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Abstract
The execution order of a block of computer in-
structions on a pipelined machine can make a
difference in its running time by a factor of two
or more. In order to achieve the best possi-
ble speed, compilers use heuristic schedulers
appropriate to each specific architecture im-
plementation. However, these heuristic sched-
ulers are time-consuming and expensive to
build. We present empirical results using both
rollouts and reinforcement learning to con-
struct heuristics for scheduling basic blocks.
In simulation, both the rollout scheduler and
the reinforcement learning scheduler outper-
formed a commercial scheduler on several ap-
plications.

1 Motivation
Although high-level code is generally written as if it

were going to be executed sequentially, most modern
computers exhibit parallelism in instruction execution
using techniques such as the simultaneous issue of mul-
tiple instructions. In order to take the best advantage of
multiple pipelines, when a compiler turns the high-level
code into machine instructions, it employs an instruction
scheduler to reorder the machine code. The scheduler
needs to reorder the instructions in such a way as to pre-
serve the original in-order semantics of the high level
code while having the reordered code execute as quickly
as possible. An efficient schedule can produce a speedup
in execution of a factor of two or more.

Building an instruction scheduler can be an arduous
process. Schedulers are specific to the architecture of
each machine and the general problem of instruction
scheduling is NP-hard (Proebsting). Because of these
characteristics, schedulers are currently built using hand-
crafted heuristic algorithms. However, this method is
both labor and time intensive. Building algorithms to
select and combine heuristics automatically using ma-
chine learning techniques can save time and money. As

computer architects develop new machine designs, new
schedulers would be built automatically to test design
changes rather than requiring hand-built heuristics for
each change. This would allow architects to explore the
design space more thoroughly and to use more accurate
metrics in evaluating designs.

A second possible use of machine learning techniques
in instruction scheduling is by the end user. Instead
of scheduling code using a static scheduler trained on
benchmarks when the compiler was written, a user would
employ a learning scheduler to discover important char-
acteristics of that user’s code. The learning scheduler
would exploit the user’s coding characteristics to build
schedules better tuned for that user.

Instruction scheduling is a large-scale optimization
problem in several ways. First, there can be millions of
instructions and tens of thousands of basic blocks within
a given program. Scheduling each block optimally us-
ing exhaustive search is much too difficult and time-
consuming to work in practice. Second, the problem of
generalizing the scheduler from the training programs to
all possible user programs is also an optimization prob-
lem.

With these motivations in mind, we formulated and
tested two autonomous methods of building an instruc-
tion scheduler. The first method used rollouts (Bertsekas,
1997; Bertsekaset al., 1997; Tesauro and Galperin,
1996) and the second focused on reinforcement learn-
ing (RL) (Sutton and Barto, 1998). Both methods were
implemented for the Digital Alpha 21064. The next sec-
tion gives a brief overview of the domain. For a complete
description, see McGovernet al. (1999).

2 Domain overview
We focused on schedulingbasic blocksof instructions

on the 21064 version (DEC, 1992) of the Digital Alpha
processor (Sites, 1992). A basic block is a set of ma-
chine instructions with a single entry point and a single
exit point. Our schedulers can reorder the machine in-
structions within a basic block but cannot rewrite, add,
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Figure 1: Example basic block code, DAG, and partial schedule

or remove any instructions. The goal of the scheduler is
to find the fastest valid ordering of the instructions in a
block. A valid ordering is one that preserves the in-order
semantics of the original code. We insure validity by cre-
ating a dependency graph that directly represents the nec-
essary ordering relationships in a directed acyclic graph
(DAG). An example basic block written in C is shown in
Figure 1. The figure also shows the assembled program,
its resulting DAG, and an example partial schedule.

The Alpha 21064 is a dual-issue machine with two dif-
ferent execution pipelines. One pipeline is more special-
ized for floating point operations while the other is for
integer operations. Although many instructions can be
executed by either pipeline, dual issue can occur only if
the next instruction to execute matches the first pipeline
and the second instruction matches the second pipeline.
A given instruction can take anywhere from one to many
tens of cycles to execute. Researchers at Digital have
a publicly available 21064 simulator that also includes
a heuristic scheduler for basic blocks. Throughout the
paper, we will refer to this scheduler asDEC. The simu-
lator gives the running time for a given scheduled block
assuming all memory references hit the cache and all re-
sources are available at the beginning of the block.

