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Abstract

The execution order of a block of computer in-
structions on a pipelined machine can make a
difference in its running time by a factor of two
or more. In order to achieve the best possi-
ble speed, compilers use heuristic schedulers
appropriate to each specific architecture im-
plementation. However, these heuristic sched-
ulers are time-consuming and expensive to
build. We present empirical results using both
rollouts and reinforcement learning to con-
struct heuristics for scheduling basic blocks.
In simulation, both the rollout scheduler and
the reinforcement learning scheduler outper-
formed a commercial scheduler on several ap-
plications.

M otivation

computer architects develop new machine designs, new
schedulers would be built automatically to test design
changes rather than requiring hand-built heuristics for
each change. This would allow architects to explore the
design space more thoroughly and to use more accurate
metrics in evaluating designs.

A second possible use of machine learning techniques
in instruction scheduling is by the end user. Instead
of scheduling code using a static scheduler trained on
benchmarks when the compiler was written, a user would
employ a learning scheduler to discover important char-
acteristics of that user's code. The learning scheduler
would exploit the user’s coding characteristics to build
schedules better tuned for that user.

Instruction scheduling is a large-scale optimization
problem in several ways. First, there can be millions of
instructions and tens of thousands of basic blocks within
a given program. Scheduling each block optimally us-
ing exhaustive search is much too difficult and time-

Although high-level code is generally written as if it consuming to work in practice. Second, the problem of
were going to be executed sequentially, most modermgeneralizing the scheduler from the training programs to
computers exhibit parallelism in instruction executionall possible user programs is also an optimization prob-
using techniques such as the simultaneous issue of mulem.
tiple instructions. In order to take the best advantage of With these motivations in mind, we formulated and
multiple pipelines, when a compiler turns the high-leveltested two autonomous methods of building an instruc-
code into machine instructions, it employs an instructiontion scheduler. The first method used rollouts (Bertsekas,
scheduler to reorder the machine code. The scheduldr997; Bertsekast al, 1997; Tesauro and Galperin,
needs to reorder the instructions in such a way as to pret996) and the second focused on reinforcement learn-
serve the original in-order semantics of the high leveling (RL) (Sutton and Barto, 1998). Both methods were
code while having the reordered code execute as quicklimplemented for the Digital Alpha 21064. The next sec-
as possible. An efficient schedule can produce a speedujon gives a brief overview of the domain. For a complete
in execution of a factor of two or more. description, see McGoveast al. (1999).

Building an instruction scheduler can be an arduous
process. Schedulers are specific to the architecture cé Domain overview
each machine and the general problem of instruction
scheduling is NP-hard (Proebsting). Because of these We focused on schedulifgasic blockof instructions
characteristics, schedulers are currently built using handsn the 21064 version (DEC, 1992) of the Digital Alpha
crafted heuristic algorithms. However, this method isprocessor (Sites, 1992). A basic block is a set of ma-
both labor and time intensive. Building algorithms to chine instructions with a single entry point and a single
select and combine heuristics automatically using maexit point. Our schedulers can reorder the machine in-
chine learning techniques can save time and money. Astructions within a basic block but cannot rewrite, add,
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Figure 1: Example basic block code, DAG, and partial schedule

or remove any instructions. The goal of the scheduler isvith the smallest running time). However, this search is
to find the fastest valid ordering of the instructions in atoo time-consuming to perform on blocks with more than
block. A valid ordering is one that preserves the in-orderl0 instructions, because optimal instruction scheduling is
semantics of the original code. We insure validity by cre-NP-hard (Stefanovi€, 1997, Proebsting). This inhibited
ating a dependency graph that directly represents the nethe methods from learning using larger blocks. Using a
essary ordering relationships in a directed acyclic graptsemi-supervised method such as RL or rollouts does not
(DAG). An example basic block written in C is shown in require generating training pairs, which means that the
Figure 1. The figure also shows the assembled progranmethod can be applied to larger basic blocks and can be
its resulting DAG, and an example partial schedule. trained without knowledge of optimal schedules.

