
Cycles to Recycle: Garbage Collection on the IA-64

Richard L. Hudson
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Rick.Hudson @ intel.com

J. Eliot B. Moss
Dept. of Computer Science

Univ. of Massachusetts
Amherst, MA 01003-4610

moss @cs.umase.edu

Sreenivas Subramoney
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-6119

Srsenivas.Subramoney @ intel.eom

Weldon Washburn
Intel Corporation

2200 Mission College Blvd.
Santa Clara, CA 95052-8119

Weldon.Washburn @ intel.com

ABSTRACT
The IA-64, Intel's 64-bit instruction set architecture, exhibits a num-
ber of interesting architectural features. Here we consider those fea-
tures as they relate to supporting garbage collection (GC). We aim
to assist GC and compiler implementors by describing how one may
exploit features of the IA-64. Along the way, we record some previ-
ously unpublished object scanning techniques, and offer novel ones
for object allocation (suggesting some simple operating system sup-
port that would simplify it) and the Java " j s r problem". We also
discuss ordering of memory accesses and how the IA-64 can achieve
publication safety efficiently. While our focus is not on any partic-
ular GC implementation or programming language, we draw on our
experience designing and implementing GC for the Intel Java Virtual
Machine for the IA-64.

1. INTRODUCTION
Intel's new 64-bit instruction set architecture (ISA), the IA-64, intro-
duces a number of interesting architectural features. We have been in-
volved in designing and implementing the memory management and
garbage collection (GC) portions of Intel's Java (TM) 1 Virtual Ma-
chine (JVM) for the IA-64, and have thereby gained experience in
how the IA-64's features relate to GC. We hope this paper will help
other GC implementors as they tackle designing, implementing, or
porting for the IA-64. We have implemented on early engineering and
sample versions of the Itanium (TM) 2 processor hardware most of
the techniques we describe, and the current system runs well-known
benchmarks, ones modeling servers as well as clients.

We proceed by first describing the features of the IA-64 that we
believe to be relevant for GC and memory management. Note that for
the most part we keep the discussion at the level of the instruction set
architecture, rather than considering any particular implementation of
it, such as the Itanium processor. We next point out the few IA-64
features that appear to be most significant with respect to GC. Given
the background of IA-64 features, we consider a number of topics
related to GC and memory management, and for each topic consider

I Java is a trademark of Sun Microsystems, Inc.
2Itanium is a trademark of Intel Corporation.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, to republish, to post on servers or to redistribute to lists.
requires prior specific permission and/or a fee.
ISMM '00 Minneapolis MN USA
Copyright ACM 2000 1-58113-263-8/00/10...$5.00

implications of the IA-64 feature set for the implementation of that
topic. We close with further discussion of the most significant features
in light of the more detailed GC implementation topics.

2. FEATURES OF THE IA-64 ISA
Here is a description of the aspects of the IA-64 relevant to memory
management. A reference work is available for the interested reader
[9].

Data types: The IA-64 directly manipulates 8, 16, 32, and 64 bit
signed and unsigned integer quantities, as well as floating point num-
bers, etc.

General registers (GR): There are 128 general purpose 64-bit reg-
isters. GR0 is hard-wired to the value 0. There is a separate file of 128
floating point registers, and up to 128 more special purpose ("applica-
tion") registers.

Predicate registers (PR): Rather than having a single set of"con-
dition code" registers, the IA-64 has 64 1-bit predicate registers; PRO
is hard-wired to 1 (true). Comparisons and other tests generally pro-
duce results into two named predicate registers. Every instruction has
a 6-bit predicate field, and is executed only if the corresponding pred-
icate register contains 1.3 This is called predication, and it allows
short if-then and if-then-else sequences to execute efficiently without
conditional branches.

Address space: Addresses are 64 bits and can address individual
8-bit bytes, as well as 16, 32, and 64 bit integer quantities, and several
floating point sizes up to 128 bits. Accesses should be aligned for best
performance. The IA-64 supports a comprehensive variety of paging
and protection features, including multiple pages sizes from 4Kb to
256Mb.

Register stack: The general registers are divided into a static sub-
set (GRs 0..-31) and a stacked subset (32-127). The stacked registers
operate such that each stack frame in a program's call stack has up
to 96 GRs. A frame allocation instruction, generally executed near
the beginning of each procedure, indicates the number of registers to
use for the procedure's local variables and for its arguments to proce-
dures it calls. This is similar to the "register window" mechanism of
some other processors, but operates with finer granularity. The load-
ing/storing of overflowing/underflowing registers is normally carried
out by a hardware Register Stack Engine rather than traps to software
fault handlers. Only the GRs are stacked (not the PRs, etc.), and only
the first 32 GRs are static, so only they can be used for dedicated
purposes.

Addressing modes: Computation on the IA-64 is mostly register-
to-register, and one uses explicit loads and stores to access memory
(but with automated storing and loading of some registers via the reg-
ister stack mechanism). The only memory addressing mode is register

3Actually, a few instructions cannot be predicated, i.e., execution of
those instructions ignores the predicate register's value.

101

indirect: there is no base register plus offset or base register plus index
register form, and all address arithmetic is explicit. 4 The architecture
has the ability to add a 14-bit immediate value, to add a 22-bit immedi-
ate value (with restrictions on the source register), and to load a 64-bit
immediate (using two instruction slots), with a single instruction.

Register conventions: Software conventions further restrict the
number of registers available for dedicated use. The available gen-
eral registers are GR4-GR7 (preserved, i.e., callee-save) and GR14-
GR31 (scratch, i.e., caller-save). Of the predicate registers, PR1-PR5
are preserved and PR6-PR15 are scratch. Branch register BR0 re-
ceives return addresses on calls, while BR1-BR5 are preserved and
BR6-BR7 are scratch.

Instruction format: Instructions are grouped into bundles. Each
128-bit bundle contains 3 41-bit instruction slots plus 5 bits of for-
mat information giving the bundle's template, namely what kind of
instruction is in each slot. Not all combinations of instructions are
allowed in a single bundle (giving rise to some interesting instruction
scheduling issues). The template bits also indicate instruction group
boundaries where a later instruction may have a resource dependence
on an earlier instruction (e.g., consume its result). Instruction groups
may be arbitrarily long, crossing bundle boundaries, or as short as
one instruction. The essence of the model is that instructions in the
same group might execute concurrently, exploiting whatever degree
of instruction-level parallelism is offered by the processor implemen-
tation. Branches are always to the first instruction of a bundle, but a
taken branch does not execute the remaining instructions of its own
bundle.

