
The CoGenT Project:
Co-Generating Compilers and Simulators For Dynamically Compiled Languages

J. Eliot B. Moss, Charles C. Weems, and Timothy Richards
Department of Computer Science, University of Massachusetts Amherst

Abstract

To understand the performance of modern Java systems
one must observe execution in the context of specific archi-
tectures. It is also important that we make these observa-
tions using a compiler that is capable of producing opti-
mizations that are specialized to the target machine. Cur-
rent architectural simulators, however, provide little or no
support for dynamically compiled languages and their en-
vironments. At the same time, high-quality optimizing com-
pilers lack the flexibility needed to be quickly retargeted to
architectural variations.

Experimenting with innovative architectural ideas re-
quires modifications not only to the simulator, but to the
compiler backend as well. Currently, it is difficult if not im-
possible to accomplish exploration of this sort.

This paper proposes a system for the coordinated effort
of generating simulators and matching compiler backends
automatically from machine descriptions. Machine descrip-
tions are processed by tools to produce efficient compiler
and simulator components and these components “plug in”
to an existing framework. This system provides an ex-
ploratory environment for compiler writers, computer ar-
chitects, and students, while maintaining the performance
and flexibility required for evaluating real systems.

1. Introduction

This project is motivated by a substantial obstacle we
have encountered in trying to explore, in detail, the perfor-
mance of Java virtual machines on modern hardware, and
to evaluate architectural features that might improve perfor-
mance. The problem is four-fold. First, to consider perfor-
mance questions accurately and in detail requires a cycle-
accurate simulator, and it must be capable of supporting the
dynamic environment of a modern Java system. Second, re-
alistic performance predictions require compiler optimiza-
tions, such as instruction scheduling, tuned to the architec-
ture. Third, we must be able to generate new compiler op-
timizers (back-ends) with matching simulators. Fourth, the

generation process, and the generated simulators, also need
to be relatively efficient, so as to produce results in reason-
able time. The solution is to produce compiler and simu-
lator components automatically from machine descriptions,
in the context of a flexible framework that joins the gener-
ated components in a highly efficient manner.

2. The Need

One way to grasp the need is to consider the prototype
system illustrated in Figure 1 (some pages later in this pro-
posal). It shows ten components that will be generated from
descriptions. These components must be built in order to
target the compiler and simulator to a specific architecture
and implementation, and obtain the desired measurements

We are not the only ones arguing for this kind of automa-
tion. Schnarr built the Facile simulator generator [23, 21]
because his simulators were too complex to build reliably
by hand. Ramsey and Fernández [17, 19] and Ramsey and
Davidson [18] emphasize the need for machine instruction
specifications and tools and generators that work from them.
Bailey and Davidson describe the ambiguities and errors of
calling conventions described in English [4, 3]. The ML-
RISC project [9] also places automatic generation of com-
piler components as a priority.

We believe that enough pieces of the overall problem
have been addressed that it is reasonable, though still chal-
lenging, to produce coordinated compiler and simulator
components automatically. We next review prior work, and
proceed to lay out our vision in more detail.

3. Prior Work

Many parts of this overall problem have been addressed
previously, but the overall combination has not:

• Most cycle accurate simulators demand statically
linked executables, and so cannot handle Java, which
generates code dynamically. They also tend not to
handle hardware traps, some of which are reflected to

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

the application as Java exceptions. We extended Sim-
pleScalar [6] to produce Dynamic SimpleScalar [10],
which took more than a year to build and is not easily
retargeted.

• Full system simulators such as SimOS [20], which
simulate the operating system and hardware devices,
get around those problems, but most of these are func-
tional simulators only and do not provide timing infor-
mation.

• Most easily retargeted simulators are not cycle-
accurate, but model only functional semantics. Some
offer cache hit-miss or branch prediction statistics
models.

• There is considerable previous work on retargetable
code generators, but most of them require one to
present code generator patterns or rules, such as those
of Twig [1] or burg [8]. We want to generate the code
generator (i.e., instruction selector) directly from an
ISA description. This is somewhat similar to Cattell’s
dissertation work [5], which has apparently not been
followed up. However, we also want to derive the
costs in the rules automatically from machine timing
descriptions.

