Inheritance and Class Hierarchies

Based on Koffmann and Wolfgang
Chapter 3

Chapter Outline

Inheritance and how it facilitates code reuse

How does Java find the “right” method to execute?
 (When more than one has the same name ...)
Defining and using abstract classes

Class Object: its methods and how to override them
How to “clone” an object
The difference between:

« A true clone (deep copy) and

« A shallow copy

Chapter 3: Inheritance and Class Hierarchies

Chapter Outline (2)

Why Java does not implement multiple inheritance
Get some of the advantages of multiple inheritance:
 Interfaces
* Delegation
Sample class hierarchy: drawable shapes
An object factory and how to use it
Creating packages
e Code visibility

Chapter 3: Inheritance and Class Hierarchies

Inheritance and Class Hierarchies

e Object-oriented programming (OOP) is popular because:
It enables reuse of previous code saved as classes

o All Java classes are arranged in a hierarchy
e Object is the superclass of all Java classes

* |Inheritance and hierarchical organization capture idea:
e One thing is a refinement or extension of another

Chapter 3: Inheritance and Class Hierarchies

Inheritance and Class Hierarc

FIGURE 3.1

Summary of Exception Class Hierarchy

subclass

/

Throssah] &

.rfl'.'n.

7

nies (2)

superclass

Excaption

S=es rtianError

EuntiesEscapt] an

Yirtual BachinsE mor

ICEsCapTion

fa
<

Fa

Arithmet] cEx et on

f—— JiutCTHaEOryError

e} —

I11aaals Uit
Excapt i

] IntamalErr

al}

.|'.'|1

HusbarFormtE CapTion

— StackirsaritlosE mar

S Unknos=nE rror

I nid s OutCiEounds
Excaption

.|'.'|h

8 rmay Indess CutirEorads
Excaption

.::]_

HuTTPForirmar B e on

por Runt imsEx caption Seaciass

"? L

EOFExcsgrtd on

Fi1 aHo tRoursdEs Capidor

(Pitner IOBxcaption Sidaciass

Chapter 3: Inheritance and Class Hierarchies

|s-a Versus Has-a Relationships

« Confusing has-a and is-a leads to misusing inheritance

 Model a has-a relationship with an attribute (variable)
public class C { ... private B part; ...}

 Model an is-a relationship with inheritance
 If every C is-a B then model C as a subclass of B
e Show this: in C include extends B:
public class C extends B { ... }

Chapter 3: Inheritance and Class Hierarchies

A Superclass and a Subclass

e Consider two classes: Computer and Laptop
* Alaptop is a kind of computer: therefore a subclass

methods of Computer
and all subclasses

additional Methods for
class Laptop

(and its subclasses)

\

FIGURE 3.2
Classes LapTop and
Computer

Computar

String manufacturar
String procassor
int ramSiza

int diskSize

variables of Computer
and all subclasses

int getRam&izal)
int getDiskSizea)
Strimng toStringld

él'h.

LapTop

double screenSize
double waight

additional variables for
class Laptop

(and its subclasses)

Chapter 3: Inheritance and Class Hierarchies

lllustrating Has-a with Computer

pUb ! ! c class Computer } A Computer has only one Memory
private Memory mem;

\

But neither is-a the other

public class Memory {
private Int size;
private iInt speed;
private String Kind;

Chapter 3: Inheritance and Class Hierarchies 8

Initializing Data Fields in a Subclass

 What about data fields of a superclass?