Integer instructions available: Integer/logical register to register
instructions include: add, subtract, and, and with complement, or, ex-
clusive or, shift left and shift right (by fixed or variable count, signed
or unsigned for shift right), shift left (by 1, 2, 3, or 4 bits) and add,
compare (less than, less than unsigned, equal, not equal) 5 with vari-
ous ways of combining the result into two predicate registers, test bit
(fixed bit position), shift right pair by a fixed count (which can im-
plement rotation), bit field extraction and insertion (fixed position and
size), population count (number of 1 bits in a register), and compute
zero index (the position of the first all 0 8-bit byte or 16-bit word,
from either the left or the right end of a 64-bit register). The floating
point unit implements fixed point multiply and reciprocal approxima-
tion (i.e., the integer unit does not support multiply or divide). The
architecture supports various moves between registers of the different
kinds, etc.

MemorymControl speculation: Control speculation is the spec-
ulative execution of instructions that may not be reached in the true
flow of control (e.g., hoisting code up out of an if-then-else). The
IA-64 supports speculative loads, which do not cause a fault if they
encounter a problem. Rather, the register target of the load is specially
marked. GRs are marked with a 65th bit called the NaT (Not a Thing)
bit, and FRs with a special IEEE floating point value, NaTVal. Most
computational instructions set the NaT bit of their target registers if
the NaT of any input register is 1. If an instruction sets something
other than a GR or FR and has a NaT input, then the instruction faults.
Generally, one checks for NaTs explicitly with a special conditional
branch instruction. It would normally branch to code that would ex-
ecute the load(s) and following computation, but non-speculatively.
The register stack mechanism and register spill/fill instructions han-
dles NaTs naturally.

MemorymData speculation: A compiler cannot always prove

4The register indirect form supports optional post-inerementation of
the base register by either a signed 9-bit immediate constant or (for
loads only) the contents of another GR.
5Comparisons produce results into two predicate registers, so one ob-
tains the opposite sense by switching the two registers.

that a given load and store access different memory locations, yet it
may be always, or almost always, true that a later load does not ac-
cess the same location as an earlier store. Data speculation consists in
moving such a load instruction earlier than the store (perhaps to reduce
stalls while waiting for the load's results from memory), but somehow
checking that the store did not in fact update the location read by the
advanced load. The IA-64 supports data speculation with advanced
load instructions, an Advanced Load Address Table (ALAT), and ad-
vanced load checks. The advanced load instruction enters its load
address into the ALAT, which has some small fixed size. All stores
check the ALAT, and if they find a matching entry, they invalidate it.
The advanced load check, which is generally inserted where the origi-
nal load instruction was (i.e., before it was advanced), verifies that the
advanced load's entry is still in the ALAT. One kind of check simply
re-executes the load if there is no matching ALAT entry; another kind
branches to recovery code, and can re-load and re-do any additional
calculations depending on the loaded value.

One may combine control and data speculation using speculative
advanced load instructions.

Memory--Hierarchy Control: In the IA-64 there are three ways
to control memory hierarchy actions: locality hints, explicit prefetch-
ing, and implicit prefetching. Locality hints indicate whether a load,
store, or line fetch instruction's data is (a) temporally local (keep in
level 1 cache), (b) non-temporal at level 1 (but keep in level 2), (e)
non-temporal at level 2 (and non-temporal at level 1, so keep in level
3), or (d) non-temporal at all cache levels. The line fetch instruction
has faulting and non-faulting versions, and with the hints can load data
into specific levels of cache. There is a separate hint to indicate that
a loaded value is likely to be updated (i.e., in a multiprocessor one
should acquire exclusive access to the cache line, etc.).

MemorymAtomic Update: The IA-64 supports three atomic read-
update-write memory operations: exchange, compare-and-exchange
(sometimes called compare-and-swap), and fetch-and-add.

Memory--Access Ordering: While a processor's own data ref-
erences obey read-after-write, write-after-read, and write-after-write
orderings with respect to the order of instructions in the instruction
stream, reads and writes may be perceived by other processors in dif-
ferent orders. Where relative ordering of accesses to different loca-
tions is important, loads, stores, and atomic update instructions may
specify additional ordering restrictions. In particular, the IA-64 sup-
ports acquire/release ordering semantics [5] with optional acquire se-
mantics on loads, release semantics on stores, and acquire or release
on atomic updates; it also offers a memory fence instruction.

3. MOST RELEVANT FEATURES
We identify four features of the IA-64 of greatest relevance to GC:

Many general registers: There are enough general purpose reg-
isters that it is reasonable, at least more so than on many other pro-
cessors, to dedicate several to special purposes for GC, such as an
allocation pointer. We will see several instances where we advocate
dedicating general purpose or predicate registers to specific functions.

Predication: Predication makes it easy to conditionalize a group
of instructions without branching. We can exploit it to build atomic
instruction sequences in ways not possible without predication.

Acquire/release memory ordering: Some architectures, such as
the Sun SPARC (running with Total Store Order), order all stores on
multiprocessors; others such as the Compaq Alpha, allow much re-
ordering of loads and stores, and offer only a strict memory fence to
force ordering when it is required. The IA-64's acquire/release offers
the best of both models: it allows much reordering for efficiency in
multiprocessor memory hardware while imposing less overhead than
fences when some degree of ordering is necessary. We exploit the
acquire/release model in implementing Java synchronization and in

102

(pt)
(pf)

add rba = 8, ro / / ro = obj base, rba gets bounds address
add rfe = 16, ro // rfe = address of first element
id8 rb = [rba] // rb gets bound
shladd ra = ri, 3, rfe // ra (element address) gets (ri << 3) + rfe
cmp.ltu pt, pf = ri, rb // compare index ri against bound

// the less-than-unsigned test checks whether 0 <= ri < rb
// pt == 1 iff the test is true, and pf == NOT pt

ld8 res = Ira] // load the 8-byte element (if pt is true)
br throwexception // throw out-of-bounds exception (if pf is true)

Figure 1: Example code for array indexing

add rfa = 20, ro / / ro = obj base, rfa gets field address
id4 rf = [rfa] // load a 4-byte field, offset 20
sxt4 rf = rf // sign extend from 4 to 8 bytes

Figure 2: Example code for object field access

achieving publication safety.
Exploiting instruction level parallelism (ILP): This concern is

common also to VLIW and superscalar machines, but is nevertheless
deserving of discussion. For example, a GC implementor might hope
that some operations, such as GC write barriers, might have small in-
cremental overhead in that they fill otherwise "empty" pipeline slots.
We will reconsider this issue after we have presented example instruc-
tion sequences.