• Not only do we need components to be readily retar-
geted, they need to be, as much as possible, generated
automatically from common descriptions. One reason
is that we need to make sure that the compiler and sim-
ulator match each other. Another reason is that au-
tomation will lead to fewer mistakes and also to more
rapid construction of compiler-simulator pairs.

• The generated simulators need to be reasonably effi-
cient. Previous techniques to speed simulation include
predecoding and caching (common techniques), state-
transition caching [21, 22], using threaded code [13],
and, for essentially fixed targets, generating machine
code at run time [16]. We intend to apply adaptive
compilation, analogous to adaptive Java optimizing
compilers, to speed simulation on-the-fly.

4. Our Vision

We now lay out our vision, treating in turn the genera-
tion of compiler components, the generation of simulator
components, and efficient simulation.

4.1. Generating Compiler Components

We consider three target-specific tasks in generating op-
timized code: instruction selection (code generation), regis-
ter allocation, and instruction scheduling.

Instruction selection: Of the three tasks, instruction
selection is conceptually the most difficult. Up to a cer-
tain point in a compiler, the processing and optimization
is more or less independent of the target architecture, but
at some point we must generate target instructions. Most
techniques, such as BURS [8], work from some kind of
machine-independent expression trees (e.g., register trans-
fer language (RTL)). One writes a collection of target-
dependent patterns. Each such pattern matches a bit of tree,
reduces it to a smaller tree (usually a single node), and gen-
erates some target code in the process. The patterns include
a cost. Tools have been available for some time that gen-
erate a pattern-matching tree-reduction (target) code gener-
ator given the patterns (usually called rules). This pattern
matching technology is used in our Java system (the Jikes
RVM, open source code produced by IBM Research [2]).
Here are some examples of rules, writing the trees as LISP-
like expressions:

Tree to match Reduced tree Cost Code generated

const16 ⇒ reg 1 li reg←const16

const32 ⇒ reg 2 lui reg←hi(const32)

ori reg←lo(const32)

(contents mem) ⇒ reg 2 lw reg←mem

(add reg1 reg2) ⇒ reg3 1 add reg3←reg1,reg2

(add reg1 const16) ⇒ reg2 1 addi reg2←reg1,const16

(assign mem reg) ⇒ reg1 2 sw reg1→mem

These rules are for the MIPS R2000, in which one can
load or add an immediate 16-bit constant, but getting a 32-
bit constant into a registers requires two instructions (a load-
upper-immediate and an or-immediate). (One could also
load from a global area, but it is not faster, and will be
slower if there is a cache miss, etc.) For the input tree
(assign m1 (add (contents m2) c1)), from a
BURS-style code generator using the rules above we would
obtain this minimal cost code:

lw r1←m2
addi r2←r1,c1
sw r2→m1

Such code generators target a machine with an infinite
set of registers to hold temporary results; one applies reg-
ister allocation later, adding any necessary spill stores and
loads.

Retargeting such code generators is easy in the sense that
one need only write a rule set for each processor. However,
in our case we want to generate the rules from a description
of the semantics of the ISA. This is more or less the problem
that Cattell studied [5], and is also similar to the MLRISC
back-end strategy [9]. (There are other such systems, but
these are representative.) Fortunately, ISA semantics are
written in a form in which it is not too difficult to extract

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

many of the rules. In particular, we can generate a rule for
every addressing mode and instruction form. This is not
quite enough, though, as the lui/ori rule above suggests:
to cover some intermediate language constructs may require
multiple instructions. Discovering such sequences requires
a certain amount of search, which is exemplified by Cattell’s
approach and also by super-optimization [14]. In this search
one also applies algebraic rules, so that one can produce
patterns such as these:

Tree to match Reduced tree Cost Code generated

(add const16 reg1) ⇒ reg2 1 addi reg2←reg1,const16

(sub const16 reg1) ⇒ reg2 2 subi reg2←reg1,const16

sub reg2←r0,reg2 // negate reg2

In generating rules, we need to make sure that every se-
mantic tree can be covered (reduced), which implies that we
can generate code for any tree. (If a particular intermedi-
ate representation (IR) cannot generate every possible tree,
then we can relax this restriction to one that we cover every
possible IR tree.) Once we have done that, we can apply
super-optimization to each pattern’s code sequence, to try
to improve it. This requires a cost model, which we will de-
rive from instruction timings (see below). Note that whereas
BURS-style code generator generation is rather like parser
generation in that it is concerned only with syntactic forms,
we will be working in the realm of semantics, within the
theories of integer and floating point arithmetic. Cattell took
care, and so will we, not to slide down the slope into gen-
eral theorem proving. Still, the search for an instruction
sequence with given semantics is at heart an attempt to in-
stantiate a theorem that there exists such a sequence. In
practice, the search must apply heuristics and occasionally
use judicious “advice” (in the form of theorems or transfor-
mation rules added by a human). Fortunately the need for
such advice appears rare.

Register allocation: This is probably the easiest of the
three components to deal with, because ultimately it relies
primarily on tabular information about which registers are
available on the target architecture, and any restrictions and
conventions as to their uses. That is, we assume an essen-
tially table-driven register allocator, and what we have to
generate is the table. If the compiler framework is not table-
driven, then it will require more effort to adapt the frame-
work to automated use. This is probably an area where we
could end up applying inordinate effort if we try to handle
every possibility, so in practice our aims will likely be more
modest. Still, the Jikes RVM handles register allocation for
the Pentium (few registers) and the PowerPC (32 general
purpose and 32 floating point registers), so the necessary
algorithms are there for a useful range of possibilities. We
note that MLRISC also includes a register allocation strat-
egy, which we might exploit.

Instruction scheduling: This is clearly dependent not
only on the target ISA, but also on the target implementa-
tion (timing). There are two popular approaches to instruc-
tion scheduling. One is to use resource vectors for each in-
struction. These indicate which resources (functional units,
etc.) each instruction needs for each cycle of its execution.
One tries to order the instructions so as to minimizes gaps in
the schedules while obeying the resource constraints. Ways
this to do this include heuristics and integer programming.

The other strategy is to use more local heuristics and
build a schedule up one instruction at a time (list schedul-
ing). List scheduling is fast and generally produces pretty
good schedules. A commonly used heuristic is called crit-
ical path scheduling. Critical path scheduling requires a
simple, cycle-level, machine model. We propose to gener-
ate that component automatically from the ISA and timing
descriptions. In essence, it is a stripped down simulation
component. We note that it would not be difficult (in prin-
ciple at least) to generate resource vector information for
other schedulers if that were desirable.

Compiler Framework: It should be clear that we will
not be generating complete compilers from ISA and timing
specifications. Rather, we will generate specific, focused,
components that “plug in” to a substantially larger compiler
designed to interface with them, in this case the existing
Jikes RVM compilers.

4.2. Generating Simulator Components

We view a simulator as consisting of many kinds of
components. Of these, the ones we propose to gener-
ate automatically from ISA and timing descriptions are in-
struction semantics and instruction timing, which we de-
scribe in more detail in Section 4.3. We will also generate
the machine-dependent parts of debugger support. We as-
sume that the remaining semantics and timing components
present suitable interfaces to call and be called by the gener-
ated instruction-related components. We do plan to offer a
modest range of options in a library of semantics and timing
components, such as branch predictors, caches, and mem-
ory organizations.

Instrumentation is an area where we believe aspect-
oriented programming [7] can be used to good effect. In this
approach one specifies in a separate file the places where
one desires to attach instrumentation, and what instrumen-
tation code should be invoked at each place. This sepa-
rate file is an aspect, in this case for instrumentation. The
point is that even if instrumentation attaches at many places
throughout the simulator code, the instrumentation remains
specified separately. The aspect-oriented tool, e.g., AspectJ
[11, 12], weaves together the aspect and the rest of the code.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

4.3. Building Efficient Simulators

There are three areas of simulator efficiency we wish to
discuss here, being most relevant: functional simulation of
instructions, instruction timing simulation, and efficiency of
the additional simulation components.