All of our schedulers used a greedy algorithm to
schedule the instructions, i.e., they built schedules se-
quentially from beginning to end with no backtracking.
This is referred to as list scheduling in compiler litera-
ture. Each scheduler reads in a basic block, builds the
DAG, and schedules one instruction at a time until all in-
structions have been scheduled. When choosing the next
instruction to schedule from a list of available candidates,
each scheduler use a different evaluation function to de-
cide which available instruction is best to schedule next.

Moss et al. (1997) showed that several supervised
learning techniques could induce excellent (96� 97%
optimal choices within blocks of size 10 or less) basic
block instruction schedulers for this task. Although each
of these supervised learning methods performed quite
well, they shared several limitations. Supervised learn-
ing requires exact input/output pairs. Generating these
training pairs requires an optimal scheduler that searches
every valid permutation of the instructions within a basic
block and saves the optimal permutation (the schedule

with the smallest running time). However, this search is
too time-consuming to perform on blocks with more than
10 instructions, because optimal instruction scheduling is
NP-hard (Stefanović, 1997, Proebsting). This inhibited
the methods from learning using larger blocks. Using a
semi-supervised method such as RL or rollouts does not
require generating training pairs, which means that the
method can be applied to larger basic blocks and can be
trained without knowledge of optimal schedules.

In order to test each scheduling algorithm, we used the
18 SPEC95 benchmark programs. Ten of these programs
are written in FORTRAN and contain mostly floating
point calculations. Eight of the programs are written in
C and focus more on integer, string, and pointer calcula-
tions. Each program was compiled using the commercial
Digital compiler at the highest level of optimization. We
call the schedules output by the compilerORIG. This col-
lection has 447,127 basic blocks, containing 2,205,466
instructions. Although 92:34% of the blocks in SPEC95
have 10 instructions or less, the larger blocks account for
a disproportionate amount of the running time (69:53%).
This may be because the larger blocks are loops that the
compiler unrolled into extremely long blocks. By al-
lowing our algorithms to schedule blocks whose size is
greater than 10, we focus on scheduling the longer run-
ning blocks.

3 Rollouts
Rollouts are a form of Monte Carlo search, first in-

troduced by Tesauro and Galperin (1996) for use in
backgammon. Bertsekas (1997) and Bertsekaset al.
(1997) explored rollouts in other domains and proved im-
portant theoretical results. In the instruction scheduling
domain, rollouts work as follows: suppose the scheduler
comes to a point where it has a partial schedule and a set
of (more than one) candidate instructions to add to the
schedule. For each candidate, the scheduler appends it to
the partial schedule and then follows a fixed policyπ to
schedule the remaining instructions. When the schedule
is complete, the scheduler evaluates the running time and
returns. Whenπ is stochastic, this rollout can be repeated
many times for each instruction to achieve a measure of
the expected outcome. After rolling out each candidate,
the scheduler picks the one with the best average running
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Figure 2: Diagram of the actions of a rollout scheduler when rolling out three different instructions five times each.

time. This process is illustrated graphically in Figure 2.

Our first set of rollout experiments compared three
rollout policiesπ. While Bertsekas (1997) and Bertsekas
et al. (1997) proved that if we used the DEC scheduler
asπ, we would perform no worse than DEC, an architect
proposing a new machine might not have a good heuris-
tic available to use asπ, so we also considered policies
more likely to be available. The obvious choice for an
easily available rollout policyπ is the random policy. We
denote the use of the random policy forπ in the rollout
scheduler asRANDOM-π. Under this policy, the rollout
makes all choices randomly. We also tested using heuris-
tics for π in two ways. The first was the ordering pro-
duced by the optimizing compiler ORIG, denotedORIG-
π. The second heuristic policy tested was the DEC sched-
uler itself, denotedDEC-π. Although the full heuristics
of DEC or ORIG may not be available to an architect
while designing a machine, a simpler set of heuristics
(which are more complicated than RANDOM) may be
available. This allows us to understand how heuristics
can help rollout schedulers.