4. SUPPORTING GC ACTIONS
We begin with a series of topics directly related to GC and memory
management, and later cover the memory access ordering features of
the IA-64 relevant to memory semantics issues such as publication
safety, locking, and v o l a t i l e variables. A point we do no discuss
further is that one may more easily manage a 64-bit address space in
creative ways than one can a 32-bit address space.

4.1 Accessing Fields and Dispatching
The main thing to note here is that, given the IA-64's single register-
indirect memory addressing mode, object references should point to
the most commonly accessed word of an object. This most likely
is the virtual function table pointer. Other fields may be accessed
equally conveniently at positive and negative offsets from the object
base, except arrays are best laid out at positive offsets. The shift-left-
and-add instruction is convenient for array accesses if the element size
is 2, 4, 8, or 16 bytes. Figure I gives an example Java array access
code sequence; we make no claim of optimality! Note that some of
the values, such as the bound r b and the address of the first element
r f e , might be kept in registers for repeated use; it is good that the
IA-64 offers plenty of registers!

The first column indicates the predicate register used to predicate
execution of an instruction; if there is no register mentioned, then
it means to use PRO, which is always 1 (true). Rather than condi-
tionalizing the load of the element, one could use an unconditional
speculative load, which would allow the load to be placed before the
bounds checks which might improve instruction scheduling, depend-
ing on the surrounding code. In either case an IA-64 feature (predica-
tion or speculation) is useful. Clearly there are many possible varia-
tions, and obtaining good schedules depends on specifics of processor
implementation as well as surrounding code.

A 4-byte signed integer field access might look as in Figure 2. It
could be helpful to manage an "interior" pointer, adjusting it at each
field load, using the base-register-update addressing mode, so as to
point to the next field needed.

A significant implication for GC is tbzt it is desirable to support
interior pointers (pointers that do not poin{ directly to the base of
an object). Diwan, et al., explored issues in supporting such derived
pointers [4]. A derived pointer is a function of some number of base
pointers and a fixed or variable integer offset, such that one can re-
cover the offset given the derived pointer and all the base pointers. An
interior pointer points to a field within an object, and is a special case
of a derived pointer constructed from a single base pointer by adding
the offset.

A GC strategy Diwan, et al., proposed is: before GC, convert de-
rived pointers to offsets from corresponding base pointers; during GC,
relocate the base pointers as necessary; after GC, convert the offsets
back to possibly relocated derived pointers. A nice effect of this strat-
egy is that it shields the majority of the GC code from interior point-
ers. The strategy requires that each derived pointer have an associated
base pointer, which the compiler must keep available somewhere for
the GC. Given the number of registers on the IA-64, the occasional
retention of additional base pointer values is less of a problem than it
might be on other architectures.

Summary: Field access sequences will typically be quite short,
with minimum possible memory accesses. The absence of a register-
offset addressing mode means that, compared with other architectures,
we need to do more address arithmetic adds on the IA-64. However,
one should note that an IA-64 add-then-load will likely execute with
delay comparable to a register-offset addressing mode on another ar-
chitecture, since both must do the add somewhere. Further, the IA-64
sometimes avoids the add, or folds it into an update addressing mode
on an earlier load or store, and thus may start some accesses sooner.
The add does require an extra instruction slot, but early experience
with object-oriented code suggests that it will take very aggressive
compiler optimization to fill slots tightly. In addition to performance
considerations, the IA-64 style of addressing suggests that a JVM will
need to manage interior pointers.

4.2 Object Allocation
There are three issues we consider related to object allocation: how
to avoid lock overhead on allocation in systems supporting concurrent
threads; how to zero allocated memory; and visibility of initializing
writes on multiprocessors, The latter issue we defer to the section on
memory access ordering.

4.2.1 Zeroing Memory
Zeroing memory is easy to deal with: our experience to date (albeit
mostly under the IA-32 architecture) is that it is best to zero allocation
areas in bulk, using supplied library routines (e.g., memsot), immedi-

103

top:
(swf)
(swf)
(swf)
(swt)

redo:

top:
(swf)
(swf)
(swf)
(swf)
(swt)

redo:

(pgt)

// swt and swf are predicate registers, always holding opposite
//// swt means a task switch and resumption have happened
//// swt and swf are thread-local
// ap is the allocation pointer
// vt is the new object's vtable pointer value
// sz is the new object's size in bytes
// np receives the address of the new object

values

mov np = ap //
st8 [ap] = vt //
add ap = ap, sz
br redo

indicate address of new object
store vtable pointer
bump allocation pointer
task switched, so retry whole sequence

/ / reset pred regs
cmp.eq swf, swt = tO, rO
br top

set swf true, swt false
try again

Figure 3: Example in ter rupt ib le atomic allocation sequence

// st, sf, ap, vt, sz, and np are as before
// lp is the limit pointer

mov np = ap // indicate address of new object
st8 [ap] = vt // store vtable pointer
add ap = ap, sz // bump allocation pointer
cmp.le swf, swt = ap, ip // merge limit test result into swf, swt
br redo // task switched or past limit

cmp.eq swf, swt = rO, rO // set swf true, swt false
cmp.le O, pgt = ap, ip // redo limit test to discriminate
br.call rp = gc // call gc
br top // try again

Figure 4: Interruptible allocation sequence including limit check

ately before starting to use an area for allocation (this can be avoided
on the first use of demand-zero pages). We observed this to be better
than zeroing immediately after GC or upon each allocation. This is
particularly likely to be true on a multiprocessor where one proces-
sor does the GC work, since it not only removes the zeroing from the
critical path of allocating and using objects, but also overlaps the ze-
roing with other work, rather than simply moving it to another time
and gaining economy of scale by doing it in bulk. Bulk zeroing is
a potential performance advantage of linear allocation over free-list
techniques. 6

4.2.2 Avoiding Lock Overhead: Can the OS Help?
The general strategy we propose for avoiding lock overhead on allo-
cation has been done before: provide an separate allocation area for
each processor, and lock only when a processor's area fills up and it
needs another large chunk from a global pool. This eliminates possi-
ble interference from other processors. But another atomicity problem
remains: atomicity with respect to threads run by the same processor.

What we desire is this: if we receive a time-slice interrupt, at any
point in the allocation sequence, to be able to switch threads, have
the new thread perform allocation from the same allocation area, and
when we switch back either for the interrupted allocation to be ok or
to have failed detectably, so that we can retry it.

