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ABSTRACT 
Analytical models of memory object lifetimes are appealing because 
having them would enable mathematical analysis or fast simulation of 
the memory management behavior of programs. In this paper, we in- 
vestigate models for object lifetimes drawn from programs in object- 
oriented languages such as Java and Smalltalk. We present certain 
postulated analytical models and compare them with observed life- 
times for 58 programs. We find that observed lifetime distributions do 
not match previously proposed object lifetime models, but do agree in 
salient shape characteristics with the gamma distribution family used 
in statistical survival analysis for general populations. 

Categories and Subject Descriptors 
D.3.4 [Programming Languages]: Processors--memory management 
(garbage collection); G.3 [Mathematics of Computing]: Probability 
and Statistics--survival analysis 

General Terms 
Measurement 

Keywords 
Object lifetimes, lifetime distributions, garbage collection modelling 

1. INTRODUCTION 
If we can develop accurate analytical models for object lifetimes in 
object-oriented programs, they will enable faster and more thorough 
exploration of memory management techniques. For instance, given 
a model of object lifetimes, we could compute an estimate of copying 
costs of a generational or some other garbage collector. If distribution 
models and garbage collector models are simple enough, we may even 
arrive at closed-form analytical descriptions; but even if both are quite 
complicated, we can use the lifetime distributions to drive simulations 
of a proposed garbage collector scheme. 

Lifetime models are not sufficient for exploring garbage collection, 
because they do not account for heap pointer structure effects: the 
direct cost of pointer maintenance (including write barriers), and the 
copying cost increase owing to the excess retention of objects, both 
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costs being present in generational and other heap-partitioning schemes. 
Nevertheless, the models can be useful as a tool for preliminary eval- 
uation (and understanding) of collector performance. 

Observed object iifetime behaviors are inherently discrete; we mea- 
sure the lifetime of each object and arrive at a discrete distribution. 
Most performance-related propositions have dealt with mortality, which 
is a derivative form (in the sense of the calculus of fanctions R ~ R); 
since obtaining a derivative of a discrete observed function involves 
inherently arbitrary smoothing decisions, it has been difficult to char- 
acterize the mortality of observed distributions, let alone to match it to 
an analytical model. The extremely fast decay of objects exacerbates 
the situation: most models developed in other domains are for much 
more slowly decaying populations. 

If we knew which distribution family describes typical object behav- 
iors, we could fit observed lifetimes to the model of that family, and 
find the best matching instance (i.e., its parameters). In fact, a running 
program could recognize the lifetime distribution of objects allocated 
(overall, or at a particular allocation site) and adjust collection policies 
accordingly. But it is not yet known which family this may be. 

In the following, we first briefly introduce terms and notation related 
to lifetime distributions (with more details in the Appendix), then re- 
view what assumptions have been made implicitly (or stated explic- 
itly) in past research in garbage collection. We develop models based 
on a plausible qualitative characterization of lifetimes; namely, that 
past lifetime is a strong predictor of future lifetime. Lastly, we put 
the models to the test of empirical evidence against actual lifetime 
distributions from object-oriented programs, using a graphical device 
recommended in statistical survival analysis. 

We shall find that these particular analytical models are not a good 
match for actual distributions. In search of a good match, we ten- 
tatively consider several well-known distributions families, but must 
conclude that none is completely satisfactory: objects in programs are 
a much different population from those statisticians have examined. 
This indicates on the one hand the need for further modelling effort to 
achieve good matches that can be validated against experiment, and 
on the other, the need to derive such models from first principles, viz. 
from program semantics. 

2. BACKGROUND MATERIAL 
The lifetime of an object is defined as the amount of allocation that 
occurs between the allocation of the object and its demise. 1 We view 

1The actual point of demise depends on the accuracy of the memory 
management scheme. In the empirical data reported here, that scheme 
is an accurate-roots garbage collector performing full-heap collection 
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object lifetime as a random variable, Future studies may look at ob- 
ject lifetimes as stochastic processes, and in this context, distinguish 
each allocation site as generating a different process. Here, we do not 
attempt such fine distinctions. 

Actual object lifetimes are natural numbers, thus discrete probabil- 
ity distributions are the obvious representation. However, continu- 
ous models are used for mathematical ease and convenience. Below 
we review some definitions and symbols from probability theory as 
they apply to survival analysis; further details appear in the Appendix 
along with a summary of properties of commonly used analytical dis- 
tribution families. Although we shall write more formulae than are 
typically seen in garbage collection literature, the mathematical appa- 
ratus is elementary. 