The rollout scheduler performed only one rollout per
candidate instruction when using ORIG-π and DEC-π
because each is deterministic. Initially, we used 25 roll-
outs for RANDOM-π. Discussion of how the number
of rollouts affects performance is presented in the next
section. After performing a number of rollouts for each
candidate instruction, we chose the instruction with the
best average running time. As a baseline scheduler, we
also scheduled each block with a valid but otherwise
completely random ordering. A time analysis of a roll-
out scheduler shows that it takesO(n2m) wherem is the
number of rollouts andn is the number of instructions. A
greedy scheduler with no rollouts takes only timeO(n).
Because the running time increases quadratically with
the number of instructions multiplied by the number of
rollouts, we focused our rollout experiments on one pro-
gram in the SPEC95 suite:applu. This program was

written in Fortran and focuses on floating point opera-
tions.

Table 1 summarizes the performance of the rollout
scheduler under each policyπ as compared to the DEC
scheduler on all 33,007 basic blocks of size 200 or less
from applu. Because each basic block is executed a dif-
ferent number of times and is of a different size, measur-
ing performance based on the mean difference in number
of cycles across blocks is not a fair performance mea-
sure. To more fairly assess the performance, we used the
ratio of the weighted execution time of the rollout sched-
uler to the weighted execution time of the DEC scheduler
where the weights of each block are based on the number
of times that block is executed during a run of the entire
program. More concisely, the performance measure was:

ratio= ∑all blocks(rollout time�# times executed)
∑all blocks(DEC time�# times executed)

where time is the number of cycles that block took to
execute. This means that a faster running time than DEC
on the part of our scheduler would give a ratio of less
than one.

Scheduler Ratio
Random 1.3150
RANDOM-π 1.0560
ORIG-π 0.9895
DEC-π 0.9875

Table 1: Ratios of the weighted execution time of the
rollout scheduler to the DEC scheduler on the SPEC95
program applu. A ratio of less than one means that the
rollouts outperformed the DEC scheduler. The entries in
italics are those that outperformed DEC.

Although Stefanović (1997) noted that rescheduling a
block has no effect on 68% of the blocks of size 10 or
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Figure 3: Performance of rollout scheduler with the ran-
dom model as a function of the number of rollouts and
the choice of evaluation function. The bars above and
below each data point are one standard deviation from
the mean.

less, the random scheduler performed very poorly. On
applu, RANDOM was 31% slower than DEC. Overall,
RANDOM is 30:1% slower than DEC. This number is a
geometric mean across five runs of all 18 SPEC95 bench-
mark suites. A detailed summary of RANDOM’s results
on all suites can be found in the next section. Without
adding any heuristics and just using rollouts with the ran-
dom policy, RANDOM-π came within 5% of the run-
ning time of DEC. By using ORIG and DEC asπ, the
ORIG-π and DEC-π schedulers were able to outperform
DEC. Both were about 1:1% faster than DEC. Although
this improvement may seem small, the DEC scheduler is
known to make optimal choices 99:13% of the time for
blocks of size 10 or less (Stefanović, 1997). This 1:1%
improvement is over all blocks of size 200 or less.

ORIG-π and DEC-π are deterministic policies, so
the numbers reported above are only across one run.
RANDOM-π and RANDOM were averaged geometri-
cally across 5 runs. Each run of RANDOM-π on all
blocks of 200 or less from applu took about six hours.
This limited the number of runs we could perform.

Part of the motivation behind using rollouts in a sched-
uler was to obtain efficient schedules without spending
the time to build a such precise heuristic as ORIG and
DEC. With this in mind, we explored RANDOM-π more
closely in a follow-up experiment.

Evaluation of the number of rollouts

This experiment considered how the performance of
RANDOM-π varied as a function of the number of roll-
outs. To cover the possible space of the number of roll-
outs, we tested 1, 5, 10, 25, and 50 rollouts per candi-
date instruction. We also varied the metric for choosing

among candidate instructions. Instead of always choos-
ing the instruction with the best average performance,
denoted AVG-RANDOM-π, we also experimented with
selecting the instruction with the absolute best running
time among its rollouts. We call this BEST-RANDOM-
π. We hypothesized that selection of the absolute best
path might lead to better performance overall because it
meant selecting the first instruction on the most promis-
ing scheduling path. As before, we compared perfor-
mance on all 33,007 basic blocks of size 200 or less from
applu.