* Initialize them by invoking a superclass constructor
with the appropriate parameters

 If the subclass constructor skips calling the superclass ...
e Java automatically calls the no-parameter one

e Point: Insure superclass fields initialized before
subclass starts to initialize its part of the object

Chapter 3: Inheritance and Class Hierarchies

Example of Initializing Subclass Data

public class Computer {
private String manufacturer;
public Computer (String manufacturer .0 {4
this.manufacturer = manufacturer;

}
}

public class Laptop extends Computer {
private double weilght;

public Laptop (String manufacturer, ...,
double weight, ...) {
super(manufacturer, ...);
this.weight = weight;
by

}

Chapter 3: Inheritance and Class Hierarchies 10

Protected Visibility for Superclass Data

e private data are not accessible to subclasses!
e protected data fields accessible in subclasses

(Technically, accessible in same package)

o Subclasses often written by others, and
o Subclasses should avoid relying on superclass details

SO ... In general, private is better

Chapter 3: Inheritance and Class Hierarchies

11

Method Overriding

If subclass has a method of a superclass (same signature),
that method overrides the superclass method:

public class A { ...
public Int M (float f, String s) { bodyA }
}

public class B extends A { ...
public Iint M (float f, String s) { bodyB }
}

If we call M on an instance of B (or subclass of B), bodyB runs
In B we can access bodyA with: super.M(...)
The subclass M must have same return type as superclass M

Chapter 3: Inheritance and Class Hierarchies 12

Method Overloading

« Method overloading: multiple methods ...
o With the same name
e But different signatures
e [n the same class
e Constructors are often overloaded
 Example:
e MyClass (Int 1nputA, Int InputB)
e MyClass (float 1nputA, float 1nputB)

Chapter 3: Inheritance and Class Hierarchies 13

Example of Overloaded Constructors

public class Laptop extends Computer {
private double weight; ...
public Laptop (String manufacturer,
String processor,

double weight, 5-{
super(manufacturer, processor ---);
this.weight = weight;

by
public Laptop (String manufacturer, ...,

double weight, ...) {
this(manufacturer, “Pentium”,
weight, ...);

Chapter 3: Inheritance and Class Hierarchies

14

Overloading Example From Java Library

ArrayList has two remove methods:
remove (int position)
 Removes object that Iis at a specified place in the list
remove (Object obj)
 Removes a specified object from the list

It also has two add methods:
add (Element e)
« Adds new object to the end of the list
add (int _index, Element e)
« Adds new object at a specified place in the list

Chapter 3: Inheritance and Class Hierarchies 15

Polymorphism

Variable of superclass type can refer to object of subclass type
Polymorphism means “many forms” or “many shapes”

Polymorphism lets the JVM determine at run time which
method to invoke

At compile time:
« Java compiler cannot determine exact type of the object
e But it is known at run time

Compiler knows enough for safety: the attributes of the type
o Subclasses gquaranteed to obey

Chapter 3: Inheritance and Class Hierarchies 16

Interfaces vs Abstract Classes vs Concrete Classes

e A Java interface can declare methods

e But cannot implement them

 Methods of an interface are called abstract methods
e An abstract class can have:

« Abstract methods (no body)

o Concrete methods (with body)

e Data fields
e Unlike a concrete class, an abstract class ...

e Cannot be instantiated

e Can declare abstract methods

 Which must be implemented in all concrete subclasses

Chapter 3: Inheritance and Class Hierarchies 17

Abstract Classes and Interfaces

 Abstract classes and interfaces cannot be instantiated

e An abstract class can have constructors!

 Purpose: initialize data fields when a subclass object
IS created

e Subclass uses super(..) to call the constructor

* An abstract class may implement an interface
* But need not define all methods of the interface
* Implementation of them is left to subclasses

Chapter 3: Inheritance and Class Hierarchies

18

Example of an Abstract Class

public abstract class Food {
public final String name;
private double calories;
public double getCalories () {
return calories;

+

protected Food (String name, double calories) {
this_name = name;
this.calories = calories;

by

public abstract double percentProtein();
public abstract double percentFat();
public abstract double percentCarbs();

Chapter 3: Inheritance and Class Hierarchies 19

Example of a Concrete Subclass

public class Meat extends Food {
private final double protCal; ...;
public Meat (String name, double protCal,
double fatCal double carbCal) {
super(name, protCal+fatCal+carbCal);
this._protCal = protCal;