The survival function of a random variable L is SL(t) = ~o{L/> t}. 
For object lifetimes, it expresses what fraction of original allocation 
volume is still live at age t. We usually drop the subscript L. The sur- 
vivor function is a monotone non-increasing function. The probability 
density function for object lifetime is f ( t )  = -s t ( t ) .  Occasionally we 
also use the cumulative distribution function F( t )  = 1 - s(t). The 

mortality function is re(t) = f(t~7 ~ = -if7 logs(t), and it expresses the 
age-specific death rate. Mortality is also known as the hazard function 
(and written h(t)) in the literature on lifetime analysis [4]. 

3. STATEMENTS ABOUT DISTRIBUTIONS 
Object lifetime distributions have been of interest to researchers of 
garbage collection, especially generational collection: the success of a 
particular garbage collector organization or promotion policy depends 
on how well it is matched to the behavior of typical user programs. In 
fact, claims have been made about lifetimes. 

Hayes introduced a distinction between a "weak" and a "strong" gen- 
erational hypothesis [8]. Our understanding of his statement of the 
weak generational hypothesis is this: newly created objects have a 
much higher mortality than objects that are older. His statement of 
the strong generational hypothesis (which he in fact introduces) is that 
even if  the objects in question are not newly created, the relatively 
younger objects have a higher mortality than the relatively older ob- 
jects, or simply, that m(t) is an everywhere decreasing function. 

Baker clearly pointed out that an exponential distribution of lifetimes, 
with re(t) constant, cannot be favorable to generational collection (as 
opposed to whole-heap collection), and that instead re(t) should be 
decreasing [ 1 ]. Nevertheless, the exponential distribution has a unique 
cachet among survival distributions: its mathematical simplicity and 
the property of "lack of memory". In a garbage collector this prop- 
erty assures that an object just discovered live by the collector has the 
same residual lifetime as the lifetime of a newly allocated object, and 
this greatly simplifies the analysis. Thus, the exponential distribution 
was used by Clinger and Hansen in the analysis (and to inspire the 
design) of a non-predictive collector, outside the generational realm 
[3], In our examination of a generalized form of that collector [13], 
we decided to use not only the exponential distribution s(t) = e-Or, 
but also a variation with decreasing mortality s(t) = e-x/N as being in 
agreement with the strong generational hypothesis, as well as a varia- 

tion with increasing mortality s(t) = e -(pt)z for control. In fact, these 
three are instances of the Weibull distribution family s(t) = e -(pt)c 
[14, 101. 

at each object allocation. Thus, demise is detected precisely at the 
point when the object becomes unreachable from the global roots. 

4. "PAST-IS-FUTURE" M O D E L S  
A multitude of models can be developed that have decreasing mor- 
tality. But developing them ex vacuo, just for the simplicity of their 
mathematical formulation (or their use in other domains) is not sat- 
isfactory. We can base models on a broad experimental study, and 
in Section 5 we make a first attempt at that. But, our understanding 
would be aided more if distribution models could be derived from cer- 
tain principles that we expect to be naturally associated with program 
behavior. In this spirit, Appel suggested (in a personal communica- 
tion to us) that plausible object lifetime distributions should satisfy 
the following property: 

(1) An object's future expected lifetime is proportional 
to its current age. 

Thus, past lifetime is a strong predictor of the future (residual) life- 
time. This stands in stark contrast to the exponential distribution. 

An object's future expected lifetime C(x) is the diffference between its 
expected lifetime and its current age. The expected lifetime (once we 
know the current age) is the conditional expected value [12] of the 
lifetime random variable L, E[L I L >/x], where x is the current age. 
It is calculated as: 

E[LIL~>x]  = f o ~ t f ( t  I t />x )d t  

_ f~*t f ( t )dt  
f ~ f ( t ) d t  

f ~ t f ( t ) d t  
s(x) 

Thus C(x) = E[L [ L i> x] - x ,  and statement (1) is: 

(3~ > 0)(vx/> o)c(x) = ~x, 

with W a proportionality constant between the current age x and the 
future expected lifetime C(x), Unfortunately, with x = O, we have 
ElL] = E[L ] L />  0] = C(0) -- W .0 = 0 for any W. We look at two 
ways out of the quandary: first, by letting proportionality (I) hold 
only in the limit as x ~ 0o; and second, by restricting the domain of 
definition of the distribution to an interval [x0,oo). 