Figure 3 shows the performance of the rollout sched-
uler as a function of the number of rollouts. Perfor-
mance is assessed in the same way as before: ratio of
weighted execution times. Thus, the lower the ratio, the
better the performance. Each data point represents the
geometric mean over five different runs. Although one
rollout may not be enough to fully explore a schedule’s
potential, performance of RANDOM-π with one rollout
is 16% slower then DEC. This is a considerable improve-
ment from RANDOM’s performance of 31% slower than
DEC on applu. By increasing the number of rollouts
from one to five, the performance of AVG-RANDOM-π
improved to within 10% of DEC. Improvement contin-
ued as the number of rollouts increased to 50 but perfor-
mance leveled off around 5% slower then DEC. As the
graph shows, the improvement per the number of roll-
outs drops off dramatically from 25 to 50.

Our hypothesis about BEST-RANDOM-π outper-
forming AVG-RANDOM-π was shown to be incorrect.
Choosing the instruction with the absolute best rollout
schedule did not yield any improvement in performance
over AVG-RANDOM-π over any number of rollouts. We
hypothesize that this is due to the stochastic nature of
the rollouts. Once the rollout scheduler chooses an in-
struction to schedule, it repeats the rollout process again
over the next set of candidate instructions. By choosing
the instruction with the absolute best rollout, there is no
guarantee that the scheduler will find that permutation of
instructions again on the next rollout. When it chooses
the instruction with the best average rollout, the sched-
uler has a better chance of finding a good schedule on the
next rollout. The theory developed by Bertsekas (1997)
and Bertsekaset al. (1997) also predicts this answer.

Although the performance of the rollout scheduler can
be excellent, rollouts are costly in time. As mentioned
before, using 25 rollouts per block required over 6 hours
to schedule one program. Although the majority of that
time is spent in the simulator, a faster simulator will not
be able to make theO(n2m) rollout scheduler perform
as quickly as anO(n) greedy scheduler. Unless the run-
ning time can be improved, rollouts cannot be used for all
blocks in a commercial scheduler or in evaluating more
than a few proposed machine architectures. However,
because rollout scheduling performance is high, roll-



outs could be used to optimize the schedules on impor-
tant (long running times or frequently executed) blocks
within a program. With the performance and the timing
of the rollout schedulers in mind, we looked to RL to
obtain high performance with a faster running time. RL
schedulers run in theO(n) time of a greedy list scheduler.

4 Reinforcement Learning
We use the standard formulation of reinforcement

learning (Sutton and Barto, 1998) which is summarized
below. For the sake of brevity, we omit a complete de-
scription of reinforcement learning and of how we cast
the instruction scheduling problem as a reinforcement
learning task. See McGovernet al. (1999) for more de-
tail.

In the RL framework, a learning agent interacts with
an environment over a series of discrete time steps. At
each time step,t, the agent observes thestate, st , of the
environment and chooses an action which causes the en-
vironment to transition to a new state,st+1 and to emit
a rewardrt+1. The next state and reward depend only
on the previous state and action, possibly in a stochastic
manner. The objective of the learning agent is to learn
a (possibly stochastic) mapping from states to actions
that maximizes the expected value of reward received by
the agent over time. More precisely, the objective is to
choose each actionat so as to maximize theexpected re-
turn, E

�
∑∞

i=0 γirt+i+1
	

, whereγ2 [0;1) is a discount-rate
parameter.

A common solution strategy is to approximate theop-
timal value function, V�, which maps each state to the
maximum expected return that can be obtained starting
in that state and thereafter always taking the best actions.
In this paper we use atemporal difference(TD) algo-
rithm (Sutton, 1988) for updating an estimate,V, of V�.
After a transition from statest to statest+1, under action
at with rewardrt+1, V(st) is updated by:

V(st ) V(st)+α [rt+1+ γV(st+1)�V(st)]
whereα is a positive step-size (or learning rate) parame-
ter. Here we are assuming thatV is represented by a table
with an entry for each state.