, .-
public double percentProtein () {

return 100.0 * (protCal / getCalories());
}

Chapter 3: Inheritance and Class Hierarchies 20

Example: Number and the Wrapper Classes

FIGURE 3.4
The Abstract Class

java. lang.Number

and Some of its
Subclassas

Declares what the
(concrete)
subclasses have in
common

L

|:|- 0] 1] 1 =

III L F-I:|‘_-|

Chapter 3: Inheritance and Class Hierarchies

21

Inheriting from Interfaces vs Classes

* A class can extend O or 1 superclass
e Called single inheritance

* An Iinterface cannot extend a class at all
e (Because it is not a class)

e A class or interface can implement O or more
Interfaces

e Called multiple inheritance

Chapter 3: Inheritance and Class Hierarchies

22

Summary of Features of Actual Classes,
Abstract Classes, and Interfaces

TABLE 3.

omparson of Actual Classes, Abstract Classes, and Interfaces
Property Actual Class Abstract Class Interface
Instances {objects) of chis can be created Tes Mo Mo
This can define instance variables and methods Tes s Mo
This can define constants Tes Yes e
The number of these a class can extend Oorl Oorl 0
The number of thess a class can implement I 0 Any num ber
This can extend another class Tes Yes Mo
This can declare abstract methods o s Tes
Variables of this type can be declared Tes Yes Tes

Chapter 3: Inheritance and Class Hierarchies 23

Class Object

e Object is the root of the class hierarchy

* Every class has Object as a superclass
 All classes inherit the methods of Object

e But may override them

TABLE 3.2
rethods of Class java.lang.Object
Object clona() Makes a copy of an object.
baalean sequals{lbject obj) Compares this object to its argument.
int hashCoda () Retums an integer hash code value tor this object.
String toString) Retums a string that textually represents the object.

Chapter 3: Inheritance and Class Hierarchies

24

The Method toString

e You should always override toString method if you
want to print object state

 |If you do not override it:
e Object.toString will return a String

e Just not the String you want!
Example: ArrayBasedPD@ef08879
... The name of the class, @, instance’s hash code

Chapter 3: Inheritance and Class Hierarchies

25

Operations Determined by Type of

Reference Variable

« Variable can refer to object whose type is a subclass of the

variable’s declared type

« Type of the variable determines what operations are legal
« Java is strongly typed Object athing = new Integer(25);

« Compiler always verifies that variable’s type includes the

class of every expression assigned to the variable

FIGURE 3.5
Type Integsr Object

Referenced by aThing E/
(typ= Ch jact] aThing =

Irite g=T

walu= = 25

Chapter 3: Inheritance and Class Hierarchies

26

Casting in a Class Hierarchy

» Casting obtains a reference of different, but matching, type
« (Casting does not change the object!
|t creates an anonymous reference to the object

Integer aNum = (Integer)aThing;

 Downcast:
« Cast superclass type to subclass type

e Checks at run time to make sure it's ok
 If not ok, throws ClassCastException

Chapter 3: Inheritance and Class Hierarchies 27

Casting in a Class Hierarchy (2)

e 1nstanceof can guard against ClassCastException

Object obj = ...;

1T (obj iInstanceof Integer) {
Integer 1 = (Integer)obj;

int val = 1. intValue(Q);

} éise {
}

Chapter 3: Inheritance and Class Hierarchies

28

Downcasting From an Interface Type

Collection c new ArrayList();

::- ((ArrayList)c).get(3) ...

Chapter 3: Inheritance and Class Hierarchies

29

Polymorphism Reduces Need For Type Tests

// Non 00 style:
IT (stuff[1] i1nstanceof Integer)

sum += ((Integer) stuff[i1]).doubleValue();
else 1T (stuff[1] 1nstanceof Double)

sum += ((Double) stuff[i1]).doubleValue();

// 00 style:
sum += stuff[1].doubleValue();

Chapter 3: Inheritance and Class Hierarchies 30

Polymorphism and Type Tests (2)