We shall find use for an alternative form of( l ) :  Let G(x) = J~" t f( t)dt;  
then E[L [ L >t x] = ~'G(x) Let A(x) = xs(x) ~ = EILIL>~X]x =xC(X)+X ...... 
C(x) 
- 7 - + 1 .  

Then statement (1) is 

( ~ '  > l)(Vx 1> O)A(x) = ~ ' ,  

with ~ / =  W + 1. 

4.1 Past-is-future in the limit 
Let us weaken the statement (1) so that the proportionality holds asymp 
totically, for large values ofx.  (A similar analysis was outlined previ- 
ously by Pearlmutter in c o m p .  l a n g .  s c h e m e ,  October 1995.) We 
look for a distribution such that xlir~A(x) exists and is strictly greater 

than 1. Here is one such distribution. 

Let 

f(t) = 
13 

(t + x) x'  
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so that 

s(t) = ~(t+~) '-~, 
where E > 2. Normalization: 

= 40) = 2-~-id -~ 1 

gives 

We find 

G(x) = 13 ~ - ~  (1-4-Z)2-X- X~-~-~ (x--I- ~) I-K. 

Expected value 

2-X 

E[L] = G(0) = 13 (X_ 2)(X_ 

If we take this value as a free parameter E[L] = V (as it is necessary 
to do in order to generate a trace for simulation, where we want to 
control the heap size in equilibrium), we have 

[3 = (~,-- l)(V(~, - 2)) x - '  . 

We can then simplify: 

x = V ( X -  2). 

The ratio 

hence 

a(x)  X - 1  1 x X - 1  v 
A(X)=xs(x)  - L -  2 ~ L -  2 x = X -  2 b x ' 

i v - 1  
~lLm A(x) : ~ > l,  

as required. Varying ~ changes the value A(x) uniformly for all x; 
lower values of ~, produce distributions with heavier tails. 

4.2  Pas t - i s - fu ture  restr icted to x > xo 
We make condition (1) strictly hold forx > xo, where xo > 0, and we 
define the distribution (functions F, f ,  s, and m) in that interval, but 
we set F = 0, f = 0, s = 1, and m = 0 in the interval [0,xo]. This 
formulation is intuitively appealing, since lifetimes in practice take on 
discrete values in N, and hence setting xo = 1 is quite natural. 

Condition (1): 

(3~ '  > 1)(Vx ) xo)A(x) = ~ ' ,  

that is, 

G(x) = IF' XS(X), 

gives the integral equation, 

f x ' t  f ( t ) d t  = lg' X f x ' f ( t ) d t .  

It is easy to obtain the corresponding differential equation: 

g ' (x)  = lit'( 1 -- r (x)) 
(q '  - 1)x 

The solution, with the boundary value F(xo)  = 0, is 

(xo)  
F(x) = l -  , 7 ,  ' 

l 
f ( x )  -- xo NJ Z 1 , - x -  / ' 

~l 1 
m(x) = ~ , _  l ~" 

The mortality is indeed an everywhere decreasing function. 

C(x) = ~,' 

G(xo) = Ill'Xo. 

The expected live amount in the heap is: 

~ ~ ev t ~ ¸  

Let us examine this family of distributions qualitatively. The steady- 
state heap volume V = lim v(x) equals the expected value of  L, which 

X--fee 

is ~txo. What are reasonable parameter values? Suppose that we 
wish to set V = 50000. 2 Suppose also that we want x0 to be 1. Then 
II/ = V/xo  = 50000. However, the live volume in the heap, v(x),  
approaches its limit value V at the rate of decay of the second term, 
that is, as the 49999-th root ofx.  With such a slow approach, that 
is, with such a heavy tail in the distributions, one must allow a time 
3.67.1099997 to pass before the heap is within 1% of equilibrium; un- 
til the heap is in equilibrium, the distribution of objects in it does not 
reflect the heavy tail of the source distribution. Simulating that many 
objects is somewhat impractical. Moreover, can actual programs ex- 
hibit such extremely slow heap growth as with t l / =  50000? Sup- 
pose that a program does. We can only observe executions of much 
shorter duration than 1099997, say, up tol01°; but then we cannot em- 
pirically distinguish the postulated ~ '  = 50000 past-is-future distri- 
bution from another distribution that agrees with it up to t = 101°, 
but lacks the heavy tail beyond that age. Alternatively, to allow 99% 
of the steady-state volume to be reached with 107 objects simulated, 
one must have ~ '  < 2.5 (approximately), but then x0 > 20000. Thus, 
beyond the construction of an elegant analytical model of object life- 
times, we must keep in mind the need to be able to validate it against 
real data. This example shows that sometimes validation may be dif- 
ficult to achieve. 