The OS support we would like is simple: after a task switch, before
resuming the interrupted task, set a pair of predicate registers indicat-
ing that a task switch has occutrred.

6This raises an additional point: allocating objects in the stack has dif-
ferent zeroing cost, too, so it is not obvious that allocating in the stack
is faster than linear allocation and a well-tuned garbage collector.

The code sequence in Figure 3 exploits this feature, keeping the
allocation pointer in a register. This register's value is propagated
from thread to thread (within the same OS process) when we thread
switch on the same processor, which, from the thread's point of view,
means the allocation pointer can "jump" at any time.

To understand this code sequence better, consider the effect of a
task switch (and resumption) at each possible location:

At t o p (or before): The next three instructions are not executed
(their predicate is false); we branch to r e d o and start over. Note that
retry is fairly cheap, which is why we do not start the sequence with
setting the s w f and s w t predicates every time.

After the mov: There are no effects visible to other threads, and
since we retry, we overwrite the possibly stale value in np.

After the s t 8 : In this case we have stored the vtable pointer to
memory, but any allocation in a thread we switch to will overwrite it,
and we will retry and allocate elsewhere, or execute the store again in
the same place.

After the a d d : Here, since we have changed ap , the allocation has
effectively occurred as far as other threads are concerned. However,
we cannot bump a p and check the task switch flag together atom-
ically, so we will retry. The net effect is to leave a garbage object
behind--not quite as nice as we would like, but not harmful except
perhaps to performance. With suitable grouping of the instructions
into bundles, this case can be made quite rare, perhaps impossible on
some implementations of the architecture (i.e., they will not interrupt
between the a d d and b r) .

After the b r : We have committed the sequence.
Figure 4 shows a similar sequence that includes a limit check; we

omit the reasoning as to the correctness of interruption at each point,

104

(sf) mov np = ap
(sf) st8 [ap] = vt, sz
(sf) cmp.le sf, st = ap, Ip
(st) br redo

// (as before)
// store vtable pointer, bump ap by sz
// (as before; only if need limit check)
// (as before)

Figure 5: Allocation using post-incrementing store

// ap POINTS TO the allocation pointer in memory
// vt, sz, and np are as before

retry:
id8 np = [ap]
mov ar.ccv = np
add tmpl = np, sz
xor tmp2 = tmpl, np
shr tmp2 = tmp2, k
cmp.eq PR0,pl = tmp2,R0

(pl) br check-for-gc

(pl)

// get address for new object
// set compare value register
// bump by size
// check for crossing block boundary;
// also checks BIG sizes, which flag
// ... the special cases
// go handle overflow and special cases

cmpxchg8.acq tmp2 = [ap], tmpl, ar.ccv
// exchange, writing tmpl to [ap] if [ap] equals np

cmp.eq PR0,pl = np, tmp2 // see if value read (tmp2) equals np
br retry // retry if cmpxohg failed
st8 [np] = vt // proceed to set up object

Figure 6: Allocation using compare.and-exchange

// obj holds a reference to the object modified
// f is the offset of the field being updated
// p is the reference being stored
// ct holds the virtual base of the card table:
//// the location that would hold the mark for the card at address 0
shr.u ry = obj, k // form card index (k is a constant)
add rx = obj, f // form field address
add ry = ct, ry // form address of card byte
st8 [rx] = p // store the pointer
stl [ry] = GR0 // store the constant 0 in the entry

Figure 7: Pointer store with card marking

since the argument is very similar to the previous sequence.
Both sequences can be improved if the size of the new object is

known at code generation time and will fit in the 9-bit signed immedi-
ate field of a post-incrementing store instruction, as shown in Figure 5.

Something else to keep in mind concerning the atomicity of these
sequences is that, while there is nothing in the instruction set architec-
ture specification indicating the groups of instructions that will actu-
ally be executed concurrently, specific implementations might in fact
happen to exhibit stronger atomicity, i.e., that interrupts will not hap-
pen at certain places because multiple instructions are either all exe-
cuted or none, just because of the way the pipelines, instruction issu-

ing, etc., work.
Another technique we use in allocation is worth mentioning: if an

object has special allocation requirements, e.g., an alignment restric-
tion, finalization, or weak pointer properties, we set a high order bit of
the size information in the class--the word called s z in the code se-
quences. Adding such a size will violate the limit, and thus send us to
the "slow path". In this way we get very fast inline allocation for the
common case, with the rest handled by a subroutine. This helps main-
tain separation of responsibility among the class loader (which creates
size information), the JIT, and the GC. It also removes the need for the
JIT to generate allocation code for these more complex cases.

The notion of possibly abandoning an allocated object, avoiding
more costly interlocking for atomicity in allocation, is new. Shivers,
et al., [11] offer a good survey of atomic allocation techniques, but
they focus on list pairs, rather than objects of different sizes, which

need a vtable pointer stored for the GC to be able to interpret them.

4.2.3 Alternative Approach to Allocation
An obvious alternative approach that does not require new OS support
is to use an atomic instruction. The obvious candidate is fetch-and-
add, but it allows only certain small and fixed increments. Thus we
offer in Figure 6 a sequence based on compare-and-exchange. In this
case we use a limit test based on going past the end of an aligned block
of size 2 k bytes.

This sequence could be shortened a bit if c m p x c h g were available
for register operands. The virtue of our previously proposed sequence
is that it is faster, since it has fewer and cheaper memory operations.

4.3 Write Barriers
Many garbage collectors employ write barriers to detect when user
codc creates a pointer from one region to another. In particular, gen-
erational collectors use write barriers to detect the creation of pointers
from older to younger generations. One form of write barrier is card
marking [12], in which one associates with each aligned 2 k byte re-
gion (called a card) a mark indicating whether any object starting in
that region has experienced a pointer store. Figure 7 shows a code
sequence for card marking on the IA-64.