The Alpha 21064 is a dual-issue machine with two dif- In order to test each scheduling algorithm, we used the
ferent execution pipelines. One pipeline is more speciall8 SPEC95 benchmark programs. Ten of these programs
ized for floating point operations while the other is for are written in FORTRAN and contain mostly floating
integer operations. Although many instructions can bePoint calculations. Eight of the programs are written in
executed by either pipeline, dual issue can occur only ifC and focus more on integer, string, and pointer calcula-
the next instruction to execute matches the first pipelindions. Each program was compiled using the commercial
and the second instruction matches the second pipelin®igital compiler at the highest level of optimization. We
A given instruction can take anywhere from one to manycall the schedules output by the comp{@RIG. This col-
tens of cycles to execute. Researchers at Digital haviection has 447,127 basic blocks, containing 2,205,466
a publicly available 21064 simulator that also includesinstructions. Although 934% of the blocks in SPEC95
a heuristic scheduler for basic blocks. Throughout théhave 10 instructions or less, the larger blocks account for
paper, we will refer to this scheduler BEC. The simu- & disproportionate amount of the running time.g%).
lator gives the running time for a given scheduled blockThis may be because the larger blocks are loops that the
assuming all memory references hit the cache and all recompiler unrolled into extremely long blocks. By al-

sources are available at the beginning of the block. ~ lowing our algorithms to schedule blocks whose size is

All of our schedulers used a greedy algorithm tog_reater than 10, we focus on scheduling the longer run-
schedule the instructions, i.e., they built schedules se'n9 blocks.
guentially from beginning to end with no backtracking.

This is referred to as list scheduling in compiler litera- 3 Rollouts

ture. Each scheduler reads in a basic block, builds the Rollouts are a form of Monte Carlo search, first in-

DAG, and schedules one instruction at a time until all in-trgduced by Tesauro and Galperin (1996) for use in
structions have been scheduled. When choosing the nephckgammon. Bertsekas (1997) and Bertseiasl.
instruction to schedule from a list of ava_ilable candidate3(1997) explored rollouts in other domains and proved im-
each scheduler use a different evaluation function to deportant theoretical results. In the instruction scheduling
cide which available instruction is best to schedule next.gomain, rollouts work as follows: suppose the scheduler
Moss et al. (1997) showed that several supervisedcomes to a point where it has a partial schedule and a set
learning techniques could induce excellent {987%  of (more than one) candidate instructions to add to the
optimal choices within blocks of size 10 or less) basicschedule. For each candidate, the scheduler appends it to
block instruction schedulers for this task. Although eachthe partial schedule and then follows a fixed policio
of these supervised learning methods performed quitschedule the remaining instructions. When the schedule
well, they shared several limitations. Supervised learnis complete, the scheduler evaluates the running time and
ing requires exact input/output pairs. Generating theseeturns. Whemtis stochastic, this rollout can be repeated
training pairs requires an optimal scheduler that searchemany times for each instruction to achieve a measure of
every valid permutation of the instructions within a basicthe expected outcome. After rolling out each candidate,
block and saves the optimal permutation (the schedul¢he scheduler picks the one with the best average running
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Figure 2: Diagram of the actions of a rollout scheduler when rollinglmee different instructions five times each.

time. This process is illustrated graphically in Figure 2. written in Fortran and focuses on floating point opera-

Our first set of rollout experiments compared threetions. _

rollout policiestt. While Bertsekas (1997) and Bertsekas ~Table 1 summarizes the performance of the rollout
et al. (1997) proved that if we used the DEC schedulerscheduler under each policyas compared to the DEC
proposing a new machine might not have a good heurisfrom applu. Because each basic block is executed a dif-
tic available to use ag, so we also considered policies ferent number of times and is of a different size, measur-
more likely to be available. The obvious choice for aning performance based on the mean difference in number
easily available rollout policytis the random policy. We  ©Of cycles across blocks is not a fair performance mea-
denote the use of the random policy foin the rollout ~ Sure. To more_fa|rly assess .the performance, we used the
scheduler aRANDOM+7t. Under this policy, the rollout  "atio of the weighted execution time of the rollout sched-
makes all choices randomly. We also tested using heurigJler to the weighted execution time of the DEC scheduler
tics for rin two ways. The first was the ordering pro- where the weights of each block are based on the number
duced by the optimizing compiler ORIG, deno®RIG- of times that block is executed during a run of the entire
T The second heuristic policy tested was the DEC sched?fogram. More concisely, the performance measure was:
uler itself, denotedEC-mt. Although the full heuristics - ;
of DEC or ORIG may not be available to an architect ratio = 2 all blocks(rollout F|mex #.tlmes executed
while designing a machine, a simpler set of heuristics Y all blocks(DEC timex # times executed