As with the supervised learning results presented in
Mosset al. (1997), our RL system learned a preference
function between candidate instructions. That is, instead
of learning the direct value of choosing instruction A or
of choosing instruction B, the RL scheduler learned the
value of choosing instruction A over choosing instruc-
tion B. In an earlier attempt to apply RL to instruction
scheduling, Scheeffet al. (1997) explored the use of
non-preferential value functions. To do this, their sys-
tem attempted to learn the value of choosing an individ-
ual instruction given a partial schedule without looking
at the other candidate instructions. However, the results
with non-preferential value functions were not as good

as when the scheduler learned a preference function be-
tween instructions. A possible explanation for this is that
the value of a given instruction is contextually dependent
on the rest of the basic block. This is difficult to repre-
sent using local features but is easier to represent when
the local features are used to compare candidate instruc-
tions. In other words, it is hard to predict the running
time of a block from local information, but it is not as
hard to predict the relative impact of two potential can-
didates. A number of researchers have pointed out that
in RL, it is the relative values of states that are important
in determining good policies. (Utgoff and Clouse, 1991;
Harmonet al., 1995; Werbos, 1992)

To adapt the TD algorithm to learning preferences be-
tween pairs of instructions, we defined a feature vector
over the current partial schedule and each pair of candi-
date instructions. The value function was approximated
by a linear weighting over the feature vector. Each fea-
ture was derived from knowledge of the DEC simulator.
The features and our intuition concerning their impor-
tance are summarized in Table 2. Although these five
features are not enough to completely disambiguate all
choices between candidates, we observed in earlier stud-
ies of supervised learning in this problem that these fea-
tures provide enough information to support about 98%
of the optimal choices in blocks of size 10 or less.

The feature vector~f for each triple(p;A;B), wherep
is a partial schedule andA andB are candidate instruc-
tions, is:~f (p;A;B) = [odd(p);ic(A);ic(B);

d(A);d(B);
σ(wcp(A)�wcp(B));
σ(e(A)�e(B))]

Mosset al. (1997) showed in previous experiments that
the actual value ofwcp ande do not matter as much
as the relative values between the two candidate instruc-
tions. Thus, for these features we used the signum (σ)
of the difference of their values for the two candidate in-
structions. (Signum returns�1, 0, or 1 depending on
whether the value is less than, equal to, or greater than
zero.) Because the featuresodd, ic, andd are categori-
cal, they were represented as bit vectors.

Previous experiments with a table lookup representa-
tion did not perform or generalize as well as by using the
linear function approximator (McGovernet al., 1999).
This suggests that the value information is mostly con-
tained in a low order feature representation which a lin-
ear function approximator is able to capture but a table
lookup representation is not.

During learning, the RL scheduler makes schedul-
ing decisions using anε-greedy action selection process
(Sutton and Barto, 1998). This means that scheduler
chooses the most preferred actionε% of the time and a
random but legal action(1� ε)% of the time.



Feature Name Feature Description Intuition for Use
Odd Partial (odd) Is the current number of instructions

scheduled odd or even?
If TRUE, we’re interested in scheduling
instructions that can dual-issue with the
previous instruction.

Instruction Class (ic) The Alpha’s instructions can be divided
into equivalence classes with respect to
timing properties.

The instructions in each class can
be executed only in certain execution
pipelines, etc.

Weighted Critical Path (wcp) The height of the instruction in the DAG
(the length of the longest chain of in-
structions dependent on this one), with
edges weighted by expected latency of
the result produced by the instruction

Instructions on longer critical paths
should be scheduled first, since they af-
fect the lower bound of the schedule
cost.

Actual Dual (d) Can the instruction dual-issue with the
previous scheduled instruction?

If Odd Partial is TRUE, it is important
that we find an instruction, if there is
one, that can issue in the same cycle with
the previous scheduled instruction.

Max Delay (e) The earliest cycle when the instruction
can begin to execute, relative to the cur-
rent cycle; this takes into account any
wait for inputs for functional units to be-
come available

We want to schedule instructions that
will have their data and functional unit
available earliest.