Functional simulation: The obvious and often used
method of functional simulation somewhat literally models
the hardware and its actions—except the hardware can be a
simple conceptual model as opposed to real hardware with
its internal parallelism and design for speed. One models
the registers and memory as data structures in the program-
ming language of the simulator, and writes a fetch, decode,
execute loop. This loop uses the current program counter
to index memory and fetch the bytes of the next instruction
to execute. Then it does a case analysis on the bits of the
instruction to determine what instruction was fetched, and
uses some form of case statement (or similar dispatch struc-
ture) to branch to simulator code implementing that instruc-
tion’s effects. The instruction’s simulation code will need
to fetch operands from the modeled registers and memory,
perform computation on them, store results back to registers
and memory, and update the program counter.

We offered this detailed description of a simulation in-
struction interpretation loop to give a sense of why such
simulation might be slow. Here are some ways one can
speed up functional simulation:

• Pre-decode the instructions.

• Use threaded code in the decoded instructions of the
interpreter, reducing the per-instruction overhead.

• Take into account more than the opcode of the instruc-
tions.

• Generate code at run time that simulates the effect of a
particular instruction.

• Generate code fragments for more than one instruction
at once.

• Optimize the code fragments for more than one instruc-
tion.

• Shift adaptively from slower to faster techniques ac-
cording to the execution frequency of instructions.

With the possible exception of adaptive run-time compi-
lation, all of these techniques have been implemented be-
fore. However, to our knowledge no one has employed
run-time code generation in simulators derived from ISA
descriptions. We will explore adaptive run-time code gen-
eration of functional semantics from ISA descriptions. Here
are some of the questions we will address:

• What are the challenges in producing good code
quickly from ISA descriptions? Are some styles of
ISA description better suited to this task than others?

• What are the relative speeds of interpretive, threaded-
code, and native code forms with different levels of
optimization? What are the relative code generation
costs? What are the space-time trade-offs?

• What are good adaptive optimization triggers and trig-
ger levels?

Generating functional simulation components: We
can generate functional simulation components from ISA
semantic descriptions by building what amounts to variant
code generators. A normal code generator for the target
matches target semantic trees against the IR and produces
target instructions. In this case, we build IR for trees we
want to simulate, and then generate host code for those
trees.

For an instruction interpreter, we generate code, proba-
bly in a higher-level language such as Java or C, but possibly
directly as host instructions, for a logical machine whose
registers and memory are in simulator data structures. We
compile this code as we build the simulator. Generating
higher-level language code makes it easier to re-host the
simulator (run it on a different platform, but simulating the
same target architecture).

For run-time code generation, we produce a code gen-
erator for the host instruction set. The input to this code
generator will be semantic trees representing the semantics
of particular sequences of target instructions. We observe
that here, as in the case of generating target code directly
from Java bytecodes in the Jikes RVM “baseline” compiler,
we would like to be able to generate code without actually
constructing the semantic trees, so as to minimize the over-
head of generating code at run time.

Timing Simulation: We will focus on timing simula-
tion, built in the style of Schnarr [21]. In this style, the sim-
ulator maintains, in program execution order, a queue of the
instructions currently in the modeled processor’s pipelines,
and their states. At each clock tick, the simulator scans the
queue, from oldest to newest instruction, and tries to ad-
vance the state of each instruction. Some oldest instruc-
tions may retire and disappear from the queue, and some
new instructions may enter the instruction fetch stage and
be added to the queue. The time taken by the simulator
is thus roughly proportional to the number of instructions
executed times the average instruction’s “lifetime” in the
queue. Thus, performance is affected more by the depth of
the pipelines than by instruction level parallelism (ILP).

The state of an instruction indicates where it is in the
pipelines (at which functional unit, and where in that unit’s
processing of it). Because we advance instructions working
from oldest to newest, we can do functional unit busy-ness
bookkeeping very easily during the scan at each tick, reduc-
ing bookkeeping code and work.

