang
Chapter 3

Chapter 3: Inheritance and Class Hierarchies 2

Chapter Outline

• Inheritance and how it facilitates code reuse
• How does Java find the “right” method to execute?

• (When more than one has the same name ...)
• Defining and using abstract classes
• Class Object: its methods and how to override them
• How to “clone” an object
• The difference between:

• A true clone (deep copy) and
• A shallow copy

Chapter 3: Inheritance and Class Hierarchies 3

Chapter Outline (2)

• Why Java does not implement multiple inheritance
• Get some of the advantages of multiple inheritance:

• Interfaces
• Delegation

• Sample class hierarchy: drawable shapes
• An object factory and how to use it
• Creating packages

• Code visibility

Chapter 3: Inheritance and Class Hierarchies 4

Inheritance and Class Hierarchies

• Object-oriented programming (OOP) is popular because:
• It enables reuse of previous code saved as classes

• All Java classes are arranged in a hierarchy
• Object is the superclass of all Java classes

• Inheritance and hierarchical organization capture idea:
• One thing is a refinement or extension of another

Chapter 3: Inheritance and Class Hierarchies 5

Inheritance and Class Hierarchies (2)
superclass

subclass

Chapter 3: Inheritance and Class Hierarchies 6

Is-a Versus Has-a Relationships

• Confusing has-a and is-a leads to misusing inheritance
• Model a has-a relationship with an attribute (variable)

public class C { ... private B part; ...}

• Model an is-a relationship with inheritance
• If every C is-a B then model C as a subclass of B
• Show this: in C include extends B:

public class C extends B { ... }

Chapter 3: Inheritance and Class Hierarchies 7

A Superclass and a Subclass

• Consider two classes: Computer and Laptop
• A laptop is a kind of computer: therefore a subclass

variables of Computer
and all subclasses

additional variables for
class Laptop

(and its subclasses)

methods of Computer
and all subclasses

additional Methods for
class Laptop

(and its subclasses)

Chapter 3: Inheritance and Class Hierarchies 8

Illustrating Has-a with Computer

public class Computer {
private Memory mem;
...

}

public class Memory {
private int size;
private int speed;
private String kind;
...

}

A Computer has only one Memory

But neither is-a the other

Chapter 3: Inheritance and Class Hierarchies 9

Initializing Data Fields in a Subclass

• What about data fields of a superclass?
• Initialize them by invoking a superclass constructor

with the appropriate parameters

• If the subclass constructor skips calling the superclass ...
• Java automatically calls the no-parameter one

• Point: Insure superclass fields initialized before
subclass starts to initialize its part of the object

Chapter 3: Inheritance and Class Hierarchies 10

Example of Initializing Subclass Data
public class Computer {
private String manufacturer; ...
public Computer (String manufacturer, ...) {
this.manufacturer = manufacturer; ...

}
}

public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer, ...,

double weight, ...) {
super(manufacturer, ...);
this.weight = weight;

}
}

Chapter 3: Inheritance and Class Hierarchies 11

Protected Visibility for Superclass Data

• private data are not accessible to subclasses!
• protected data fields accessible in subclasses

(Technically, accessible in same package)

• Subclasses often written by others, and
• Subclasses should avoid relying on superclass details

• So ... in general, private is better

Chapter 3: Inheritance and Class Hierarchies 12

Method Overriding
• If subclass has a method of a superclass (same signature),

that method overrides the superclass method:

public class A { ...
public int M (float f, String s) { bodyA }

}

public class B extends A { ...
public int M (float f, String s) { bodyB }

}

• If we call M on an instance of B (or subclass of B), bodyB runs
• In B we can access bodyA with: super.M(...)
• The subclass M must have same return type as superclass M

Chapter 3: Inheritance and Class Hierarchies 13

Method Overloading

• Method overloading: multiple methods ...
• With the same name
• But different signatures
• In the same class

• Constructors are often overloaded
• Example:

• MyClass (int inputA, int inputB)
• MyClass (float inputA, float inputB)

Chapter 3: Inheritance and Class Hierarchies 14

Example of Overloaded Constructors
public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer,

String processor, ...,
double weight, ...) {

super(manufacturer, processor, ...);
this.weight = weight;

}
public Laptop (String manufacturer, ...,

double weight, ...) {
this(manufacturer, “Pentium”, ...,

weight, ...);
}

}

Chapter 3: Inheritance and Class Hierarchies 15

Overloading Example From Java Library
ArrayList has two remove methods:

remove (int position)
• Removes object that is at a specified place in the list

remove (Object obj)
• Removes a specified object from the list

It also has two add methods:
add (Element e)

• Adds new object to the end of the list
add (int index, Element e)

• Adds new object at a specified place in the list

Chapter 3: Inheritance and Class Hierarchies 16

Polymorphism

• Variable of superclass type can refer to object of subclass type
• Polymorphism means “many forms” or “many shapes”
• Polymorphism lets the JVM determine at run time which

method to invoke
• At compile time:

• Java compiler cannot determine exact type of the object
• But it is known at run time

• Compiler knows enough for safety: the attributes of the type
• Subclasses guaranteed to obey

Chapter 3: Inheritance and Class Hierarchies 17

Interfaces vs Abstract Classes vs Concrete Classes
• A Java interface can declare methods

• But cannot implement them
• Methods of an interface are called abstract methods

• An abstract class can have:
• Abstract methods (no body)
• Concrete methods (with body)
• Data fields

• Unlike a concrete class, an abstract class ...
• Cannot be instantiated
• Can declare abstract methods

• Which must be implemented in all concrete subclasses

Chapter 3: Inheritance and Class Hierarchies 18

Abstract Classes and Interfaces

• Abstract classes and interfaces cannot be instantiated

• An abstract class can have constructors!
• Purpose: initialize data fields when a subclass object

is created
• Subclass uses super(…) to call the constructor

• An abstract class may implement an interface
• But need not define all methods of the interface
• Implementation of them is left to subclasses

Chapter 3: Inheritance and Class Hierarchies 19

Example of an Abstract Class
public abstract class Food {
public final String name;
private double calories;
public double getCalories () {
return calories;

}
protected Food (String name, double calories) {
this.name = name;
this.calories = calories;

}
public abstract double percentProtein();
public abstract double percentFat();
public abstract double percentCarbs();

}

Chapter 3: Inheritance and Class Hierarchies 20

Example of a Concrete Subclass

public class Meat extends Food {
private final double protCal; ...;
public Meat (String name, double protCal,

double fatCal double carbCal) {
super(name, protCal+fatCal+carbCal);
this.protCal = protCal;
...;

}
public double percentProtein () {
return 100.0 * (protCal / getCalories());

}
...;

}

Chapter 3: Inheritance and Class Hierarchies 21

Example: Number and the Wrapper Classes

Declares what the
(concrete)

subclasses have in
common

Chapter 3: Inheritance and Class Hierarchies 22

Inheriting from Interfaces vs Classes

• A class can extend 0 or 1 superclass
• Called single inheritance

• An interface cannot extend a class at all
• (Because it is not a class)

• A class or interface can implement 0 or more
interfaces
• Called multiple inheritance

Chapter 3: Inheritance and Class Hierarchies 23

Summary of Features of Actual Classes,
Abstract Classes, and Interfaces

Chapter 3: Inheritance and Class Hierarchies 24

Class Object

• Object is the root of the class hierarchy
• Every class has Object as a superclass

• All classes inherit the methods of Object
• But may override them

Chapter 3: Inheritance and Class Hierarchies 25

The Method toString

• You should always override toString method if you
want to print object state

• If you do not override it:
• Object.toString will return a String
• Just not the String you want!