* Polymorphic code style is more extensible
* Works automatically with new subclasses
* Polymorphic code is more efficient
e System does one Iindirect branch vs many tests

e SO ... uses of Instanceof are suspect

Chapter 3: Inheritance and Class Hierarchies 31

Java 5.0 Reduces Explicit Conversions

e« Java 1.4 and earlier:
Character ch = new Character(“x’);
char nextCh = ch.charValue();

e Java 5.0:
Character ch = “x7; // called auto-box
char nextCh = ch; // called auto-unbox

e Java 5.0 generics also reduce explicit casts

Chapter 3: Inheritance and Class Hierarchies 32

The Method Object.equals

e Object.equals method has parameter of type Object
public boolean equals (Object other) { ... }

« Compares two objects to determine if they are equal
 Must override equals in order to support comparison

Chapter 3: Inheritance and Class Hierarchies 33

Cloning

e Purpose analogous to cloning in biology:
e Create an independent copy of an object

 |nitially, objects and clone store same information

* You can change one object without affecting the other

Chapter 3: Inheritance and Class Hierarchies 34

The Shallow Copy Problem (Before)

FIGURE 3.8
T Empl oyee References to the Same Objact

Eu‘ .|||_F--_

= /

nane = [—=] valus = "Jim"

hours = 4@
2l = rate = 15.5@

lddrﬁ-s — E_l_“-‘. ._.'l:l 1nd

r walue = “Feoom 311

valuz = "San"”

Address

waluz = "Wachman Hal1"

linel = ="
linez = 3]

Chapter 3: Inheritance and Class Hierarchies

The Shallow Copy Problem (After)

FIGURE 1.7
An Enployes Object anda Shallow Copy
Elll.ll_il-_ ._-'l:l'lll!
el = E/*
name = =1 valuse = “San”
5 hiours = 448
me = rate = 15,58 ;
address = =g, | “trina
Address value = “Foom 311"
EIII .l [
linel = —
THine2 m [—-
nome = =] \'--_._., String
hours: = 48 —_—
rats = 15.56
address = Eﬂ"""‘
value = “"Wachman Hall"

Chapter 3: Inheritance and Class Hierarchies 36

The Object.clone Method
e Object.clone addresses the shallow copy problem
* The initial copy is a shallow copy, but ...
 For a deep copy:

e Create cloned copies of all components by ...
 Invoking their respective clone methods

Chapter 3: Inheritance and Class Hierarchies 37

The Object.clone Method (2)

FIGURE 3.8

Deep Copy or Clone of an Object

ae e |

a2l =

riane
hours

rat=
addressz

'_.'I:l in !

valu= = "Samn"

EIII 1 L

Sadress

valus =

"Foom 311°

riaNe
hours
rats
address

Tinel =

lineZ = [—h.

Chapter 3: Inheritance and Class Hierarchies

"\.\q_‘_

Sadress

value = “lWachman Hall"

Tinel =
Tined =

The Object.clone Method (3)

public class Employee 1mplements Cloneable {

public Object clone () {
try {
Employee cloned = (Employee)super.clone();
cloned.address = (Address)address.clone();
return cloned;
} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}
}

Chapter 3: Inheritance and Class Hierarchies 39

The Object.clone Method (4)

public class Address implements Cloneable {

public Object clone () {
try {
Address cloned = (Address)super.clone();
return cloned;
} catch (CloneNotSupportedException e) {
throw new InternalError();

}
}
}

Chapter 3: Inheritance and Class Hierarchies 40

The Object.clone Method (5)
Employee[] company = new Employee|[10];

Employee[] newCompany =
(Employee|])company.clone();
// need loop below for deep copy
for (aint 1 = 0; 1 < newCompany.length; 1++) {
newCompany|[1] =
(Employee)newCompany[1]-clone();

Chapter 3: Inheritance and Class Hierarchies 41

Multiple Inheritance, Multiple Interfaces,
and Delegation

« Multiple inheritance: the ability to extend more
than one class

« Multiple inheritance ...
e |s difficult to implement efficiently

e Can lead to ambiguity: if two parents
Implement the same method, which to use?