This sequence is not in itself particularly subtle, though there is
flexibility in scheduling the s t 8 instruction later if that produces a
better schedule. However, we observe that this sequence marks the
card corresponding to the address of the object's header, not the ad-

105

(px)

/ / obj holds a reference to the object modified
/ / f is the offset of the field being updated
// p is the reference being stored; m is a mask of k low-order ones
//// (it's constant, but too big for an immediate)
// s is the sequential store buffer pointer
add rx = obj, f // form field address
andcm ry = p, m // round p down to start of block
st8 [rx] = p // store the pointer
cmp.lt px, py = obj, ry // compare source and target addresses
st8 Is] = rx, 8 // store rx to SSB, increment s by 8

Figure 8: Address order write barrier, with sequential store buffer

(pnz)

(pnz)

join:

redo:

// obj holds the reference to check
tbit.nz pnz,PR0 = obj,0 // test bit 0 of obj
br.call rp = rdbarrier // call read barrier if it's 1

Figure 9: Example read barrier sequence

// obj holds the reference to check
idS.s vt = [obj] // start spec load of vtable word
tbit.nz pnz,PR0 = obj,0 // test bit 0 of obj
br.call rp = rdbarrier // call read barrier if it's 1
chk.s vt, redo // check if load worked

id8 vt = [obj] // non-speculative load, done when
br join //// obj is ok but id8.s failed for

//// another reason, e.g., TLB miss

Figure 10: Read barrier with interleaved speculative load

dress of the updated slot, as suggested by Htlzle [6]. The sequence
of the figure comprises three instruction groups, consisting of the first
two instruction, then the next two, and finally the last instruction. A
sequence that does card marking based on the slot address will have
more groups, because it must do further calculations dependent on the
result ry, and thus may take more cycles to execute.

The sequence for an address-order write barrier [13, 14] is perhaps
more interesting. In Figure 8 we use a block size of 2k; we also record
the interesting stores using a sequential store buffer [8], to illustrate
that feature.

This sequence takes advantage of the large register set (dedicating
registers to hold the block mask m and the SSB pointer s), of the
large address space (in using the address-order write barrier, which,
though it can work in smaller address spaces, is particularly suited
to large address spaces), and of the predicated execution and auto-
increment addressing mode features of the IA-64. This write barrier
is just as long as the card marking one, and has the same number
of instruction groups, but records the actual location updated, which
may speed up processing in the GC code (though it does not absorb
duplicate updates as nicely as card marking does). 7

Chilimbi and Larus [3] used an SSB to log certain object accesses,
to help reorder objects at GC time and improve cache performance.
Again, the IA-64 makes this technique attractive, since it takes just
one instruction and there are likely enough registers that dedicating
one to the SSB does not hurt other things. Further, the cache con-
trol features of the IA-64 suggest useful extensions to Chilimbi and
Larus's approach, adding prefetching both in application code and in
the GC.

7Our experience with benchmarks is that duplicates are rare, though
it is trivial to write a program that updates the same slots many times.

4.4 Read Barriers
Some garbage collectors use read barriers to detect accesses to cer-
tain objects (called node marking [7]), or via certain pointers (edge
marking), which is what we consider here. Read barriers are also
useful in supporting persistence, to detect accesses to objects not cur-
rently resident. Since the IA-64 is byte-addressed, and since objects
will naturally be aligned on 8-byte boundaries, normal object refer-
ences will have the low three bits zero, so we can use one of those to
mark the interesting references. The IA-64 can test the bit, and then
branch (or execute other code predicated on the tes0, quite efficiently,
as shown in Figure 9.

This code sequence will tend to execute with minimal delay (e.g.,
one pipeline tick between the two instructions). Even better, one can
start loads via o b j before this check, using IA-64 speculative loads,
which implies minimal impact on the timing of the normal case criti-
cal path. Figure 10 gives a (trivial) illustration of this.

Note that after the call, either v t was loaded all right to begin with,
or the rdbarrier routine fixed it up, or the id8. s failed for some
other reason, e.g., TLB miss. In the case where the address should
be ok but the l d 8 . s failed, we retry the load non-speculatively, to
force handling of soft faults (or reporting of hard ones). In any case
speculation can help hide the cost of a read barrier.

4.5 Object Scanning
During garbage collection one must scan objects in the heap, in order
to process their pointer fields and the targets of those pointers. We
found the following technique to produce efficient code. We associate
with each non-array class a table giving the offsets of the pointer fields
for objects of that class. We mark the end of the table with a 0 word.
This scheme is undoubtedly well known, but to our knowledge is not
in the literature. It is faster (as tested on the IA-32) than scanning

106

next:

(pgo)
(pgo)
(pgo)

/ / obj holds the reference to the object
/ / t points to the first table entry; off gets the offset
id4 off = [t], 4 // 32-bit offsets; bump ptr, too
cmp.ne pgo, PR0 = off,GR0 // check for end
add rfa = obj, off // form field address
id rf = [rfa] // load field
• .. // additional processing
br next // loop if more

// fall through when done

Figure 11: Object scanning code sequence

next:

test:

/ / obj holds the reference to the object; p will scan it
add p = obj, 8 // form address of size field
Id8 sz = [p], 8 // get size; bump p to first element
mov LC = sz // get size in the loop count reg
br test // branch to test at end of loop
id8 elem = [p], 8 // fetch element and bump p
• .. // additional processing
br.cloop next // decr LC and branch if not 0

Figure 12: Scanning an array with a counted loop

a bit-vector indicating pointer and non-pointer fields for objects of
each class. Our scanning code looks something like what is shown in
Figure 11.

For handling arrays of pointers, we can scan using a counted loop
and the LC (loop count) application register, as shown in Figure 12.
(We could use the same approach for the field offset table if it happens
to run faster.)

4.6 Stack and Register Tracing
For accurate GC one needs to find exactly those locations in the thread
stacks, registers, globals, and heap that contain pointers. We described
how to scan heap objects for pointers in the previous section. The
general approaches one would use for finding pointers in stacks and
registers are the same as for other architectures, and there are soft-
ware conventions, particularly those supporting exception handling,
that help in "decoding" the stack so as to find individual stack frames.
On the other hand, determining how to handle each stack slot and
register is a bit more subtle, because of the IA-64's predication and
speculation features.

Control speculation, i.e., speculative loads, presents three cases.
First, the load may have failed, leaving a NaT in the register. Second,
the load may have succeeded, but read a value that the program is not
going to use, e.g., by speculatively loading a value off the end of an
array. This presents a difficulty since such values can be arbitrary, and
thus should not be treated as pointers by the GC. Worse, the predicate
determining if the value will be used may not yet have been computed.
The third case is that the load may have succeeded in loading a value
that will be used (and thus is type safe).

One way to handle speculatively loaded values is to make the load
to appear to have failed, and thus not need to handle the value that
may have been loaded. The JIT should therefore produce tables from
which the GC can determine which registers contain speculatively
loaded values that might possibly be pointers. The GC will then set
the NaT bits for those registers, and when the thread is resumed, ei-
ther the value will never be used or the thread's checks will redo the
loads as necessary. The thread will therefore see the new values the
GC may have produced as it moved objects in the heap.