Example: ArrayBasedPD@ef08879
... The name of the class, @, instance’s hash code

Chapter 3: Inheritance and Class Hierarchies 26

Operations Determined by Type of
Reference Variable

• Variable can refer to object whose type is a subclass of the
variable’s declared type

• Type of the variable determines what operations are legal
• Java is strongly typed Object athing = new Integer(25);

• Compiler always verifies that variable’s type includes the
class of every expression assigned to the variable

Chapter 3: Inheritance and Class Hierarchies 27

Casting in a Class Hierarchy

• Casting obtains a reference of different, but matching, type
• Casting does not change the object!

• It creates an anonymous reference to the object

Integer aNum = (Integer)aThing;

• Downcast:
• Cast superclass type to subclass type
• Checks at run time to make sure it’s ok
• If not ok, throws ClassCastException

Chapter 3: Inheritance and Class Hierarchies 28

Casting in a Class Hierarchy (2)

• instanceof can guard against ClassCastException

Object obj = ...;
if (obj instanceof Integer) {
Integer i = (Integer)obj;
int val = i.intValue();
...;

} else {
...

}

Chapter 3: Inheritance and Class Hierarchies 29

Downcasting From an Interface Type

Collection c = new ArrayList();
...;
... ((ArrayList)c).get(3) ...

Chapter 3: Inheritance and Class Hierarchies 30

Polymorphism Reduces Need For Type Tests

// Non OO style:
if (stuff[i] instanceof Integer)
sum += ((Integer) stuff[i]).doubleValue();

else if (stuff[i] instanceof Double)
sum += ((Double) stuff[i]).doubleValue();

...

// OO style:
sum += stuff[i].doubleValue();

Chapter 3: Inheritance and Class Hierarchies 31

Polymorphism and Type Tests (2)

• Polymorphic code style is more extensible
• Works automatically with new subclasses

• Polymorphic code is more efficient
• System does one indirect branch vs many tests

• So ... uses of instanceof are suspect

Chapter 3: Inheritance and Class Hierarchies 32

Java 5.0 Reduces Explicit Conversions
• Java 1.4 and earlier:
Character ch = new Character(‘x’);
char nextCh = ch.charValue();

• Java 5.0:
Character ch = ‘x’; // called auto-box
char nextCh = ch; // called auto-unbox

• Java 5.0 generics also reduce explicit casts

Chapter 3: Inheritance and Class Hierarchies 33

The Method Object.equals

• Object.equals method has parameter of type Object
public boolean equals (Object other) { ... }

• Compares two objects to determine if they are equal
• Must override equals in order to support comparison

Chapter 3: Inheritance and Class Hierarchies 34

Cloning

• Purpose analogous to cloning in biology:
• Create an independent copy of an object

• Initially, objects and clone store same information

• You can change one object without affecting the other

Chapter 3: Inheritance and Class Hierarchies 35

The Shallow Copy Problem (Before)

Chapter 3: Inheritance and Class Hierarchies 36

The Shallow Copy Problem (After)

Chapter 3: Inheritance and Class Hierarchies 37

The Object.clone Method

• Object.clone addresses the shallow copy problem

• The initial copy is a shallow copy, but ...

• For a deep copy:
• Create cloned copies of all components by ...
• Invoking their respective clone methods

Chapter 3: Inheritance and Class Hierarchies 38

The Object.clone Method (2)

Chapter 3: Inheritance and Class Hierarchies 39

The Object.clone Method (3)
public class Employee implements Cloneable {
...
public Object clone () {
try {
Employee cloned = (Employee)super.clone();
cloned.address = (Address)address.clone();
return cloned;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}

Chapter 3: Inheritance and Class Hierarchies 40

The Object.clone Method (4)
public class Address implements Cloneable {
...
public Object clone () {
try {
Address cloned = (Address)super.clone();
return cloned;

} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}

}

Chapter 3: Inheritance and Class Hierarchies 41

The Object.clone Method (5)
Employee[] company = new Employee[10];
...
Employee[] newCompany =