e Therefore, Java does not allow a class to
extend more than one class

Chapter 3: Inheritance and Class Hierarchies

42

Multiple Interfaces can Emulate
Multiple Inheritance

e A class can implement two or more interfaces
* Multiple interfaces emulate multiple inheritance

FIGURE 1.9 Studernt Employes
Class Studenthorker
Extends Student and 51__":”'"9 name stri :EI name
Empl ovee oat gpa int hours
PLoY String major double rate
Address address Address address
Desired, >
but illegal, | ? ? ?
Situation
Ful 1TTim=5tud=nt Studentorker Ful1Time=Enp] oy=e
String nans String name String name
fleat gpa float gpa int hours
String majar String major double rate
Address address int hours Address address
double rate
Address address

Chapter 3: Inheritance and Class Hierarchies

Multiple Interfaces can Emulate

Multiple Inheritance

e Approximating the desire with interfaces:

FIGURE 5.10
i_lass Hierarchy with Interfaces StudantInt and Employeelnt

Chapter 3: Inheritance and Class Hierarchies

44

Supporting Reuse Using Delegation

 Reduce “cut and paste polymorphism”: copied code
* |dea: Object of another class does the work
 Delegation: original object delegates to the other

FIGURE 3.1 . i cinterfac
LIkAL Chagram with tygentint Eaployee Int
Delegation A n N

|

Chapter 3: Inheritance and Class Hierarchies 45

Delegation: Implementing It

e Class StudentWorker implements interfaces
Studentint and Employeelnt

e Class StudentWorker has-a Student and has-an
Employee

e StudentWorker implements (some) Studentint
methods with calls to its Student object

o Likewise for Employeelnt methods
e StudentWorker implements getName() itself, etc.

Chapter 3: Inheritance and Class Hierarchies 46

Delegation: More About It

Delegation is like applying hierarchy ideas to
Instances rather than classes

There have been whole OO languages based more on
delegation than on classes

Opinion: Classes are better, when they can do what
you need

Downside of delegation: Not as efficient, because of
level of indirection, and need for separate objects

Chapter 3: Inheritance and Class Hierarchies 47

Packages and Directories

A Java package is a group of cooperating classes
Java programs are organized into packages
The Java API Is also organized as packages
Indicate the package of a class at the top of the file:
package thePackageForThisClass;
Classes of the same package should be
In the same directory (folder)
Classes in the same folder must be
In the same package

Chapter 3: Inheritance and Class Hierarchies 48

Packages and Visibility

* Classes not part of a package can access only
publ 1c members of classes in the package

 The default visibility is package visbility
 Has no keyword: indicate by not using another
e Others are: public, protected, private
e Package visibility: between private and protected
 |tems with package visibility: visible in package,
Invisible outside package

 |tems with protected visibility: visible in package and
In subclasses outside the package

Chapter 3: Inheritance and Class Hierarchies 49

The No-Package-Declared Environment

 There Is a default package
* |t contains files that have no package declared

« Default package ok for small projects
e Packages good for larger groups of classes

Chapter 3: Inheritance and Class Hierarchies

50

Visibility Supports Encapsulation

 Visibility rules enforce encapsulation in Java
e private: Good for members that should be
Invisible even In subclasses

e package: Good to shield classes and members
from classes outside the package

e protected: Good for visibility to extenders of
classes in the package

e publ1c: Good for visibility to all

Chapter 3: Inheritance and Class Hierarchies

51

Visibility Supports Encapsulation (2)

e Encapsulation provides insulation against change
« Greater visibility means less encapsulation

e S0: use minimum visibility possible for getting the
job done!

Chapter 3: Inheritance and Class Hierarchies

52

TABLE 3.3

Visibility Supports Encapsulation (3)

Sumnimary of Kinds of Visibility

Visibility

Applied to Classes

private

Applicable to inner classes. Accesaible only to
members of the class in which it is declared.

Applied to Class Members
Visible only within this class.

Detault or package Wisible to classes in this package.