Table 2: Features for Instructions and Partial Schedule

As mentioned before, Scheeffet al. (1997) previously
experimented with RL in this domain and their results
were not as successful as they had hoped. One difficulty
seems to lie in finding the right reward structure for the
domain (as well as learning preferences instead of pure
values). A reward based on the number of cycles that it
takes to execute the block does not work well because
it punishes the learner on long blocks. To normalize for
this effect, Scheeff, et al. (1997) rewarded the RL sched-
uler based on cycles-per-instruction (CPI). Although this
reward function did not punish the learner for scheduling
longer blocks, it also did not work particularly well. This
is because CPI does not account for the fact that some
blocks have more unavoidable idle time than others. We
experimented with two reward functions to account for
this variation across blocks. Each reward function is de-
scribed in the next section along with the results of learn-
ing using that function.

Experimental Results
To test the RL scheduler, we used all 18 programs in

the SPEC95 suite. To accelerate learning, we trained
only on blocks of size 100 or less. This eliminated only
a fraction of a percent of the total basic blocks in the 18
programs while speeding training considerably. To es-
tablish a baseline for our results, we also scheduled all
benchmark programs in SPEC95 using uniformly ran-
dom scheduling choices. These results are summarized
in Table 3. The performance metric is the same as for the
rollout experiments (i.e., Equation 1). Each ratio is a ge-
ometric mean across 5 runs. Although the overall mean
is 30% slower than DEC, several applications ran more
than two times slower than DEC.

RANDOM scheduling
Fortran programs

App Ratio App Ratio
applu 1.294 apsi 1.371
fpppp 1.343 hydro2d 1.266
mgrid 2.159 su2cor 1.387
swim 2.070 tomcatv 1.155
turb3d 1.518 wave5 1.417

Fortran geometric mean: 1.468
C programs

cc1 1.121 compress95 1.106
go 1.176 ijpeg 1.214
li 1.077 m88ksim 1.111
perl 1.148 vortex 1.103

C geometric mean: 1.131
Overall geometric mean: 1.307

Table 3: Simulated performance of the RANDOM
scheduler on each application in SPEC95 as compared
to DEC on all blocks of size 100 or less.

We experimented with two different reward functions.
All reward functions gave zero reward until the RL
scheduler had completely scheduled the block. The first
final reward we used was:

rDEC = (DEC time�RL time)
number of instructions in block

where time is the number of cycles the block took to ex-
ecute. This rewards the RL scheduler positively for out-
performing the DEC scheduler and negatively for per-
forming worse than the DEC scheduler. This reward is
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Figure 4: The figure on the left shows the difference in cycle time between RL and DEC across all blocks of com-
press95 for each of the the 100 training epochs for both of the reward functions we tested. The figure on the right
shows the corresponding weighted performance of the system as compared toDEC for both rewards.

normalized for block size.
It is not always realistic to assume that we already have

a good scheduler on hand for use in rewarding the RL
scheduler. To test a reward function that did not depend
on the presence of the DEC scheduler, we the following
final reward function:

max time = max(wcp of DAG root; #instructions
2

)
rWCP = (max time�RL time)

number of instructions in block
The weighted critical path (wcp) of the root node in the
DAG helps to solve the problem created by blocks of
the same size being easier or harder to schedule than
each other. When a block is harder to execute than an-
other block of the same size,wcp tends to be higher,
thus causing the learning system to receive a different
reward. The wcp of the DAG root is correlated with the
predicted number of execution cycles for the DEC sched-
uler with a correlation coefficient ofr = 0:9. The number
of instructions divided by two gives another lower bound
on the running time of the block. If all instructions in
the block take only one cycle to execute and the block
is fully pipelined, the number of instructions divided by
two is the fastest possible execution time for the block.
The maxtime feature is correlated with DEC time with
r = 0:91. Again, the reward is normalized for block size.

For both reward functions described above, we trained
the RL scheduler on all blocks of size 100 or less from
compress95 for 100 epochs. This excluded only one
block from compress95. An epoch is one pass through
the entire program scheduling all basic blocks of the
given size. The parameters wereε = 0:05, γ = 0:9, and
α = 0:001. After each epoch of training, the learned

value function was evaluated greedily (ε = 0). Figure 4
shows the results of greedily evaluating the learned value
function for each reward function on the same perfor-
mance ratio as before and on the mean difference in cy-
cle time across blocks without regard to how often each
block is executed (DEC time - RL time).