5. M O D E L S  VS .  E M P I R I C A L  E V I D E N C E  
In validating lifetime models, we apply the tools of statistical analysis 
of survival data to the distributions of object lifetimes, to the extent 
that they are applicable to our problem. (The populations tradition- 
ally studied in statistical analyses are quite different from programs' 

2This number is sufficiently large so that in simulation, even when a 
heap is divided into N 100 regions, each one contains at least N i 0 0  
objects, which allows us to vary the heap configuration widely without 
incurring significant fragmentation effects. 
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objects. Moreover, the relevant literature concentrates mostly on sta- 
tistical confirmation of explanatory variables (e.g., in clinical trials), 
which is different from our goal: finding distributions.) 

One recommended test for comparing families of distributions is based 
on the graph of moment ratios: the coefficient of skewness 73 vs. 
the coefficient of variation y. These moment ratios are dimension- 
less quantities independent of time-scale [4, p.24-28] that reflect only 
the shape of the distribution. The coefficient of variation is a measure 
of the spread of the distribution around its mean; the coefficient of 
skewness is a measure of the asymmetry of the distribution, and large 
positive values indicate heavy tails. Each distribution corresponds to a 
single point (% 73); a single-parameter family of distributions defines 
a parametric curve in the Y-Y3 plane. (See Appendix for definition 
of y and 73.) Three families of distributions commonly used in sur- 
vival analysis (log-normal (Section A.4.3), Weibull (Section A.4.2), 
and gamma (Section A.4.1)), are plotted in the 7-73 plane in Fig- 
ure 1. Note that the Weibull and gamma curves intersect at the point 
(1,2); at this point each has degenerated into the exponential distribu- 
tion. The two families introduced here are also shown (past-is-future 
in the limit (Section 4.1) and past-is-future restricted (Section 4.2)). 
Finally, the figure contains scatter points (Y, Y3) of object lifetime 
distributions obtained empirically, and a line of least-squares fit for 
these points. These empirical distributions come from 58 Smalltalk 
and Java programs. (Complete object-level traces are available at 
http : / / al i -www, cs. umass, edu/~stefanov/ 
I SMM2 0 0 0 object traces-README, html.) 

The scatter points of empirical distributions show a trend of corre- 
lation between y and Y3. This trend is somewhat surprising, since 
there is no a priori reason to expect it from a haphazard collection 
of benchmark programs. Perhaps the presence of this trend points to 
fundamental properties of program behavior, and it certainly ought to 
be studied further. 

The scatter points lie for the most part well to the right and below 
the common analytical distribution families. The one exception is the 
gamma family: in fact, even though most scatter points are to the right 
and below the gamma curve, they are quite close to it. 

To our chagrin, the two past-is-future families both have much lower 
coefficient of variation and much higher coefficient of skewness than 
the empirical distributions. Therefore, however intuitively plausible 
they are, they should not be employed to model object lifetimes. In- 
deed, we must concentrate the search for analytical distributions on 
those.--not in standard literature--with much higher coefficient of 
variation; in the meantime, the gamma family is to be favored as a 
candidate. 

We see that the Y-Y3 diagram usefully summarizes the shape proper- 
ties of distributions and allows us to exclude certain analytical distri- 
bution families as models for a set of observed distributions. Note, 
however, that the two moments displayed do not completely capture 
the shape of a distribution. For positive matching further statistical 

tests are necessary. 

6. S U M M A R Y  
Analytical modelling of object lifetimes is desirable for the design, 
analysis, and simulation of dynamic memory management systems, 
but it remains a difficult problem. We examined certain qualitative cri- 
teria that may be imposed on lifetime distributions, and demonstrated 
the use of a simple graphical technique for (in)validating postulated 
distribution models against empirical evidence. 
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APPENDIX 
A. ABOUT LIFETIME DISTRIBUTIONS 
A.1 Basic definitions 
The survival function of a random variable L is sL(t) = fo{L ) t}. 
For object lifetimes, it expresses what fraction of original allocation 
volume is still live at age t. We usually drop the subscript L. The 
survivor function is a monotone non-increasing fnnction. 