Visible to classes in this package.

protected

Applicable to inner classes. Visible to classes
in this package and to clases outside the

package thar extend the class in which i is
declared.

Visible to classes in this package and to
classes outside the package thar extend
this class.

public

Visible to all classes.

Visible to all classes. The class defining
the member must also be public.

Chapter 3: Inheritance and Class Hierarchies 53

A Shape Class Hierarchy

FIGURE 3.112
Interface Shapalntand Three Implementors

conplrt el readd
conputeParinatard

raadshapeslata s

mm T e e —— e —— - 1
! : :

I-'.| |:'I:_'||||.| .|.| ':'ll |:.|.I I-'.l:TI 'I.'||'|.|.|.||
it Wi dth int radiu=s it basa
int haight imt haight

conputadiread)

——0 caputaParinacar ——0
roadShapalota O r:E-'I: I:""F"i all readShapalata)
taString() toString) taString)

Chapter 3: Inheritance and Class Hierarchies

54

A Shape Class Hierarchy (2)

TABLE 3.4
i_lass Rectangla
Data Feld Attribute
int width Widch of a rectangle
int height Height of a recrangle
Method Behawior
double computedirea) Computes the rectangle area (width height).
double computePerimeter() Computes the rectangle perimeter (2 width +
2 heighr).
void readShapeData() Reads the width and heighe.
String toString () Feturns a string representing the state.

Chapter 3: Inheritance and Class Hierarchies 55

A Shape Class Hierarchy (3)

FIGURE 3.13

Crawable Shapes Hierarchy

2NaaElLnT

|:'| waab 1]

SR PLIT e rees i)
coppLtaPasrimatar O}
rasdShspelists)

Poart pos
Color borderilalor
Color AmtariorColar

setBordarfclor (Colar:
satIntariorColoriCal or)
satPos (Point)
toStringil

-------- 1

Drasabl eShapa

Abstract
classes

CONPLIT ad raa
conpltaFeri netar ()
raadShapsData)
woString)

E

Chapter 3: Inheritance and Class Hierarchies

56

Chapter 3: Inheritance and Class Hierarchies

1

Drawabl adhaoa

COnpLt el rea i)
conpLrtaPeri netar)
rapdShapeData il
woString

£

Raict AN 1

DrasablaPs |:'I:Ju'h:|1 a

int widih
int haight

computafraaill
computsParinetarill
raadShapalatai)
toString

drasMa (Graphi cs)
TSt g

Circla

int radius

ODresablelircl s

computaf raai
computeFerinetari)
readShapslatadl
ToString

drasMa CGraphi cs)
ToString

EtTri AN 1=

int baszs

int haight

ODrasablaTri g 1a

computaf raail
computeParinetari)
raadShapalatai)
toStringid

drasMa (Graphn cs)
toSrring

57

e e e e L e b

awabl abhapa
DrawableRectangle
delegates shape methods, COnpUteA raa
such as ComputeArea, computaParinetar O
readshapsliata
to Rectangle taString)
I-..lll:'l: :'IIII-I .|.| |:'| g '||'1.|||:'.| l:'l:.'||'|:|1.||
| int width .
int h&i
Gl drasMa i Graphics?
computad raa i’ tostring(l
computsFarinetari)
readShapslatad
toStringil

Chapter 3: Inheritance and Class Hierarchies 58

A Shape Class Hierarchy (6)

TABLE 3.5
i_lass Drawabla

Data Field Attribute

Point pos fx, ¥ posiion on screen

Color border{olor Border color

Color interiorColor Interior color

Methods Bahavior

void setPos{Point pl Sers the (x, ¥) screen position.

void setBorderColor(Color coll Sers the border color to its argument.
void setInteriorCelor(Colar coll Sers the interior color to its argument.
String toStringd Feturns a string representing the scare.