Data speculation, i.e., advanced loads. Again, the issuing thread
checks these, and it is concerned with possible aliasing by stores be-
tween the advanced load and the check. Thread switching invalidates

advanced load information (the ALAT), so one need not consider other
threads (except perhaps on a muhiprocessor, but that raises many con-
currency issues beyond the ALAT). If running GC on the same thread,
it is correct (and easiest) simply to invalidate the ALAT.

Predication encourages a code generation style in which if-then and
if-then-else code is produced without branches, having the conditional
code predicated. Such predicated code would then be interleaved,
with the then-clause instructions mixed in with the else-clause instruc-
tions, but only those instructions corresponding to the proper clause
actually executed. Now suppose that on one branch of an if-then-else
a particular register contains a pointer, and on the other branch a non-
pointer value. It is clear that the GC must consult the predicate to
determine whether the register contains a pointer, since the program
counter value cannot tell us which clause is being executed.

This kind of situation was anticipated by Diwan, Moss, and Hud-
son [4], but they found it to be very rare in their code, whereas for the
IA-64 it may be more common. This leads to a style of associating
a predicate register with each general register, indicating whether that
general register contains a pointer. We can use PRO in the uncondi-
tional case. (We also need a "sense", i.e., whether having the PR be
true means that the GR holds a pointer or means that the GR holds
a non-pointer.) Note that in these cases there is no overhead in the
mutator, since the predicate is already being used. Note further that
usually the same predicate can be associated with more than one GR.

This association of predicate registers with general registers to in-
dicate which contain pointer values leads to a novel way of handling
the " j s r problem" [1]. In Java, a typical way to generate code for
a try-finally block is to emit the finally clause as a local
subroutine, called with the Java J s r bytecode. This f i n a l l y block
is called from the normal case and the exception case, and those two
contexts may use the same local variable slot differently, one for a
pointer and the other for a non-pointer. If we use a predicate regis-
ter to distinguish the normal and exception cases, then our register
decoding mechanism handles j s r routines nicely. 8

4.7 GC Safe Points
In most garbage collected systems there are points in the code where

8Since the number of predicate registers is finite and nesting of
t r y - f i n a l l y blocks is not bounded, this scheme might (in princi-
ple, probably not in practice) need an overflow mechanism.

107

// Thread T1
// v has the vtable value
// p has the object address
// g points to the global
st8 [p] = v

st8.rel [g] = p

// Thread T2
// g points to the global
// p gets the object address
// v gets the vtable value
l dS . acq p = [g] / / .acqnotrequiredl
id8 v = [p]

Figure 13: Object initialization / publicat ion safety example

a GC is ok- -and other points where it is not, because some impor-
tant invariant is temporarily violated, e.g., between a write and its
corresponding write barrier. In the Intel JVM for the IA-64 we used
the same approach we did for the IA-32: to produce suitable register
and stack frame mapping tables for essentially every code position in
code generated by the JIT compiler [15]. Native routines that might
lock or take a long time have associated GC tables. However, not all
routines coded in C that use references have tables, so collection is
disallowed when a thread is executing there. We make write barri-
ers GC-atomic by performing them in such a routine. We get threads
into GC-safe states by continuing and interrupting them, repeating as
necessary, until they are in GC-safe code. The delay until we get a
thread to a GC-safe point varies statistically, but the approach seems
to work well in practice. One could also have the GC interpret forward
through short stylized sequences, such as write barriers. In any case,
the GC-safe-almost-everywhere approach works fine on the IA-64.

We also considered, but did not implement, a complementary ap-
proach: GC-safe only at certain chosen spots. This also appears to
be easy to support on the IA-64. (In fact, one can use the same tech-
nique, but if the safe spots are relatively rare, the expected number
of times one needs to allow a thread to advance will be large.) One
simply dedicates a predicate register to indicate that a GC (or other
interruption of normal control) is desired, and plants a predicated call
or branch instruction at each safe spot. At first blush this polling may
not seem attractive, but in practice one likely has many choices of
where to place the polling instructions, and can choose to put them in
otherwise unused slots. Also, since the predicate they are testing is
essentially never set in nearby code, they do not involve data depen-
dences that reduce parallelism.

Note that if a thread is executing a "foreign" code subroutine, i.e.,
code that does not necessarily obey the same register conventions,
etc., then rather than using a predicate register to signal the need for an
interruption of control, one might use a (probably per-thread) memory
location, checked on the way out of the foreign code. This shows
that polling via predicate registers must use local rather than global
registers, and that one would thus need to manipulate each thread's
register set independently (versus setting a single global value).

There are undoubtedly many other techniques. Our point here is
that for the IA-64 it is more reasonable to consider dedicating a regis-
ter for this kind of purpose.

4.8 Memory Access Ordering Issues
In order to achieve the best hardware implementation performance,
many modern multiprocessors do not guarantee that memory accesses
become visible to other processors in the same order they are per-
formed locally. In those cases in which software algorithms require
certain orderings for correctness, one uses special instructions to en-
force the required ordering. The IA-64 supports the acquire/release
model of ordering. A load acquire guarantees that its load appears
to happen at the memory (i.e., to other processors) before later mem-
ory accesses by the same processor; a store release guarantees that its
store appears to happen at the memory after earlier memory accesses
by the same processor.

While it is admittedly hard to get used to at first, ordering is quite

distinct from atomicity. Atomic read-update-write operations affect
a single memory location, and guarantee that no other read or write
happens to that location in the middle. Acquire/release instructions
enforce ordering with respect to other storage locations in addition to
the one accessed, but do not of themselves guarantee atomicity.

An important case that has come up in discussions about Java con-
cerns initializations of objects [10]. Sapp0se thread T1 allocates an
object, initializing the vtable, and then stores into a global variable
the address of the new object. A little later, thread T2 reads the global
variable, obtains the address of the new object, and reads the vtable
pointer. We would like to insure that T2 sees the right vtable pointer
value. Figure 13 shows code that will work.

It works because the s t 8 . t e l forces the s t 8 to occur first, the
l d 8 . a e q forces the l d 8 to occur later. Thus, if the l d 8 . a c q ob-
tains the value stored by the s t 8 . r e l , the l d 8 will obtain the value
stored by the s t 8 .