(which are more complicated than RANDOM) may be where time is the number of cycles that block took to

available. This allows us to understand how heunsﬂcsexecute. This means that a faster running time than DEC
can help rollout schedulers.

on the part of our scheduler would give a ratio of less
The rollout scheduler performed only one rollout perthan one.

candidate instruction when using ORIGand DEC#

because each is deterministic. Initially, we used 25 roll- Scheduler Ratio
outs for RANDOMTL Discussion of how the number Random 1.3150
of rollouts affects performance is presented in the next RANDOM-Tt | 1.0560
section. After performing a number of rollouts for each ORIGTT 0.9895
candidate instruction, we chose the instruction with the DECTT 0.9875

best average running time. As a baseline scheduler, we
also scheduled each block with a valid but otherwise ) . . N
completely random ordering. A time analysis of a roll- Table 1: Ratios of the weighted execution time of the
out scheduler shows that it takeén?m) wheremiis the rollout scheduler to the DEC scheduler on the SPEC95
number of rollouts and is the number of instructions. A Program applu. A ratio of less than one means that the
greedy scheduler with no rollouts takes only ti@@). _roII_outs outperformed the DEC scheduler. The entries in
Because the running time increases quadratically witdt&lics are those that outperformed DEC.

the number of instructions multiplied by the number of

rollouts, we focused our rollout experiments on one pro- Although Stefanovit (1997) noted that rescheduling a
gram in the SPEC95 suiteapplu This program was block has no effect on 68% of the blocks of size 10 or



Performance over number of rollouts among candidate instructions. Instead of always choos-
ing the instruction with the best average performance,
118} denoted AVG-RANDOMT, we also experimented with
selecting the instruction with the absolute best running
time among its rollouts. We call this BEST-RANDOM-
1. We hypothesized that selection of the absolute best
path might lead to better performance overall because it
meant selecting the first instruction on the most promis-
ing scheduling path. As before, we compared perfor-
mance on all 33,007 basic blocks of size 200 or less from

applu.
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Ave-RANDOM-n\{"""’"’“fw»—%,,,,,,{ Figure 3 shows the performance of the rollout sched-

T o = uler as a function of the number of rollouts. Perfor-

Number of Rollouts mance is assessed in the same way as before: ratio of
weighted execution times. Thus, the lower the ratio, the

Fi 3 Perf ¢ rollout schedul ith th better the performance. Each data point represents the
lgure 5. Ferformance ofrofiout scheduler with the ran-q e 5 metric mean over five different runs. Although one
dom model as a function of the number of rollouts and

he choi f luation f . The b b ollout may not be enough to fully explore a schedule’s
the choice of evaluation function. The bars above ang,qiana|, performance of RANDONEwith one rollout
below each data point are one standard deviation fro i

16% slower then DEC. This is a considerable improve-
the mean. ment from RANDOM’s performance of 31% slower than
DEC on applu. By increasing the number of rollouts
less, the random scheduler performed very poorly. Orirom one to five, the performance of AVG-RANDOM-
applu, RANDOM was 31% slower than DEC. Overall, improved to within 10% of DEC. Improvement contin-
RANDOM is 30.1% slower than DEC. This number is a ued as the number of rollouts increased to 50 but perfor-
geometric mean across five runs of all 18 SPEC95 benchmance leveled off around 5% slower then DEC. As the
mark suites. A detailed summary of RANDOM's results graph shows, the improvement per the number of roll-
on all suites can be found in the next section. Withoutouts drops off dramatically from 25 to 50.