RL trained on compress95 with rDEC
Fortran programs

App Ratio App Ratio
applu 1.106 apsi 1.117
fpppp 1.106 hydro2d 1.067
mgrid 1.453 su2cor 1.163
swim 1.559 tomcatv 1.042
turb3d 1.213 wave5 1.145

Fortran geometric mean: 1.187
C programs

cc1 1.035 compress95 0.998
go 1.048 ijpeg 1.016
li 1.012 m88ksim 1.010
perl 1.033 vortex 1.029

C geometric mean: 1.023
Overall geometric mean: 1.111

Table 4: Simulated performance of the greedy RL-
scheduler on each application in SPEC95 as compared
to DEC using the value function trained on compress95
with the DEC scheduler reward function.

As the figure shows, the RL scheduler performed the
best using the reward function based on the DEC sched-
uler (rDEC). To test the applicability of the learned value
function to other programs we used the value function



from the end of the 100th epoch to greedily schedule the
other 17 benchmarks. The results are shown in Table 4.

After training with rDEC for 100 epochs on com-
press95, the RL scheduler was able to beat the commer-
cial DEC scheduler on compress95. We also brought
the performance on unseen C programs to within 2% of
the performance of DEC and to within 18% for unseen
Fortran programs. This demonstrates good generaliza-
tion across basic blocks. Although there are benchmarks
that perform much more poorly than the rest (mgrid
and swim), those benchmarks perform more than 100%
worse than DEC under the RANDOM scheduler. Despite
the fact that the performance of the RL scheduler is still
inferior to DEC on these programs (45% and 55% slower
respectively), it has more than halved the difference be-
tween RANDOM and DEC.

Table 5 shows the same ratios for the RL scheduler
which was trained usingrWCP.

RL trained on compress95 with rWCP
Fortran programs

App Ratio App Ratio
applu 1.163 apsi 1.161
fpppp 1.200 hydro2d 1.098
mgrid 1.863 su2cor 1.157
swim 1.510 tomcatv 1.058
turb3d 1.230 wave5 1.199

Fortran geometric mean: 1.246
C programs

cc1 1.038 compress95 1.025
go 1.067 ijpeg 1.072
li 1.045 m88ksim 1.045
perl 1.040 vortex 1.026

C geometric mean: 1.045
Overall geometric mean: 1.152

Table 5: Simulated performance of the greedy RL-
scheduler on each application in SPEC95 using the best
learned value function training on compress95 with the
wcp reward function.

Although the RL scheduler was able to learn a com-
petent scheduling policy usingrWCP, it was not as suc-
cessful as when it trained usingrDEC. The overall mean
performance slowed from 11% slower than DEC to 15%
slower than DEC. Although this is significantly better
than RANDOM, it is not as we had hoped. This is pos-
sibly because the current simulator places some limita-
tions on the value of wcp which cause it to not be a per-
fect predictor of DEC’s running time. However, these
results point to the idea that a similar reward function us-
ing WCP can be structured to perform at least as well as
learning withrDEC. Future work will address this issue.

The above results reveal an interesting effect about the
type of program being scheduled. As one can tell from

our splits of the programs into “Fortran” and “C” cat-
egories, there is a significant difference in performance
between the two. This may be related to several factors:
the code comes from different compilers; the Fortran
programs use mainly floating point operations (floating
point instructions have high latencies) while the C pro-
grams do not. In practice, C programs and Fortran pro-
grams are processed by distinct compilers and often have
distinct instruction schedulers. To account for this, we
also trained the RL scheduler usingrDEC for 100 epochs
on the Fortran program applu. All parameters remained
the same except for the learning rate which was reduced
to α = 0:0005.

By training on applu, the RL scheduler improved its
performance on applu to only 5% slower than DEC. The
scheduler was previously only able to achieve a perfor-
mance of 10% slower than DEC from training on the
C program compress95. This is a significant improve-
ment. To test how well this improvement generalized
to the other Fortran programs, we took the best learned
value function from the 100 training epochs on applu and
greedily evaluated it on the other 17 benchmarks. These
results are given in Table 6.