Chapter 3: Inheritance and Class Hierarchies 59

A Shape Class Hierarchy (7)

TABLE 3.6
lass DrawableShape
Data Field Attribute
ShapeInt theShape Reference to an object that implements the ShapeInt
interface
Method Behawicr
double computalreal) Computes the area of the shape.
double computePerimeter() Computes the perimeter of the shape.
void readShapeDatai) Prom pts for and reads the data chat detines the size
of the shape.
String toString Berurns a siring representar on.

Chapter 3: Inheritance and Class Hierarchies 60

A Shape Class Hierarchy (8)

TABLE X.7
lassDrawableRectangle

void drawMe(Graphics q) Draws the rectangle on the screen.
String toString) Retums a string representing the state.

Chapter 3: Inheritance and Class Hierarchies 61

A Shape Class Hierarchy (9)

FIGURE 3.5
Display of
TesthrawFigures

Chapter 3: Inheritance and Class Hierarchies

62

Object Factories

 Object factory: method that creates instances
of other classes

* Object factories are useful when:

 The necessary parameters are not known or
must be derived via computation

* The appropriate implementation should be
selected at run time as the result of some
computation

Chapter 3: Inheritance and Class Hierarchies

63

Example Object Factory

public static Shapelnt getShape () {

String figType = JOptionPane....();

i1t (figType.equalslgnoreCase(“c”)) {
return new Circle();

} else 1t (figType.equalslgnoreCase(‘r’)) {
return new Rectangle();

} else 1f (figType.equalslignoreCase(“t”)) {
return new RtTriangle();

} else {
return null;

+

}

Chapter 3: Inheritance and Class Hierarchies 64

Next Lecture: On to Lists!

Chapter 3: Inheritance and Class Hierarchies

65

	Inheritance and Class Hierarchies
	Chapter Outline
	Chapter Outline (2)
	Inheritance and Class Hierarchies
	Inheritance and Class Hierarchies (2)
	Is-a Versus Has-a Relationships
	A Superclass and a Subclass
	Illustrating Has-a with Computer
	Initializing Data Fields in a Subclass
	Example of Initializing Subclass Data
	Protected Visibility for Superclass Data
	Method Overriding
	Method Overloading
	Example of Overloaded Constructors
	Overloading Example From Java Library
	Polymorphism
	Interfaces vs Abstract Classes vs Concrete Classes
	Abstract Classes and Interfaces
	Example of an Abstract Class
	Example of a Concrete Subclass
	Example: Number and the Wrapper Classes
	Inheriting from Interfaces vs Classes
	Summary of Features of Actual Classes, Abstract Classes, and Interfaces
	Class Object
	The Method toString
	Operations Determined by Type of Reference Variable
	Casting in a Class Hierarchy
	Casting in a Class Hierarchy (2)
	Downcasting From an Interface Type
	Polymorphism Reduces Need For Type Tests
	Polymorphism and Type Tests (2)
	Java 5.0 Reduces Explicit Conversions
	The Method Object.equals
	Cloning
	The Shallow Copy Problem (Before)
	The Shallow Copy Problem (After)
	The Object.clone Method
	The Object.clone Method (2)
	The Object.clone Method (3)
	The Object.clone Method (4)
	The Object.clone Method (5)
	Multiple Inheritance, Multiple Interfaces,�and Delegation
	Multiple Interfaces can Emulate�Multiple Inheritance
	Multiple Interfaces can Emulate�Multiple Inheritance
	Supporting Reuse Using Delegation
	Delegation: Implementing It
	Delegation: More About It
	Packages and Directories
	Packages and Visibility
	The No-Package-Declared Environment
	Visibility Supports Encapsulation
	Visibility Supports Encapsulation (2)
	Visibility Supports Encapsulation (3)
	A Shape Class Hierarchy
	A Shape Class Hierarchy (2)
	A Shape Class Hierarchy (3)
	A Shape Class Hierarchy (4)
	A Shape Class Hierarchy (5)
	A Shape Class Hierarchy (6)
	A Shape Class Hierarchy (7)
	A Shape Class Hierarchy (8)
	A Shape Class Hierarchy (9)
	Object Factories
	Example Object Factory
	Next Lecture: On to Lists!