To represent any instruction’s need to wait for operands,

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

we associate with the instruction one or more input and out-
put events, represented as boolean flags indicating whether
the events have occurred. When an instruction reaches a
stage of execution (state) where it needs its inputs, the clock
tick scan will check the input events, and will not advance
the instruction’s state if the necessary events have not yet
occurred. Likewise, when an instruction enters the instruc-
tion queue, we clear its output events, and only when the
instruction reaches the state in which the outputs are avail-
able do we set the events. We need not allocate and free
these event structures, since we can associate them with the
instruction’s slot in the queue (i.e., keep the event flags in an
array parallel to the instruction queue, which itself is a sim-
ple circular buffer). We also maintain a table that indicates,
for each register, the latest output event that will write (or
has written) that register. This is all actually quite efficient,
as the following step-by-step description suggests:

1. When entering an instruction into slot k of the instruc-
tion queue, clear the output events associated with slot
k.

2. For each input register r, associate with the instruction
the current event of r.

3. For each output register r, record the appropriate out-
put event of the current instruction as the current event
of r. (This must happen after the previous step if the
same register is an input and an output!)

4. When the instruction must wait for its operands, the
state advancing code inhibits advance until the instruc-
tion’s input event’s are set to true.

5. When the instruction produces an output, it sets the
corresponding output events to true.

To this we add some logic to handle the case when a reg-
ister has not been updated in a long time (and the “current
event” flag may be reused, which would confuse uses of
the register), and for instructions executed speculatively but
discarded—details we omit here.

Our point is that this kind of timing simulation is fairly
general, and depending on the fetch logic and the inter-
action with other system components, can drive timing of
a wide range of architectures. For example, we are con-
vinced that not only can it be used for in-order and out-
of-order pipelined superscalar RISC machines, including
ones with “delay slots” and multiple levels of speculation
through branches, it can also handle very long instruction
word (VLIW) architectures, the predication and speculation
of the Intel IA-64, etc. It is also suited to modeling the tim-
ing in multithreaded CPUs (the challenge there is the fetch
logic).

Building timing simulators automatically: This leaves
the important question: How does one build such a sim-
ulator automatically? The answer is that we describe the

pipelines and the flows of the instructions through them. For
this, others have proposed a variety of strategies, differing
in their convenience, compactness, and checkability. One
fairly recent approach that is helpful in our case is the an-
notated pipeline graphs of Christopher Milner [15], which
he proposed for use in instruction schedulers. In his scheme
one describes the pipelines and their connections, much as
in architecture implementation descriptions from manufac-
turers. (The “annotations” express any additional schedul-
ing constraints of the implementation.)

In Milner’s scheme one further marks the pipeline el-
ements with their semantics, i.e., what operation(s) they
perform. (The inputs and outputs are determined by the
pipeline graph structure.) We would express the semantics
using the same semantic notation as we use for writing in-
struction semantics in ISA descriptions. Given the semantic
annotations, we can then match each ISA instruction to the
possible pipeline flows for that instruction. (We might have
to rule out some possibilities as ones the control logic does
not actually use.)

The advantage of this approach is, as Milner notes, that
it decouples the descriptions of ISAs from the descriptions
of architecture implementations, obviating the need to build
a description for each (ISA, implementation) pair that one
wants to work with. Coupling comes only through the use
of a common semantic notation—the same notation that is
in common between compiler IRs and the ISA description.
When we generate a simulator we can check that each ISA
instruction has a suitable pipeline implementation, etc.

Speeding Timing Simulation Using State Transition
Caches: Recent work by Schnarr [21, 23, 22] demonstrated
that, with a suitable encoding of machine states, one can
cache (memoize) machine state transitions and substantially
speed up timing simulation.

Schnarr’s FastSim [22] and Facile [21, 23] systems build
up a cache of state to state transitions. He found that, given
enough memory, this cache significantly speeds up timing
simulation. We can build such a caching system into our
design.