adding any heuristics and just using rollouts with the ran- gy hypothesis about BEST-RANDOM- outper-
dom policy, RANDOMst came within 5% of the run-  forming AVG-RANDOM-Tt was shown to be incorrect.
ning time of DEC. By using ORIG and DEC as the  Choosing the instruction with the absolute best rollout
ORIG-rtand DECstschedulers were able to outperform schedule did not yield any improvement in performance
DEC. Both were about.1% faster than DEC. Although over AVG-RANDOM-tover any number of rollouts. We
this improvement may seem small, the DEC scheduler ifyypothesize that this is due to the stochastic nature of
known to make optimal choices 98% of the time for  the rollouts. Once the rollout scheduler chooses an in-
blocks of size 10 or less (Stefanovic, 1997). Thi$%  struction to schedule, it repeats the rollout process again
improvement is over all blocks of size 200 or less. over the next set of candidate instructions. By choosing
ORIG-t and DECt are deterministic policies, so the instruction with the absolute best rollout, there is no
the numbers reported above are only across one ruguarantee that the scheduler will find that permutation of
RANDOM-mt and RANDOM were averaged geometri- instructions again on the next rollout. When it chooses
cally across 5 runs. Each run of RANDONon all  the instruction with the best average rollout, the sched-
blocks of 200 or less from applu took about six hours.yler has a better chance of finding a good schedule on the
This limited the number of runs we could perform. next rollout. The theory developed by Bertsekas (1997)
Part of the motivation behind using rollouts in a sched-and Bertsekast al. (1997) also predicts this answer.

uler was to obtain efficient schedules without spending - »jiq,,gh the performance of the rollout scheduler can
g‘é élrr\]/SitLotr?il;"i(rj] ?1isnlacr\]lvgrgf'?;gg‘gﬁ&%gﬁfﬂ%& andoe excelle_nt, rollouts are costly in time_. As mentioned
I .I in a follow- ' eXp i before, using 25 rollouts per block required over 6 hours
closely In a follow-up experiment. to schedule one program. Although the majority of that
Evaluation of the number of rollouts time is spent in the simulator, a faster simulator will not
be able to make th®(n’m) rollout scheduler perform
This experiment considered how the performance ofas quickly as ai®(n) greedy scheduler. Unless the run-
RANDOM-Ttvaried as a function of the number of roll- ning time can be improved, rollouts cannot be used for all
outs. To cover the possible space of the number of rollblocks in a commercial scheduler or in evaluating more
outs, we tested 1, 5, 10, 25, and 50 rollouts per candithan a few proposed machine architectures. However,
date instruction. We also varied the metric for choosingbecause rollout scheduling performance is high, roll-
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outs could be used to optimize the schedules on imporas when the scheduler learned a preference function be-
tant (long running times or frequently executed) blockstween instructions. A possible explanation for this is that
within a program. With the performance and the timing the value of a given instruction is contextually dependent
of the rollout schedulers in mind, we looked to RL to on the rest of the basic block. This is difficult to repre-
obtain high performance with a faster running time. RL sent using local features but is easier to represent when
schedulers run in th®(n) time of a greedy list scheduler. the local features are used to compare candidate instruc-

tions. In other words, it is hard to predict the running
4 Reinforcement Learning time of a block from local information, but it is not as

Wi h dard f lati f reinf hard to predict the relative impact of two potential can-
e use the standard formulation of reinforcementyjyaie -~ A number of researchers have pointed out that
learning (Sutton and Barto, 1998) which is summarize

n RL, it is the relative values of states that are important

belp\’\{' For th? sake of brevity, we omit a complete de'in determining good policies. (Utgoff and Clouse, 1991;
scription of reinforcement learning and of how we CaStﬁarmonet al, 1995; Werbos, 1992)

the instruction scheduling problem as a reinforcemen
learning task. See McGovest al. (1999) for more de- tween pairs of instructions, we defined a feature vector