The probability density function is f (t ) = -st(t). Occasionally we 
also use the cumulative distribution function F(t) = 1 - s(t). The 

mortality function is re(t) = f(tsT )) = - ~ t  logs(t), and it expresses the 

age-specific death rate. Mortality is also known as the hazard func- 
tion (and written h(t)) in the literature on lifetime analysis. Occasion- 
ally we also use the integrated mortality: M(t) = f~ m(u)du. Certain 
properties always hold: s(0) = 1; lims(t) = 0; j~°f(t)dt = 1 (nor- 

t -.q.oo 

realization of density); s(t) = e - M ( t )  [4, p.14]. 

A.2 Moments 
The moments of a distribution of random variable L are defined as 
mk= E[L k] = f~  tk f (t )dt. The central moments are defined as #k = 
E [ ( L -  ml) k] = f~(t  -ml )kd t .  Here ml is the mean, or expected 
value, and m2 is the variance, or dispersion; a common notation is 
~2 = #2, where ~ is called standard deviation. In calculation, we usu- 
ally first find moments ml, mz, and m 3, by integration in the case of 
analytical definitions, or by summation over observed discrete points 
in empirical distributions, and then compute central moments using 
the formulae #2 = mz - m21 and #3 = m3 - 3mtm2 + 2m31 . 

The coefficient of variation is 'y = 6 ~ .  The standardized third moment 

or coefficient of skewness is Y3 = o~; it is also written r13 or V / ~ .  

A.3 Finiteness of expected value 
It is a simple exercise to show that the expected value of the live 
amount in the heap at time x (that is, after an amount x has been allo- 
cated) is v(x) = fgs(t)dt, and that 

V = Jir~v(x)= fo*OS(t)dt = fo~tf( t )dt  = E[L], 

when they exist. 

We may impose on the object lifetime distribution an additional prop- 
erty of finiteness (existence) of expected value, to ensure that a heap 
equilibrium is reached in the limit. (Heap equilibrium has been the 
underlying assumption in some comparative analyses of garbage col- 
lection costs [3, 13]. A relative heap size parameter is u s e d  as the 
basis for comparison of two collection algorithms: heap size is a fixed 
multiple of a steady-state live data amount.) How essential is this re- 
quirement, and could we also consider distributions with unbounded 
expected value? On the one hand, the running time of real programs 
is finite, and thus f is finally-zero, hence E[L] is finite. 

On the other hand, it is theoretically plausible that we are observing 
ini t ial  s e g m e n t s  of potentially infinite computations, and so it is useful 
to investigate heaps that grow without bound. From a purist stand- 
point, many realistic programs that run indefinitely do use increasing 
amounts of space; for instance, counting requires logarithmically in- 
creasing space. 

If the live data amount does not stabilize, but rather grows indefinitely, 
then the available heap size ought to grow in equal proportion--if 
one desires measurements in terms of the relative heap size param- 
eter. This property must be ensured with due care in analysis and 
simulation. 

A.4 Distribution families of Figure 1 
Basic definitions of distribution families, compiled from textbooks [2, 
5 ,6 ,7 ,9 ,  11, 12]. 

A.4 .1  G a m m a  
f( t)  = r a t h e  -ct 

mk = (b+ 1 ) ( b + 2 ) . . - ( b + k ) c  -k 

#3 = 2bc~l 

1 
Y = ~ T r  

2 
Y3 --- 7Fgr 

Therefore 5'3 = 2'y is a straight line in Figure 1. 

A.4 .2  Weibull  
f ( t )  = ct c- l e-t c 

I l ml = ?F(~)  

m2 = F(I + ~) 

m3 = F(1 + ~) 
C 

The curve 'Y-Y3 is plotted parametrically with respect to c in Figure 1. 

A .4 .3  L o g - n o r m a l  
(lost -~) 2 

f ( t )  = ~ e -  2sz 

~2 
It can be shown that, with abbreviation o9 = e , y = ~ and 
Y3 = (o9+ 2 ) v ' ~  2" 1, therefore Y3 = 3y + y3 in Figure 1. 
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