(Employee[])company.clone();
// need loop below for deep copy
for (int i = 0; i < newCompany.length; i++) {
newCompany[i] =

(Employee)newCompany[i].clone();
}

Chapter 3: Inheritance and Class Hierarchies 42

Multiple Inheritance, Multiple Interfaces,
and Delegation

• Multiple inheritance: the ability to extend more
than one class

• Multiple inheritance ...
• Is difficult to implement efficiently
• Can lead to ambiguity: if two parents

implement the same method, which to use?
• Therefore, Java does not allow a class to

extend more than one class

Chapter 3: Inheritance and Class Hierarchies 43

Multiple Interfaces can Emulate
Multiple Inheritance

• A class can implement two or more interfaces
• Multiple interfaces emulate multiple inheritance

Desired,
but illegal,
situation

Chapter 3: Inheritance and Class Hierarchies 44

Multiple Interfaces can Emulate
Multiple Inheritance

• Approximating the desire with interfaces:

Chapter 3: Inheritance and Class Hierarchies 45

Supporting Reuse Using Delegation

• Reduce “cut and paste polymorphism”: copied code
• Idea: Object of another class does the work
• Delegation: original object delegates to the other

Chapter 3: Inheritance and Class Hierarchies 46

Delegation: Implementing It

• Class StudentWorker implements interfaces
StudentInt and EmployeeInt

• Class StudentWorker has-a Student and has-an
Employee

• StudentWorker implements (some) StudentInt
methods with calls to its Student object

• Likewise for EmployeeInt methods
• StudentWorker implements getName() itself, etc.

Chapter 3: Inheritance and Class Hierarchies 47

Delegation: More About It

• Delegation is like applying hierarchy ideas to
instances rather than classes

• There have been whole OO languages based more on
delegation than on classes

• Opinion: Classes are better, when they can do what
you need

• Downside of delegation: Not as efficient, because of
level of indirection, and need for separate objects

Chapter 3: Inheritance and Class Hierarchies 48

Packages and Directories

• A Java package is a group of cooperating classes
• Java programs are organized into packages
• The Java API is also organized as packages
• Indicate the package of a class at the top of the file:

package thePackageForThisClass;
• Classes of the same package should be

in the same directory (folder)
• Classes in the same folder must be

in the same package

Chapter 3: Inheritance and Class Hierarchies 49

Packages and Visibility

• Classes not part of a package can access only
public members of classes in the package

• The default visibility is package visbility
• Has no keyword: indicate by not using another
• Others are: public, protected, private

• Package visibility: between private and protected
• Items with package visibility: visible in package,

invisible outside package
• Items with protected visibility: visible in package and

in subclasses outside the package

Chapter 3: Inheritance and Class Hierarchies 50

The No-Package-Declared Environment

• There is a default package
• It contains files that have no package declared

• Default package ok for small projects
• Packages good for larger groups of classes

Chapter 3: Inheritance and Class Hierarchies 51

Visibility Supports Encapsulation

• Visibility rules enforce encapsulation in Java
• private: Good for members that should be

invisible even in subclasses
• package: Good to shield classes and members

from classes outside the package
• protected: Good for visibility to extenders of

classes in the package
• public: Good for visibility to all

Chapter 3: Inheritance and Class Hierarchies 52

Visibility Supports Encapsulation (2)

• Encapsulation provides insulation against change
• Greater visibility means less encapsulation

• So: use minimum visibility possible for getting the
job done!