tail. . . .., over the current partial schedule and each pair of candi-
In the RL framework, a I_earnlng_ agent interacts with date instructions. The value function was approximated
an environment over a series of discrete time steps. ABy a linear weighting over the feature vector. Each fea-
each time steft, the agent observes tiséate g, of the 10 \yas derived from knowledge of the DEC simulator.
environment and c_h_ooses an action which causes the ®*he features and our intuition concerning their impor-
vironment to transition to a new stat,1 and to emit tance are summarized in Table 2. Although these five
a rewardri,.1. The next state and reward depend onlyfeqy res are not enough to completely disambiguate all
on the previous state and action, pO_SS|ny In a S‘tOCh""St'Ehoices between candidates, we observed in earlier stud-
manner. The objective of the learning agent is to leammgg of gypervised learning in this problem that these fea-
a (possibly stochastic) mapping from states to actiong, eq provide enough information to support about 98%
that maximizes the expected value of reward received by 1o optimal choices in blocks of size 10 or less.
tr;]e agent O\r/]er tti_me. Moret precisely, trtf obje?ti\ée Is to The feature vectof for each triple(p, A, B), wherep
choose each actic® so as to maximize thexpected re- . . 2 D)
turn, E{Zfio\/rt+i+1},Wherev€ [0,1) is a discount-rate is a partial schedule antl andB are candidate instruc-

To adapt the TD algorithm to learning preferences be-

parameter. tions, 'S;

A common solution strategy is to approximate e f(p,A,B) = J[odd(p),i c(A),i c(B),
timal value functionV*, which maps each state to the d(A),d(B),
maximum expected return that can be obtained starting '
in that state and thereafter always taking the best actions. o(wep(A) —wep(B)),
In this paper we use temporal differencéTD) algo- o(e(A) —e(B))]

rithm (Sutton, 1988) for updating an estima¥6,0f V" nosset al. (1997) showed in previous experiments that

After a transition from statg to states1, under action  ihe actual value oficp ande do not matter as much

a with rewardre1, V(%) is updated by: as the relative values between the two candidate instruc-

_ tions. Thus, for these features we used the signajm (

V(&) < VIg) +ala +Wise) - V(9] of the difference of their values for the two candidate in-

whereaq is a positive step-size (or learning rate) parame-structions. (Signum returns1, 0, or 1 depending on

ter. Here we are assuming thats represented by a table whether the value is less than, equal to, or greater than

with an entry for each state. zero.) Because the featuredd, i ¢, andd are categori-

As with the supervised learning results presented ircal, they were represented as bit vectors.

Mosset al. (1997), our RL system learned a preference Previous experiments with a table lookup representa-

function between candidate instructions. That is, insteadion did not perform or generalize as well as by using the

of learning the direct value of choosing instruction A or linear function approximator (McGoveret al, 1999).

of choosing instruction B, the RL scheduler learned theThis suggests that the value information is mostly con-

value of choosing instruction A over choosing instruc-tained in a low order feature representation which a lin-

tion B. In an earlier attempt to apply RL to instruction ear function approximator is able to capture but a table

scheduling, Scheefét al. (1997) explored the use of lookup representation is not.

non-preferential value functions. To do this, their sys- During learning, the RL scheduler makes schedul-

tem attempted to learn the value of choosing an individ-ing decisions using agrgreedy action selection process

ual instruction given a partial schedule without looking (Sutton and Barto, 1998). This means that scheduler

at the other candidate instructions. However, the resultshooses the most preferred actiesh of the time and a

with non-preferential value functions were not as goodrandom but legal actiofil — €)% of the time.



Feature Name

Feature Description

Intuition for Use

Odd Partial 6dd)

Is the current number of instruction
scheduled odd or even?

sIf TRUE, we're interested in schedulin
instructions that can dual-issue with th
previous instruction.

Instruction Classi(c)

The Alpha’s instructions can be divide|
into equivalence classes with respect
timing properties.

dThe instructions in each class c4
tdbe executed only in certain executig
pipelines, etc.