The possible problem here is that ordered memory operations can
be slower. The case of initialization is not necessarily that bad. We
need a store release only when storing a pointer that might be read by
another thread. Thus, entirely local objects do not even need it. Since
the two stores are not otherwise related, we need the store release to
enforce the ordering if the object may be accessed by other threads.
So this is the best we can do from T1 's side.

T2's side is more worrisome, though, since it would seem to imply
that we need a load acquire every time we load a pointer from the
heap, to an object whose fields we access, unless we can prove the
object is private. However, unlike T1, T2's loads are related: the
l d S ' s address (in p) depends on the result of the l d 8 . a c q . It turns
out that the IA-64 will enforce an ordering on these two particular
loads even if we use a non-acquiring load. This is good news, since
load acquires force ordering with respect to all memory accesses, not
just the dependent ones, whereas all we need here is for the dependent
ones to be ordered.

There are two other cases where memory access ordering is a par-
ticularly prominent issue: locking, and volatile variables. These are
both handled fairly nicely on the IA-64. When locking a (non-private)
object, one uses an atomic operation, such as compare-and-exchange,
with an acquire tag to force acquire ordering semantics. Once one
has the lock, one uses ordinary loads and stores to access the locked
object's (or objects') fields, then uses another compare-and-exchange,
but with a release tag to obtain release semantics. This guarantees
that all access to the locked object are suitably "bracketed" by the
lock/unlock operations. Figure 14 shows code for this approach.

The code shown in Figure 14 is for the common case of a syn-
chronization implementation strategy known as thin locks [2]. In this
strategy the common cases record all relevant lock state information
directly in the lock word. However, if other threads wait for the lock,
they enqueue themselves by changing the lock state to refer to their
queue entries. To do that enqueuing, a thread locks the lock word,
i.e., it obtains the meta-lock. When a thread obtains the meta-lock, no
other thread is allowed to change the lock word until the meta-lock
is released. Thus, an s t . r e l instruction can be used to release the
meta-lock since the lock word's value cannot change while the meta-

108

(pl)

(pl)

// obj holds a reference to a lock field
// cv has the expected current value of the field
// nv has the desired new value
mov ar.ccv = cv prepare to compare-and-exchange
cmpxchg8.acq tmp = [obj], nv, ar.ccv
cmp.eq PR0,pl = cv, tmp // see if value read is expected
br.call slowlock // handle less common "lock" cases
• .. // access with ordinary loads/stores
mov ar.ccv = nv now expect the "new" value
cmpxchg8.rel tmp2 = [obj], tmp, ar.ccv
cmp.eq PR0,pl = nv, tmp2 // see if value read is expected
br.call slowunlock // handle less common "unlock" cases

Figure 14: Code sequence for Java synchronized access

redo:

(pl)

// obj holds a reference to a lock field
// cv has the expected current value of the field
// nv has the desired new value
mov ar.ccv = cv prepare to compare-and-exchange
cmpxchg8.acq tmp = [obj], nv, ar.ccv
cmp.eq PR0,pl = cv, tmp // see if value read is expected
br redo // (one could add back off, etc.)
// here we hold the metalock
//// we can change the lock info with ordinary loads/stores

))'end with nv holding the "metalock-released" value
st8.rel [obj] = nv

Figure 15: Code sequence for metalock usage

lock is held. We show this in Figure 15. The flip side of this protocol
is that releasing an ordinary lock requires a compare-and-exchange
since the lock word's value can change while the lock is held, e.g., to
enqueue a thread that is requesting the lock.

Java volatile variables need to be read with acquire semantics and
written with release semantics, to enforce suitable memory order-
ing. Furthermore, unless the Java memory model is revised, in order
to guarantee sequential consistency of accesses to volatile variables,
stores to volatiles need to be followed by memory fence instructions
before the next read of a volatile by the same thread.

We observe that some other architectures offer only a memory fence
to enforce ordering, and that it results in potentially much greater over-
head than the acquire/release model. The IA-64 property that depen-
dent loads are ordered may improve efficiency considerably as well.

5. MOST RELEVANT FEATURES AGAIN
Having surveyed a range of GC-related features and code sequences,
we reconsider the four most relevant IA-64 features.

Registers: We suggested keeping an allocation frontier pointer
and corresponding limit pointer in general registers, keeping an SSB
pointer in a general register, keeping task switch flags in predicate
registers, and that retaining (in general registers) base pointers corre-
sponding to derived pointers would not likely be a problem.

Predication: We showed how predication helps in constructing
atomic sequences, e.g., for allocation, and we also suggested using
predicate registers to help determine which general registers contain
pointers at particular code points.

Memory access ordering: We showed how to use the IA-64's ac-
quire/release model to support publication safety fairly cheaply, and
described how it avoids full memory fences for most synchronizations
and accesses (except stores to volatile variables).

Exploiting ILP: This topic deserves further discussion. The gen-

eral experience in the community is that object-oriented (OO) code,
or at least pointer-oriented, code, which we take as being largely cor-
related with use of GC, does not offer as much ILP as (say) Fortran
array code. While the optimization techniques are different and (some
might argue less mature) for OO code, the difference in ILP appears
also to be more fundamental: OO programs follow chains of depen-
dent pointers. The IA-64 does not directly "fix" this problem, though
predication and speculation help.

An appropriate question to ask is: Does inserting GC-related code
sequences make the situation worse? We consider three examples.

First, we presented two sample write barrier code sequences above
(Figures 7 and 8). Each consists of five instructions in three instruc-
tion groups. Clearly, if the write barrier is in the vicinity of just the
right other code, it can be interleaved into that other code's instruc-
tion groups and may not result in any slow down. If the other code's
groups have no-ops that the write barrier can fill, then one would not
even be increasing the size of the groups. Even if one needed to make
the groups larger and use other bundle templates, the number of clocks
needed to fetch, issue, and execute the code might not change, though
the slight increase in code size might impact instruction fetch band-
width and instruction cache footprint. How often and how effectively
write barriers can be merged with surrounding code is an interesting
quantitative question beyond the scope of this paper.

Second is the card marking write barrier. As mentioned before we
mark based on the object header rather than the address of the up-
dated slot. Since the slot address must be calculated from the header
address, using the slot address implies delaying calculation of the card
to mark, which increases the number of instruction groups.

A third example is polling for rare conditions, such as a request
for a GC in a polling implementation of GC safe points. One would
insert predicated (i.e., conditional) call instructions. In this case, we
can be opportunistic and search for no-op slots suitable for such calls.