Schnarr’s Facile system analyzes the target executable
in advance, and generates simulation code for every basic
block. It also caches state transition information for ev-
ery basic block executed (though it can discard and recon-
struct that information if the state transition cache grows
too large). We intend to produce run-time code only for
frequently executed blocks, and to apply adaptive optimiza-
tion to obtain better code for the most frequently executed
blocks. We will have at our disposal a system that can apply
a range of sophisticated optimizations, if the cost is war-
ranted. We also intend to separate functional and timing
simulation, which we believe will lead to better speedup,
and in any case make it easier to recover when we mispre-
dict execution paths. (Schnarr’s system must make special

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

provision to avoid re-executing that part of functional (and
timing) simulation that was done up to the point that mispre-
diction was detected, which considerably complicates the
design and slows the system down.)

5. A Prototype to Begin Realizing the Vision

Having laid out our vision and some of the general re-
search problems involved, we now describe more concretely
the prototype we aim to build, illustrated in Figure 1. The
figure shows the simulator and compiler frameworks at the
sides, emphasizing that generated components “plug in” to
the frameworks. The center column shows the ISA, IR, and
pipeline descriptions (and the instrumentation aspect). The
lines and arrows show which descriptions are used to build
which generated components. To avoid visual clutter, the
figure does not show the individual generator programs and
tools (except for AspectJ).

We intend to do most of the work in the context of the
Jikes RVM Java virtual machine. We have considerable ex-
perience using and modifying the Jikes RVM, which was
originally called Jalapeño and was developed by a team at
IBM Research. It is now available as an open source sys-
tem, with many academic research groups using it for work
in compilation.

Jikes RVM is good for automatically retargeting both
compiler back-ends and simulators. There are, as with any
system, some system-specific and practical issues we face
in using the Jikes RVM for this work. They include:

• While the optimizing compiler is designed to be retar-
geted using BURS rules, which we intend to generate
from ISA semantic descriptions, the baseline compiler
is not designed in a retargetable way. We need to fig-
ure out how to generate an efficient baseline compiler
from semantic descriptions of the Java bytecodes (the
“IR” in this case) and the target ISA.

• For the optimizing compiler we will need to make reg-
ister allocation automatically retargeted. This may in-
volve developing automatically generated calling con-
vention descriptions—which can be used in both the
baseline and optimizing compilers.

• Java is not viewed as being as efficient a vehicle for
simulation as C and other unsafe languages. The Jikes
RVM can selectively suppress checks that we know are
unnecessary. We believe that this, combined with the
quality of the Jikes RVM optimizers, will enable us to
produce a system with competitive performance ... and
with substantial software engineering benefits over C
systems. In brief, we will be able to build, and debug,
a system faster. We already have this experience in
using Java to write a whole series of garbage collectors
for the Jikes RVM.

• We will need to develop a simulation framework some-
what from scratch. We can base it on existing sys-
tems, such as SimpleScalar, but the automatic retar-
geting that is the essence of our approach means that
many pieces will be new. But we can certainly ex-
ploit previous tools and languages for generating these
components, retargeting them to produce Java code to
interface with our frameworks.

5.1. Prototype Description Languages

We previously mentioned the MLRISC system, which
allows one to describe the “syntax” of instructions (bit
fields, opcode values, etc.), and to relate the bit syntax to
assembly code syntax (to build assemblers, disassemblers,
and target-specific debugger modules). More significantly,
one can associate semantics with the syntax, in the form of
trees. MLRISC further provides for register allocation in-
formation. MLRISC collaborators have already generated
machine descriptions for a range of modern CPUs, includ-
ing the Alpha (32 and 64 bit), HPPA, IA-32, PowerPC (32
and 64 bit), and SPARC.

The MLRISC project aims to produce quality back-ends
automatically from machine descriptions. They do so by
specializing a “generic” optimizing back-end to the target
instruction set. They assume a front-end that produces ML-
RISC trees. Their code generator (instruction selection)
strategy is simpler than a BURS rule system (but they say
it is more efficient). Given our compiler and simulation
framework, we cannot use MLRISC components directly,
but one strategy would be to modify their mdgen program,
which generates MLRISC target-specific compiler compo-
nents from a machine description, to generate components
for our system.

One admitted weakness of MLRISC is in the area of call-
ing conventions and register usage, where it may help to in-
troduce additional descriptions along the lines of Bailey and
Davidson, as previously mentioned.