RL trained on applu with rDEC
Fortran programs

App Ratio App Ratio
applu 1.053 apsi 1.099
fpppp 1.089 hydro2d 1.049
mgrid 1.327 su2cor 1.126
swim 1.271 tomcatv 1.034
turb3d 1.166 wave5 1.119

Fortran geometric mean: 1.130
C programs

cc1 1.031 compress95 1.007
go 1.044 ijpeg 1.015
li 1.011 m88ksim 1.010
perl 1.043 vortex 1.035

C geometric mean: 1.025
Overall geometric mean: 1.082

Table 6: Simulated performance of the greedy RL-
scheduler on each application in SPEC95 using the best
learned value function from training on applu over 100
epochs with the DEC reward function.

As the table shows, training on the Fortran program
applu significantly improved the performance of the For-
tran programs (Fortran performance improved to 1:13
from 1:18) while barely hurting the performance on the
C programs. Furthermore, the performance on the partic-
ularly difficult programs, mgrid and swim, has improved
significantly (1:45 to 1:32 and 1:55 to 1:27, respectively).
This experiment points to a need for more exploration of
separate schedulers for each programming language.



Although the results of training on one program and
testing on the other 17 benchmark programs were quite
promising, we wanted to see how much further training
on each program could improve the results. This could
be similar to a user profiling code and then rescheduling
the code based on the results of the profiling. Instead of
training from a new uninitialized value function for each
benchmark suite, we initialized the value function from
the 100th epoch of training on compress95. We trained
each application for 10 epochs using the parameters,α =
0:001,γ = 0:9, andε = 0:05. After each training epoch,
we evaluated the new value function greedily. The best
number from each of the 10 epochs is reported in Table
7.

RL cross training
Fortran programs

App Ratio App Ratio
applu 1.068 apsi 1.094
fpppp 1.100 hydro2d 1.063
mgrid 1.368 su2cor 1.130
swim 1.354 tomcatv 1.033
turb3d 1.159 wave5

Fortran geometric mean: 1.143
C programs

cc1 1.021 compress95 0.998
go 1.035 ijpeg 0.999
li 1.010 m88ksim 1.006
perl 1.021 vortex 1.028

C geometric mean: 1.015
Overall geometric mean: 1.084

Table 7: Simulated performance of the greedy RL-
scheduler on each application in SPEC95 after 10 epochs
of training from the compress95 learned value function.

It is clear that the additional training helps the perfor-
mance of the RL scheduler noticeably. The scheduler
was able to outperform DEC on the C program ijpeg as
well as on compress95. The overall C mean improved
from 1:02 to 1:01 while the Fortran mean improved to
1:14 from 1:18. Further training may improve the re-
sults even more. This is a useful result since a end-user
of an RL scheduler could use this to quickly profile and
reschedule important programs.

There are several characteristics of the scheduling
problem that perhaps are presenting themselves here.
One is that each basic block is a problem instance, so un-
like learning problems such as gridworlds, we must learn
general facts to carry over to other instances. It is as if
we were asked to learn on several gridworlds and then
asked to generalize to other gridworlds that are “similar”
in some way that is not easy to articulate. Straightfor-
ward reward schemes do not work well, since the cost
of interest (execution time) is not a good measure of the

quality of a schedule—our two reward functions intend
to capture the “degree of difficulty” of the problem in-
stance, and reward based on that. Still, it seems clear that
our wcp measure is not the best metric of difficulty. On
the other hand, our RL scheme clearly gains significant
competency at the task.

5 Conclusions
The advantages of the RL scheduler are its perfor-

mance on the task, its speed, and the fact that it does
not need to rely on any heuristics for training. Each run
was much faster by an order of magnitude than with roll-
outs and the performance did not suffer considerably. RL
was able to outperform DEC on two applications in the
SPEC95 benchmark suite and was able to perform com-
petitively overall. In a system where multiple architec-
tures are being tested, RL could provide a good scheduler
with minimal setup and training.

We have previously experimented with a combined RL
and rollout scheduler but did not pursue the ideas because
of the speed of rollouts. This area is worth pursuing with
the current RL results. A combined scheduler might be
able to outperform DEC on all SPEC 95 suites.

This paper has demonstrated two methods of instruc-
tion scheduling that do not rely on having heuristics and
that perform quite well. Future work could address ty-
ing the two methods together while retaining the speed
of the RL learner, issues of global instruction schedul-
ing, scheduling loops, and validating the techniques on
other architectures.
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