AN
n

Weighted Critical Pathwicp)

The height of the instruction in the DAG
(the length of the longest chain of in

5 Instructions on longer critical path
- should be scheduled first, since they

5
af-

structions dependent on this one), withfect the lower bound of the schedu
edges weighted by expected latency |otost.

the result produced by the instruction
Can the instruction dual-issue with tHelf Odd Partial is TRUE, it is important
previous scheduled instruction? that we find an instruction, if there is
one, that can issue in the same cycle wjth
the previous scheduled instruction.
The earliest cycle when the instructignWe want to schedule instructions that
can begin to execute, relative to the cuyrwill have their data and functional unit
rent cycle; this takes into account amyavailable earliest.
wait for inputs for functional units to bet
come available

Actual Dual ()

Max Delay €)

Table 2: Features for Instructions and Partial Schedule

As mentioned before, Scheedf al. (1997) previously RANDOM scheduling

experimented with RL in this domain and their results Fortran programs _
were not as successful as they had hoped. One difficulty App | Ratio || App Ratio
seems to lie in finding the right reward structure for the applu | 1.294 || apsi 1.371
domain (as well as learning preferences instead of pure fpppp | 1.343 || hydro2d 1.266
values). A reward based on the number of cycles that it mgrid | 2.159 || su2cor 1.387
takes to execute the block does not work well because swim | 2.070 || tomcatv 1.155
it punishes the learner on long blocks. To normalize for turb3d | 1.518 || waveb 1.417
this effect, Scheeff, et al. (1997) rewarded the RL sched- Fortran geometric mean: | 1.468
uler based on cycles-per-instruction (CPI). Although this C programs

reward function did not punish the learner for scheduling ccl 1.121 || compress95 1.106
longer blocks, it also did not work particularly well. This go 1.176 | ijpeg 1.214
is because CPI does not account for the fact that some i 1.077 | m88ksim 1.111
blocks have more unavoidable idle time than others. We perl 1.148 || vortex 1.103
experimented with two reward functions to account for C geometric mean: 1.131
this variation across blocks. Each reward function is de- Overall geometric mean: | 1.307

scribed in the next section along with the results of learn-

i ing that f tion.
'ng Lising that functon Table 3: Simulated performance of the RANDOM
Experimental Results scheduler on each application in SPEC95 as compared

To test the RL scheduler, we used all 18 programs if0 DEC on all blocks of size 100 or less.
the SPEC95 suite. To accelerate learning, we trained
only on blocks of size 100 or less. This eliminated only We experimented with two different reward functions.
a fraction of a percent of the total basic blocks in the 18All reward functions gave zero reward until the RL
programs while speeding training considerably. To esscheduler had completely scheduled the block. The first
tablish a baseline for our results, we also scheduled alfinal reward we used was:
benchmark programs in SPEC95 using uniformly ran- (DEC time— RL time)
dom scheduling choices. These results are summarized - : :
in Table 3. The performance metric is the same as for the number of instructions in block
rollout experiments (i.e., Equation 1). Each ratio is a ge-where time is the number of cycles the block took to ex-
ometric mean across 5 runs. Although the overall mearecute. This rewards the RL scheduler positively for out-
is 30% slower than DEC, several applications ran morgerforming the DEC scheduler and negatively for per-
than two times slower than DEC. forming worse than the DEC scheduler. This reward is

lDEC =
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Figure 4: The figure on the left shows the difference in cycle tima&éenh RL and DEC across all blocks of com-
press95 for each of the the 100 training epochs for both of the rewadiidns we tested. The figure on the right
shows the corresponding weighted performance of the system as compBi&@ for both rewards.

normalized for block size. value function was evaluated greediy/=£ 0). Figure 4

Itis not always realistic to assume that we already haveshows the results of greedily evaluating the learned value
a good scheduler on hand for use in rewarding the RLfunction for each reward function on the same perfor-
scheduler. To test a reward function that did not dependanance ratio as before and on the mean difference in cy-
on the presence of the DEC scheduler, we the followingcle time across blocks without regard to how often each

final reward function: block is executed (DEC time - RL time).
. #instruction
maxtime = maxwcp of DAG root — 5 RL trained on compress95 with rpec
(maxtime— RL time) Fortran programs .
fwep = - . : App Ratio || App Ratio
number of instructions in block applu | 1.106 || apsi 1.117