Chapter 3: Inheritance and Class Hierarchies 53

Visibility Supports Encapsulation (3)

Chapter 3: Inheritance and Class Hierarchies 54

A Shape Class Hierarchy

Chapter 3: Inheritance and Class Hierarchies 55

A Shape Class Hierarchy (2)

Chapter 3: Inheritance and Class Hierarchies 56

A Shape Class Hierarchy (3)

Abstract
classes

Chapter 3: Inheritance and Class Hierarchies 57

A Shape Class Hierarchy (4)

Chapter 3: Inheritance and Class Hierarchies 58

A Shape Class Hierarchy (5)

DrawableRectangle
delegates shape methods,

such as ComputeArea,
to Rectangle

Chapter 3: Inheritance and Class Hierarchies 59

A Shape Class Hierarchy (6)

Chapter 3: Inheritance and Class Hierarchies 60

A Shape Class Hierarchy (7)

Chapter 3: Inheritance and Class Hierarchies 61

A Shape Class Hierarchy (8)

Chapter 3: Inheritance and Class Hierarchies 62

A Shape Class Hierarchy (9)

Chapter 3: Inheritance and Class Hierarchies 63

Object Factories

• Object factory: method that creates instances
of other classes

• Object factories are useful when:
• The necessary parameters are not known or

must be derived via computation
• The appropriate implementation should be

selected at run time as the result of some
computation

Chapter 3: Inheritance and Class Hierarchies 64

Example Object Factory

public static ShapeInt getShape () {
String figType = JOptionPane....();
if (figType.equalsIgnoreCase(“c”)) {
return new Circle();

} else if (figType.equalsIgnoreCase(“r”)) {
return new Rectangle();

} else if (figType.equalsIgnoreCase(“t”)) {
return new RtTriangle();

} else {
return null;

}
}

Chapter 3: Inheritance and Class Hierarchies 65

Next Lecture: On to Lists!

	Inheritance and Class Hierarchies
	Chapter Outline
	Chapter Outline (2)
	Inheritance and Class Hierarchies
	Inheritance and Class Hierarchies (2)
	Is-a Versus Has-a Relationships
	A Superclass and a Subclass
	Illustrating Has-a with Computer
	Initializing Data Fields in a Subclass
	Example of Initializing Subclass Data
	Protected Visibility for Superclass Data
	Method Overriding
	Method Overloading
	Example of Overloaded Constructors
	Overloading Example From Java Library
	Polymorphism
	Interfaces vs Abstract Classes vs Concrete Classes
	Abstract Classes and Interfaces
	Example of an Abstract Class
	Example of a Concrete Subclass
	Example: Number and the Wrapper Classes
	Inheriting from Interfaces vs Classes
	Summary of Features of Actual Classes, Abstract Classes, and Interfaces
	Class Object
	The Method toString
	Operations Determined by Type of Reference Variable
	Casting in a Class Hierarchy
	Casting in a Class Hierarchy (2)
	Downcasting From an Interface Type
	Polymorphism Reduces Need For Type Tests
	Polymorphism and Type Tests (2)
	Java 5.0 Reduces Explicit Conversions
	The Method Object.equals
	Cloning
	The Shallow Copy Problem (Before)
	The Shallow Copy Problem (After)
	The Object.clone Method
	The Object.clone Method (2)
	The Object.clone Method (3)
	The Object.clone Method (4)
	The Object.clone Method (5)
	Multiple Inheritance, Multiple Interfaces,�and Delegation
	Multiple Interfaces can Emulate�Multiple Inheritance
	Multiple Interfaces can Emulate�Multiple Inheritance
	Supporting Reuse Using Delegation
	Delegation: Implementing It
	Delegation: More About It
	Packages and Directories
	Packages and Visibility
	The No-Package-Declared Environment
	Visibility Supports Encapsulation
	Visibility Supports Encapsulation (2)
	Visibility Supports Encapsulation (3)
	A Shape Class Hierarchy
	A Shape Class Hierarchy (2)
	A Shape Class Hierarchy (3)
	A Shape Class Hierarchy (4)
	A Shape Class Hierarchy (5)
	A Shape Class Hierarchy (6)
	A Shape Class Hierarchy (7)
	A Shape Class Hierarchy (8)
	A Shape Class Hierarchy (9)
	Object Factories
	Example Object Factory
	Next Lecture: On to Lists!