109

Since there is no nearby setting of the predicate register tested by the
instruction, there is no nearby data dependency, so one can imagine
implementations of the IA-64 instruction set architecture that elimi-
nate such conditional branches early and with no disruption to pipeline
flow. On the other hand, the succeeding instructions are control de-
pendent on the conditional branch's not being taken, and thus there
may be one or more cycles of delay, depending on the issue logic and
pipeline design. While such polling instructions can conceivably be
essentially "free," they may still have some overhead. This overhead
might be minimized if they are placed at the end of instruction groups,
which are likely to incur a delay anyway.

We offer a final observation about pipeline slots: other parts of sys-
tems beyond the GC would like to use any "spare" slots. Examples
include low overhead profiling and assertion testing.

6. SUMMARY AND CONCLUSION
The Intel Java Virtual Machine now runs on engineering sample IA-64
hardware and software. The GC is robust and supports generational
copying GC, a large object space, the Train Algorithm (mature object
space), finalization, weak references, threads, and synchronization.
The JVM includes a JIT. We look forward to measuring the system
and comparing implementation strategies once production systems
become available, but our main point is that most of the techniques
we have described are implemented and known to work.

The contributions of this paper are as follows. Most obviously,
we have illustrated how various GC-related code kernels appear on
the IA-64, simplifying GC implementation for compiler and ran-time
writers. We described how GC can handle code that exploits the
speculation features of the IA-64. We devised a task-switch signal
from the operating system that simplifies and speeds up atomic ob-
ject allocation--and challenge the OS community to support it. We
recorded for the literature an object scanning technique, tested m be
faster than scanning bit vectors. We offer a new solution to the Java
5 s r problem, using IA-64 predicate registers and giving a uniform
solution to modeling which registers contain pointers for GC. We de-
scribed how to achieve publication safety on the IA-64 cheaply.

In our survey of techniques and code fragments we identified four
features of the IA-64 as particularly relevant to GC: the large regis-
ter set allows more GC-specific items to reside in dedicated registers;
predication makes it easier to construct atomic instruction sequences
for object allocation; acquire/release semantics and ordering of de-
pendent loads give the prospect of better performance for synchro-
nization primitives and publication safety; and instruction grouping
and multi-way issue likely provide significant opportunity to "hide"
the overhead of GC-related operations such as write barriers.

Our conclusion is, as our examples have shown, that the IA-64 pro-
vides superior capabilities for implementing GC.

Acknowledgments
Many members of the Intel Java Virtual Machine group also worked
in the implementation, including Michal Cierniak, Jesse Z. Fang, An-
drew Hsieh, Guei-Yuan (Ken) Lueh, and Tatiana Shpeisman. The
anonymous reviews were helpful.

7. REFERENCES
[1] O. Agesen, D. Detlefs, and J. E. B. Moss. Garbage collection

and local variable type-precision and liveness in Java(TM)
virtual machines. In Proceedings of SIGPLAN'98 Conference
on Programming Languages Design and Implementation,
volume 33 of ACM SIGPLAN Notices, pages 269-279,
Montreal, Qutbec, Canada, June 1998. ACM Press.

[2] D. F. Bacon, R. Konuru, C. Murthy, and M. Serrano. Thin
locks: Featherweight synchronization for Java. In 1998 ACM
SIGPLAN Conf. on Prog. Lang. Design and Impl., pages
258-268, Montreal, Quebec, June 1998. ACM Press.

[3] T. M. Chilimbi and J. R. Larus. Using generational garbage
collection to implement cache-conscious data placement. In
The 1998 International Symposium on Memory Management,
Vancouver, BC, Oct. 1998.

[4] A. Diwan, J. E. B. Moss, and R. L. Hudson. Compiler support
for garbage collection in a statically typed language. In
Conference on Programming Language Design and
Implementation, pages 273-282, San Franci,~o,. California,
June 1992. SIGPLAN, ACM Press.

[5] K. Gharachorloo, D. Lenoski, J. Laudon, P. Gibbons, A. Gupta,
and J. Hennessy. Memory consistency and event ordering in
scalable shared-memory multiprocessors. In Proceedings 17th
Annual International Symposium on Computer Architecture,
pages 15-26. ACM Press, May 1990.

[6] U, HOlzle. A fast write barrier for generational garbage
collectors. In E. Moss, P. R. Wilson, and B. Zorn, editors,
OOPSLA/ECOOP '93 Workshop on Garbage Collection in
Object-Oriented Systems, Oct. 1993.

[7] A. L. Hosking. Lightweight Support for Fine-Grained
Persistence on Stock Hardware. PhD thesis, University of
Massachusetts at Amherst, MA 01003, Feb. 1995.

[8] R. L. Hudson, J. E. B. Moss, A. Diwan, and C. F. Weight. A
language-independent garbage collector toolkit. COINS
Technical Report 91-47, University of Massachusetts, Amherst,
Sept. 1991.

[9] Intel Corporation. The 1A-64 Architecture: Software
Developer's Manual. Santa Clara, CA, Jan. 2000. URL:
http://developer.intel.conffdesign/ia-64/manuals/.

[10] W. Pugh. Fixing the Java memory model. In Java '99:
Proceedings of the 1999 ACM Conference on Java Grande,
pages 89-98, San Francisco, CA, June 1999. ACM Press.

[11] O. Shivers, J. W. Clark, and R. McGrath. Atomic heap
transactions and fine-grain interrupts. In Proceedings of the
1999 ACM International Conference on Functional
Programming (ICFP), Paris, France, Sept. 1999.

[12] P. G. Sobalvarro. A lifetime-based garbage collector for LISP
systems on general-purpose computers, 1988. B.S. Thesis,
Dept. of EECS, Massachusetts Institute of Technology,
Cambridge.

[13] D. Stefanovi6. Properties of Age-Based Automatic Memory
Reclamation Algorithms. PhD thesis, University of
Massachusetts, Amherst, MA, Feb. 1999.

[14] D. Stefanovit, K. S. McKinley, and J. E. B. Moss. Age-based
garbage collection. In Proc. 1999 ACM SIGPLAN Conf. on
Object-Oriented Programming Systems, Languages &
Applications (OOPSLA '99), Denver, Colorado, November 1-5,
1999, pages 379-381. ACM, Nov. 1999.

[15] J. M. Stichnoth, G.-Y. Lueh, and M. Cierniak. Support for
garbage collection at every instruction. In Proceedings of the
ACM SIGPLAN '99 Conference on Programming Language
Design and Implementation (P LD I), pages 118-127, May 1999.

110