5.2. Prototype Compiler Framework

The parts of the Jikes RVM that need retargeting, in-
clude the object and class layout portion of the class loader,
the generation of BURS rules, the instruction scheduler, the
register allocator, the assembler (constructs machine code
words/bytes from MIR form), the disassembler (used for
producing listings and debugging output), and the baseline
compiler and its assembler. Most of these pieces of a com-
piler have been automatically retargeted before, so we build
on the others work quite directly. Generating BURS rules
is a little different and perhaps the most challenging part, as
previously discussed, but we can start with Cattell’s work

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

Figure 1. Architecture of the Proposed Prototype System

[5]. We also need timing estimates for rule costs, which we
can obtain from a stripped down timing simulator.

Challenging but manageable: We feel that the project is,
on the one hand, a significant enough advance in the state
of the art to be worthwhile, and on the other hand, enough
of it consists of synthesis and extension of previous work
to make it manageable. Of particular note is the hundreds
of thousands of lines of code in the Jikes RVM that we are
exploiting in not building a JVM and JIT compiler(s) from
scratch. The practical side of the work consists mostly in
making a fairly retargetable system more thoroughly retar-
getable. We also note that in making the Jikes RVM auto-
matically retargetable, our whole platform becomes widely
portable as a “side-effect” of our work, substantially in-
creasing its utility to others.

5.3. Prototype Simulator Framework

As we mentioned above, while the compiler framework
mostly exists, the simulator framework will be mostly new,
but we will gain significant benefits by building it in Java
and in the Jikes RVM in particular, which we will not reit-
erate here. However, we do have a few additional observa-
tions:

• Dynamically generating simulation code is very sim-
ilar to performing dynamic binary translation, so a
fairly easily achieved additional result of our work
would be an automatically retargeted dynamic binary
translation system.

• We may need to develop some interesting extensions
to the Jikes RVM and its compilers in order to real-
ize all the simulation speedup ideas we envision. For

example, at present, every piece of dynamically gen-
erated code is a Java method. How will we generate
thousands of code snippets, which may not ever ex-
ist in Java bytecode form, and integrate them into the
Jikes RVM system (including garbage collection, ex-
ception handing, thread switching, etc.)? Likewise,
we may want to add an efficient co-routining mecha-
nism, or use threaded code, both of which require sys-
tem support, and possibly compiler extensions. The
Jikes RVM will be a good vehicle for such explo-
ration, though, given its completeness, relatively mod-
ular structure, and the community of capable people
working with it.

• In addition to MLRISC for ISA syntax and semantics,
we will develop and implement a language for express-
ing pipelines and their semantics, based on Milner’s
proposal [15] as previously discussed.

6. Conclusion

We have described the need for cycle-level timing simu-
lators to evaluate new architectural features and ideas in the
context of modern programming languages, and the need
for corresponding optimizing compiler back-ends. Further,
these should be generated automatically from precise and
concise descriptions, both to speed architectural exploration
and to prevent errors and bugs. Enough prior work has been
done on the component problems that the proposed work,
while challenging, can be accomplished. We expect the re-
sulting system to be widely portable and readily used by
others in research, and it will also have many uses in teach-
ing about modern compilers, architectures, and simulators.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

References

[1] A. V. Aho, M. Ganapathi, and S. W. K. Tjiang. Code
generation using tree matching and dynamic programming.
ACM Transactions on Programming Languages and Sys-
tems, 11(4):491–516, Oct. 1989.

[2] B. Alpern, A. Cocchi, D. Lieber, M. Mergen, and V. Sarkar.
Jalapeño—a compiler-supported Java virtual machine for
servers. In ACM SIGPLAN 1999 Workshop on Compiler
Support for System Software, Atlanta, GA, May 1999. ACM.

[3] M. W. Bailey and J. W. Davidson. Construction of systems
software using specifications of procedure calling conven-
tions. Submitted for publication.

[4] M. W. Bailey and J. W. Davidson. A formal model and
specification language for procedure calling conventions. In
Proceedings of the ACM SIGPLAN-SIGACT Symposium on
Principles of Programming Languages, pages 298–310, San
Francisco, CA, 1995. ACM.