The weighted critical pathwgp) of the root node in the foppp | 1.106 || hydro2d 1.067
DAG helps to solve the problem created by blocks of mgrid | 1.453 | su2cor 1.163
the same size being easier or harder to schedule than swim | 1.559 || tomcatv 1.042
each other. When a block is harder to execute than an- turb3d | 1.213 [ waveb 1.145
other block of the same sizecp tends to be higher, Fortran geometric mean: | 1.187
thus causing the learning system to receive a different C programs
reward. The wcp of the DAG root is correlated with the col 1.035 || compress95 0.998
predicted number of execution cycles for the DEC sched- 90 1.048 || Tjpeg 1016
uler with a correlation coefficient of= 0.9. The number i 1.012 | m8sksim 1.010
of instructions divided by two gives another lower bound perl 1'033 vortex 1'029
on the running time of the block. If all instructions in C ebmetric mean: 1'023
the block take only one cycle to execute and the block Overgll sometric meén' 1'111
is fully pipelined, the number of instructions divided by 9 - -

two is the fastest possible execution time for the block.

The maxtime feature is correlated with DEC time with Table 4: Simulated performance of the greedy RL-
r = 0.91. Again, the reward is normalized for block size. scheduler on each application in SPEC95 as compared
For both reward functions described above, we trainedo DEC using the value function trained on compress95

the RL scheduler on all blocks of size 100 or less fromwith the DEC scheduler reward function.

compress95 for 100 epochs. This excluded only one

block from compress95. An epoch is one pass through As the figure shows, the RL scheduler performed the

the entire program scheduling all basic blocks of thebest using the reward function based on the DEC sched-
given size. The parameters ware- 0.05,y= 0.9, and uler (rpec). To test the applicability of the learned value

o = 0.001. After each epoch of training, the learned function to other programs we used the value function



from the end of the 100th epoch to greedily schedule theur splits of the programs into “Fortran” and “C” cat-
other 17 benchmarks. The results are shown in Table 4.egories, there is a significant difference in performance
After training with rpgc for 100 epochs on com- between the two. This may be related to several factors:
press95, the RL scheduler was able to beat the commethe code comes from different compilers; the Fortran
cial DEC scheduler on compress95. We also broughprograms use mainly floating point operations (floating
the performance on unseen C programs to within 2% opoint instructions have high latencies) while the C pro-
the performance of DEC and to within 18% for unseengrams do not. In practice, C programs and Fortran pro-
Fortran programs. This demonstrates good generalizggrams are processed by distinct compilers and often have
tion across basic blocks. Although there are benchmarkdistinct instruction schedulers. To account for this, we
that perform much more poorly than the rest (mgridalso trained the RL scheduler usingec for 100 epochs
and swim), those benchmarks perform more than 100%n the Fortran program applu. All parameters remained
worse than DEC under the RANDOM scheduler. Despitethe same except for the learning rate which was reduced
the fact that the performance of the RL scheduler is stillto a = 0.0005.
inferior to DEC on these programs (45% and 55% slower By training on applu, the RL scheduler improved its
respectively), it has more than halved the difference beperformance on applu to only 5% slower than DEC. The

tween RANDOM and DEC. scheduler was previously only able to achieve a perfor-
Table 5 shows the same ratios for the RL schedulemance of 10% slower than DEC from training on the
which was trained usingycp. C program compress95. This is a significant improve-
ment. To test how well this improvement generalized
RL trained on compress95 with rwcp to the other Fortran programs, we took the best learned
Fortran programs value function from the 100 training epochs on applu and
App Ratio || App Ratio greedily evaluated it on the other 17 benchmarks. These
applu | 1.163 || apsi 1.161 results are given in Table 6.
fpppp | 1.200 || hydro2d 1.098
mgrid | 1.863 || su2cor 1.157 RL trained on applu with rpec
swim | 1.510 || tomcatv 1.058 Fortran programs _
turb3d | 1.230 || waveb 1.199 App | Ratio || App Ratio
Fortran geometric mean: | 1.246 applu | 1.053 || apsi 1.099
ccl 1.038 || compress95 1.025 mgrid | 1.327 || su2cor 1.126
go 1.067 || ijpeg 1.072 swim | 1.271 || tomcatv 1.034
li 1.045 || m88Kksim 1.045 turb3d | 1.166 || waveb 1.119
perl 1.040 || vortex 1.026 Fortran geometric mean: | 1.130
C geometric mean: 1.045 C programs
Overall geometric mean: | 1.152 ccl 1.031 || compress95 1.007
go 1.044 || ijpeg 1.015
Table 5: Simulated performance of the greedy RL- ! ] 18411:13 m8§k3|m 18%
scheduler on each application in SPEC95 using the best per c - o vortex . 1'025
learned value function training on compress95 with the 5 geometric mean. . :
wep reward function. verall geometric mean: | 1.082

Although the RL scheduler was able to learn a com-Table 6: Simulated performance of the greedy RL-
petent scheduling policy usingycp, it was not as suc- scheduler on each application in SPEC95 using the best
cessful as when it trained usimgec. The overallmean learned value function from training on applu over 100
performance slowed from 11% slower than DEC to 15%epochs with the DEC reward function.
slower than DEC. Although this is significantly better
than RANDOM, it is not as we had hoped. This is pos- As the table shows, training on the Fortran program
sibly because the current simulator places some limitaapplu significantly improved the performance of the For-
tions on the value of wcp which cause it to not be a pertran programs (Fortran performance improved th31
fect predictor of DEC's running time. However, these from 1.18) while barely hurting the performance on the
results point to the idea that a similar reward function us-C programs. Furthermore, the performance on the partic-
ing WCP can be structured to perform at least as well asilarly difficult programs, mgrid and swim, has improved
learning withrpgc. Future work will address this issue. significantly (145to 132 and 155 to 127, respectively).

The above results reveal an interesting effect about th&his experiment points to a need for more exploration of
type of program being scheduled. As one can tell fromseparate schedulers for each programming language.



Although the results of training on one program andquality of a schedule—our two reward functions intend
testing on the other 17 benchmark programs were quitéo capture the “degree of difficulty” of the problem in-
promising, we wanted to see how much further trainingstance, and reward based on that. Still, it seems clear that
on each program could improve the results. This couldour wcp measure is not the best metric of difficulty. On
be similar to a user profiling code and then reschedulinghe other hand, our RL scheme clearly gains significant
the code based on the results of the profiling. Instead ofompetency at the task.
training from a new uninitialized value function for each
benchmark suite, we ini';ialized the value function fr_om 5 Conclusions
the 100th epoch of training on compress95. We trained ]
each app“cation for 10 epochs using the paramaﬁeﬁg, The advantages 0.f the RL scheduler are its perfor-
0.001,y = 0.9, ande = 0.05. After each training epoch, Mance on the task, its speed, and the fact that it does
we evaluated the new value function greedily. The besfiot need to rely on any heuristics for training. Each run
number from each of the 10 epochs is reported in Tablavas much faster by an order of magnitude than with roll-

7. outs and the performance did not suffer considerably. RL
was able to outperform DEC on two applications in the
RL crosstraining SPEC95 benchmark suite and was able to perform com-
Fortran programs petitively overall. In a system where multiple architec-
App Ratio || App Ratio tures are being tested, RL could provide a good scheduler
applu | 1.068 || apsi 1.094 with minimal setup and training.
fpppp | 1.100 || hydro2d 1.063 We have previously experimented with a combined RL
mgrid | 1.368 || su2cor 1.130 and rollout scheduler but did not pursue the ideas because
swim | 1.354 || tomcatv 1.033 of the speed of rollouts. This area is worth pursuing with
turb3d | 1.159 || waveb the current RL results. A combined scheduler might be
Fortran geometric mean: | 1.143 able to outperform DEC on all SPEC 95 suites.

C programs This paper has demonstrated two methods of instruc-
ccl 1.021 || compress95 0.998 tion scheduling that do not rely on having heuristics and
go 1.035 || ijpeg 0.999 that perform quite well. Future work could address ty-

Ti 1.010 | m88ksim | 1.006 ing the two methods together while retaining the speed

perl 1.021 || voriex 1.028 of the RL learner, issues of global instruction schedul-

C geometric mean: 1015 ing, sched.uling loops, and validating the techniques on
Overall geometric mean: | 1.084 other architectures.
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