[5] R. G. G. Cattell. Automatic derivation of code generators
from machine descriptions. ACM Transactions on Program-
ming Languages and Systems, 2(2):173–190, Apr. 1980.

[6] D. C.Burger and T. M. Austin. The SimpleScalar tool set,
version 2.0. Computer Architecture News, 25(3):13–25,
June 1997. Extended version available as Univ. of Wisc.
Comp. Sci. Tech. Rep. 1342, June, 1997.

[7] T. Elrad, R. E. Filman, and A. Bader. Aspect oriented pro-
gramming. Commmunications of the ACM, 44(10):29–38,
Oct. 2001.

[8] C. W. Fraser, D. R. Hanson, and T. A. Proebsting. Engi-
neering a simple, efficient code generator generator. ACM
Letters on Programming Languages and Systems, 1(3):213–
226, Sept. 1992.

[9] L. George and A. Leung. MLRISC: A framework for retar-
getable and optimizing compiler backends. Technical report,
Bell Laboratories and New York University, 2000.

[10] X. Huang, J. E. B. Moss, K. S. McKinley, S. Blackburn, and
D. Burger. Dynamic SimpleScalar: Simulating Java virtual
machines. In preparation., 2002.

[11] G. Kiczales et al. An overview of AspectJ. In Proceedings
of the Fifteenth European Conference on Object-Oriented
Programming (ECOOP). Springer-Verlag, 2001.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm,
and W. G. Griswold. Getting started with AspectJ. Commu-
nications of the ACM, 44(10):59–65, Oct. 2001.

[13] F. Larsson. Generating efficient simulators from a speci-
fication language. Master’s thesis, Computing Science De-
partment, Uppsala University, Uppsala, Sweden, 1997. Pub-
lished as thesis number 1997-01-29.

[14] H. Massalin. Superoptimizer—a look at the smallest pro-
gram. In Proceedings of the Second International Confer-
ence on Architectural Support for Programming Languages
and Operating Systems (ASPLOS II), Palo Alto, CA, 1987.

[15] C. W. Milner. Pipeline descriptions for retargetable com-
pilers: A decoupled approach. Technical Report CS-99-11,
University of Virginia, June 1998.

[16] M. Moudgill, J.-D. Wellman, and J. H. Moreno. Environ-
ment for PowerPC microarchitecture exploration. IEEE MI-
CRO, 19(3):15–25, May/June 1999.

[17] S. R. of Machine Instructions. Norman ramsey and mary f.
fernandez. ACM Transactions on Programming Languages
and Systems, 19(3):492–524, May 1997.

[18] N. Ramsey and J. W. Davidson. Machine descriptions to
build tools for embedded systems. In ACM SIGPLAN Work-
shop on Languages, Compilers, and Tools for Embedded
Systems (LCTES ’98), pages 172–188, June 1998. Available
as Springer Verlag LNCS 1474.

[19] N. Ramsey and M. F. Fernandez. Automatic checking of
instruction specifications. In 1997 International Conference
on Software Engineering, pages 326–336, May 1997.

[20] M. Rosenblum, S. A. Herrod, E. Witchel, and A. Gupta.
Complete computer simulation: The SimOS approach.
IEEE Parallel and Distributed Technology, Fall 1995.

[21] E. Schnarr, M. D. Hill, and J. R. Larus. Facile: A language
and compiler for high-performance processor simulators. In
ACM SIGPLAN Conference on Programming Language De-
sign and Implementation. ACM, 2001.

[22] E. Schnarr and J. R. Larus. Fast out-of-order simulation us-
ing memoization. In Proceedings of the Eighth International
Conference on Architectural Support for Programming Lan-
guages and Operating Systems (ASPLOS VIII). ACM, Oct.
1998.

[23] E. C. Schnarr. Applying Programming Language Imple-
mentation Techniques to Processor Simulation. Ph.d. dis-
sertation., Computer Sciences, University of Wisconsin–
Madison, 2000.

0-7695-1926-1/03/$17.00 (C) 2003 IEEE
Proceedings of the International Parallel and Distributed Processing Symposium (IPDPS’03)

	Index:
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index:
	INDEX:
	ind:

