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Abstiact 

A new garbage collection algorithm for distributed 
object systems, called DMOS (Distributed. Mature 
Object Space), is presented. It is derived from two 
previous algorithms, MOS (Mature Object Space), 
sometimes called the train algorithm, and PMOS 
(Persistent Mature Object Space). The contribution of 
DMOS is that it provides the following unique 
combination of properties for a distributed collector: 
safety, completeness, non-disruptiveness, 
incrementality, and scalability. Furthermore, the 
DMOS collector is non-blocking and does not use 
global tracing. 

Automatic storage management is an essential property of high 
level programming systems providing an error-free abstraction 
with which the programmer may manipulate space without 
regard to the inessential details of physical storage. The 
abstraction holds only until the store becomes full. Thus it is 
important for the storage management system to distinguish 
useful data from garbage, so that the space occupied by the 
garbage may be reused. The technique used to identify the 
unreferenced space automatically is called garbage collection 
(see Wilson [Wilson921 for a survey of these techniques). 

Here we are concerned with garbage collection in a 
distributed system where each node in the system has its own 
local storage and may communicate with other nodes only by 
passing messages. The problem is difficult because of 
asynchrony, implying lack of knowledge of global state, and 
lack of globally atomic operators on that state. 

We present a new garbage collection algorithm for 
distributed objecct’ systems, called PMOS (Distributed Mature 
Object Space). It derives from both the MOS (Mature Object 
Space) [HM92], sometimes known as the train algorithm, and 
PMOS (Persistent Mature Object Space) mMH96] collectors. 

Permission to make digital/hard copy of part or all this work for 
personal or classroom use is granted without fee provided that 
copies are not made or distributed for profit or commercial advan- 
tage, the copyright notice, the title of the publication and its date 
appear, and notice is given that copying is by permission of ACM, 
Inc. To copy otherwise, to republish, to post on servers, or to 
redistribute to lists, requires prior specific permission and/or a fee. 
OOPSLA ‘97 IO/97 GA, USA 
0 1997 ACM 0-89791-908-4/9710010...$3.50 

The MOS collector is an incremental main memory copying 
collector specifically designed to collect large, older 
generations of a generational scheme in a non-disruptive 
manner. The PMOS collector extends MOS to ensure 
incrementality in a persistent context, while also limiting the 
I/O overhead. 

The contribution of the DMOS collector is the following 
unique combination of properties for a distributed collector 
without the need for global tracing: 

Safety:’ the collector does not collect ‘live (reachable) 
objects. 

Completeness: the collector is complete in that all 
garbage, including cyclic garbage that spans nodes, is 
collected within a finite number of jnvocations. 

Non-disruptiveness: the collector bounds the amount of 
collection work, thereby bounding the time and space 
requirements, for each invocation. 

Incrementality: the collector reclaims space 
incrementally without global knowledge of reachability, 

Scalability: the collector is potentially scalable in that it 
is decentralised, uses asynchronous communication, and has 
no protocols that demand the involvement of all nodes. 

Non-blocking: the collector at a node need only 
synchronise with other nodes in a few cases. Application 
computation never need wait for such collector 
synchronisation. 

The collector assumes the following support in delivering the 
above: 

Each node in the system has its own local storage and mny 
communicate with other nodes only by passing messages. 

Ordered delivery of messages is guaranteed without 
omission, corruption, or duplication. Causal delivery is not 
assumed. 

Nodes appear to operate correctly, without crashes or 
Byzantine behaviour. 

No bounds are placed on the relative rates of computntion of 
the nodes. 

Events and actions at a given node are totally ordered, 
yielding a partial ordering of events in the system as a 
whole. 

As presented, the collector is well suited to distributed memory 
multiprocessors and to applications that do not require fault- 
tolerance. To widen the applicability of the collector, fault- 
tolerance may be provided by lower levels of the system. While 
others have chosen to build some of this support into garbage 
collectors, we regard these facilities as being provided by lower 
level protocols, upon which the garbage collector can be built, 
in order to separate policy and mechanism and to keep the 
levels of abstraciion relatively understandable. 

1.1 The Computational Model 

Our distributed computational model is made up of 
computation, objects, and pointers. 

Computation consists of one logical process, perhaps 
with concurrent threads, per (logical) node with the processes 
communicating via messages. Computation proceeds by 
creating and mutating objects. A physical node may support 
more than one logical node. 

A (physical) object resides on a single node, which we 
term the object’s home, and may contain any number of 
pointers (references to other objects) as well as non-pointer 
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data. DMOS moves (logical) objects within nodes and allows 
applications to move objects across nodes, so it includes 
algorithms to substitute one physical object for another and to 
update the affected references. 

Each node has zero or more root pointers to objects, 
which we can view as being part of the node’s process’s state. 
If an object is not reachable via a chain of pointers through 
objects originating from some root then the object is garbage 
and may be reclaimed. Pointers may propagate to other nodes, 
and be stored there, by being included in messages. 

1.2 Overview 

Our goal is a fully distributed algorithm that will, concurrently 
and incrementally, eventually detect and reclaim all garbage 
while computation continues. Since DMOS builds on MOS and 
PMOS, we describe it first by giving a concise summary of the 
MOS collector, indicating how DMOS differs at a high level but 
omitting details of distribution. The high level description is 
followed by presentations of several detailed protocols, for 
keeping track of pointers to objects (and detecting when 
objects are unreachable), for adjusting pointers when objects 
are moved within (or across) nodes, and for managing the 
internal data structures (trains and cars) of the DMOS collector. 

Since object migration is a policy decision in a 
distributed computation that mutators may not wish imposed 
upon them, we will not consider it as a fundamental technique 
required by the garbage collector. However, our collector does 
allow objects to migrate. 

2 The DMOS Collector 

The DMOS collector is described, in the manner similar to the 
MOS and PMOS descriptions, using the metaphor of trains 
made up of cars. The address space of each node is divided into a 
number of disjoint blocks (cars). One car is collected in each 
local invocation of the collector, by copying its potentially 
reachable objects into other cars. Since only potentially 
reachable data is copied, all garbage contained within one car 
will be collected immediately. The number of cars per node and 
the individual size of the cars is a matter of implementation 
policy, but for each invocation of the collector the car size 
bounds the time and space required for that invocation. 

To collect cyclic garbage that spans more than one car, 
cars are grouped together into trains. Each car resides on a 
single node but a train may span more than one node. It is 
again a matter of policy as to how many trains there are (there 
must be at least two) and when new trains are created. By 
ensuring that all the cars in a train are collected by copying the 
potentially reachable data into other trains, cyclic garbage will 
be left behind and can be collected, if it can be marshalled into 
the same train. The trick is to find the minimum constraint on 
the order of collection to guarantee completeness. For this it is 
sufficient to order the trains in terms of the (logical) time they 
are created. Hence we will refer to trains being older or younger 
than other trains. 

The DMOS collector uses the following rules for copying 
data from a car during collection: 

1 Data locally reachable1 from roots is copied to a younger 
train, adding a car to that train if required. 

2 Data locally reachable from younger tins is copied to those 
trains, adding a car if required. If an object is reachable from 

1 Object Y is locally reachable from pointer X if X refers to 
Y,,or there is a chain of pointers, all within the car, that 
leads from X to Y. 

more than one younger train, it may be copied to any 
younger train from which it is reachable. 

Data locally reachable from older trains is copied to any 
other car of its current train, adding a car if required. 

Data locally reachable from other cars of the same train is 
copied to any other car of the train, adding a car if required. 

The remaining data is unreachable and is reclaimed 
immediately. 

It should be noted that the above rules are followed in order. To 
complete the collection of cyclic garbage one more rule is 
required: 

0 If no object in a train is reachable from outside the train, 
reclaim the entire train, If necessary, create another train to 
ensure that there are always at least two trains. 

The algorithm allows any car from any train to be selected for 
collection.2 

Figure 1 illustrates the aIgotithm, showing a sequence of 
four collections, which collects intra-train and inter-train 
cycles of garbage, and reclusters the live objects. 

Since in DMOS trains may span nodes,3 in following 
Rule 2 the collector may find that it wishes to add a car to a 
train which is not represented on this node. Thus Rule 2 must 
be amended as follows: 

2 Data locally reachable from younger trains is copied to those 
trains, adding a car if required. If an object is reachable from 
more than one younger train, it may be copied to any 
younger train from which it is reachable. If the destination 
train is not represented on this node, then the node should 
join the train and create a new car in that train. 

This, as we will see later, requires a distributed protocol as does 
the detection of an empty train, Rule 0. 

The completeness of the algorithm is based on four 
constraints: 

l Objects never move from a younger train to an older one, 

l garbage can never move to a train younger than its youngest 
referent (as of some time), and 

l each car is eventually collected, which implies that 

l the oldest train is eventually evacuated. 

A completeness argument for the distributed collector, which 
also addresses the anomaly discovered by Seligmann and 
Grarup [SG95], is given later. . 

2 The work of Cook, Wolf, and Zom [CWZ94] suggests that a 
flexible selection policy allowing a collector to choose 
which partition to collect can significantly increase the 
amount of space reclaimed and, in an OODB context, reduce 
the amount of UO. 

3 An alternative is to restrict trains to a single node. This, 
however, has the consequence to making object migration 
compulsory if distributed cyclic garbage is to be marshalled 
into a single train. 
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Cark Sequence of four collections with a starting 
configuration of two trains, a reachable chain of 
objects R,S,T, an intra-train garbage cycle C, D, E, F 
and an inter-train cycle of garbage X,Y. In this 
example there is a maximum of three objects per car. 
1 Car m is chosen for collection and moves R and X 

to a younger train. Object C moves into car o. 
2 Car k is chosen for collection and moves R into a 

newly created younger train. Note that train 2 is 
now free. 

3 Collection of car n moves S into train 3. 
4 Finally after car o is collected, R, S and T are in 

the same train and train 1 can be discarded since 
there are no pointers into it. 

Train 2 

Carm Carn ‘Car0 
Train 1 

I 
new Train 3 

Cark 
7‘ Train2 

root 

? L I 
Freed Car k leaving 
Train 2 empty 

I I I 

root 

freed Car m Carn 

Train 1 

,Car n car0 

Train 1 

Carp 
Train 3 

I 

Train 3 

c=q 

Train 1 

new Car r 

I 
root q ☯ root 

freedCarn 

Train 1 

Figure 1: Example Sequence of Mature Object Space Collection 
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3 Addressing Objects 

Since DMOS is a copying collector, it moves objects, and is 
thus involved in issues of object addresses and locations. Put 
another way, in DMOS objects are referred to with addresses 
that encode at least a logical location, because location (e.g., 
within a car or train) is fundamental to how the collector works. 
The MOS collector assumes that each object reference somehow 
encodes the car and train containing the referent object. This 
might be accomplished using tables that map regions of 
address space to cars and trains. DMOS assumes that references 
also somehow encode the home node of the referent object. 

Object references might include an absolute address, or 
might be based more on a location independent object 
identifier, However, when an object is moved, references to its 
old copy may survive for some time, so one must either defer 
reusing the address space containing the old copy (not an 
attractive alternative), or arrange that a complete object 
reference includes information beyond a node and absolute 
address at that node. We assume that car numbers at a node are 
not reused, or else reused quite slowly. The car number can then 
distinguish different periods of use for the same portion of 
absolute address space allowing prompt reuse of vacated 
memory. 

4 Pointer Tracking 

Collecting a ‘car requires knowing external references (from 
objects outside the car to objects inside the car). To avoid 
global synchronisation we cannot demand that such knowledge 
be entirely up-to-date. On the other hand, safety requires that 
the collector never treats a reachable object as unreachable, and 
completeness requires that a node eventually discovers when 
there arc no longer external references to a local object. 

The pointer tracking algorithm is designed to meet the 
above criteria by ensuring that the home node H, of an object 
o, is informed of any relevant manipulation of a pointer to o by 
another node. This ensures that H has sufficient information to 
allow for either object substitution or reclamation of the 
object. As we will see, object substitution requires H to know 
which other nodes refer to o, and for reclamation H must know 
that there are no pointers to o from other nodes.4 

4.1 Events Related to Pointer Tracking 

Our pointer tracking mechanism consists of handling five 
events. The home node, H, is informed of these events via 
asynchronous messages. Our initial description of these events 
will be presented with a virtual message being generated for 
each event in the system. This wilI be followed by an 
optimisation strategy describing how the number of messages 
and the size of each message may be reduced. The five events 
are detailed in Table 1. 

Event I Description 

<s, n, o, A, B> This (send) event indicates that node A has 
sent to node B a pointer to o. The number r 
is chosen such that no other even 
cs, m, o, A, B> has m = n, i.e., n, o, A, 
and B together uniquely identify the s even1 
for all time and space. This event is said tc 
happen at A (the sender), hence it is A’s 
responsibility to inform H. 

Intuition: This indicates that a new pointer 
to o has been created in the virtual channel 
A+B. The number n is used to match s 
events with their corresponding r events. 

cr, n, o, A, B> This (receive) event indicates that node B 
has received a pointer to o sent by node A. 
The number n is chosen to match the 
corresponding s event. This event happens 
at B. 

Intuition: An r event indicates that the 
pointer has been deleted from the virtual 
channel, A+B and has been created in a 
message receive buffer at B. 

cd, n, o, A, B> This (delete) event indicates that node B 
has deleted from its message buffers the 
received pointer to o uniquely identified by 
n, A, and B. The number n corresponds to 
the s and r messages previously described. 
This event happens at B. 

c-k, m, 0, A> This event indicates that node A has created 
a new pointer, uniquely identified by m, to 
object o. This event happens at A. 

c-, m, 0, & This event indicates that node A has deleted 
the specific pointer, uniquely identified by 
m, to object o. This event happens at A. 

Table 1: Pointer Tracking Events 

Figure 2 illustrates a possible scenario of events in which 
a pointer is sent from one node to another. Messages sent are 
drawn as broken arrows and object pointers signified by 
unbroken arrows. Node A sends a copy of the pointer to node B 
and eventually informs H of the s event. Node B receives the 
pointer in its receive buffer, and informs H of the r event. Node 
B puts the pointer into its heap,5 eventually informing H of the 
+ event. Finally, B deletes the pointer from its receive buffer 
and eventually informs H of the d event. 

There is no specific requirement for rapid delivery to H of 
information about events at A and B. This is intentional, since 
such information can normally be piggy-backed on other 
communication, thereby reducing the overhead of the scheme. 
Messages 2, 3, and 4 in Figure 2 arrive at H in that order. There 
is, however, no constraint on the arrival of message 1, relative 
to messages 2,3, and 4. 

4 The protocol is designed specifically to avoid any need for 
causal messaging [Fidge96]. 5 Note that this is optional, and hence the * in the diagram. 
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NodeA @ <s,n,o, A,B> 

I 
L- 

~ 
0 

Node H 

Node A sends to node B a pointer to o 

0 2 (r,n,o,A,B> 

Node B 0 3 <+,m,o,B>* 

0 4 <d,n,o,A,B> 

Node H 
* - optional step 

Node B receives the pointer, copies it into its 
heap and deletes it from the receive buffer 

Figure -2: Node A Sends to Node B a Pointer to o 

In Table 1, either A or B can be the home node, H. We 
assume, however, that H is informed immediately of events that 
happen at H. 

4.2 Constraints on Ordering of Events 

It is useful to have some definitions relating to events and the, 
existence of pointers:First, we define the predicate any(o, Y, 
E), which indicates whether node Y has any pointers to object o 
in the situation described by the set of events E. 

Definition: Given a set of events E, where each event is 
of tbe form described in Table 1, any(o, Y,,E) for an object o 
and node Y holds iff E contains an event u, n, o, X, Y> but 
not the event <d, n, o, X, Y>, or E contains an event 
<+, n, o, Y> but not the event -+ n, o, Y>. 

The intuition is that a node has a pointer if it has received 
it in a message buffer but not yet deleted it, or created it in the 
heap but not yet destroyed it. 

Using the any predicate we define absence, which 
indicates when there are no pointers to- an object o, except 
possibly on o’s home node. 

Definition: absence(o, E) is true iff any(o, X, E) is false 
for all nodes X other than H, the home node of o, and E has no 
event <s, n, o, A, B> such that the corresponding receive 
event cr, n, o, A, B> is not in E. 

Claim: Let E be the set’ of events known at H involving 
o; we call this H’s view. If absence(o, E) then no node other 
than H has a pointer to o. 

A detailed correctness argument appears in [HMMM97]. 
The intuition is that absence(o, E) is a stable condition if no 
pointers are being sent in messages, and thus H’s view is up-to- 
date. 

4.3 Pointer Tracking Optimisations 

We consider six optimisations to the pointer tracking 
algorithm: removing unique numbers in events; reducing the 
number of messages; reducing the bookkeeping at H; piggy- 
backing messages; compressing multiple event information 
into messages; and combining d and - events. 

4.3.1 Removing the unique numbers from events 

We argue that the unique numbers (n and m in Table 1) can be 
removed by counting the number of events of sirnilnr form to 
obtain an equivalent pointer tracking algorithm. 

For s and r events related to an), given virtual channel 
A+B, the r events occur in exactly the same order as the s 
events, because the channel preserves message order. WC now 
require that H is informed of events that happen at any node In 
the order in which they happen at that node.6 Thus, all events 
are matched in H’s view if the number of <r, o, A, B> events 
equals the number of <s, o, A, B> events. 

For r and d events, the number of pointers to o in receive 
message buffers’at B is exactly the number of cr, o, A, B> 
events minus the number of <d, o, A, B> events. It does not 
matter that the order of receives may differ from the order of 
deletes, only that for any(o, B, E) to be false, the number of r 
and d events for o at B must be equal. 

- For + and - events, as for the r and d events, the net 
number-of heap pointers to o at B is the number of + events 
minus the number of - events, and again, for any(o, B, E) to 
be false, the number of + events must equal the number of - 
events. 

This optimisation depends on the fact that d events occur 
only after their corresponding r events, and likewise for - 
events after + events. 

4.3.2 Referring fewer events to H 

We need to inform H of a + (respectively, -) event only if it 
causes any(o, B, E) to change from false to true (respectively, 
true to false). This is correct since H does not need to know the 
actual number of pointers at B, only whether or not there are 
any. 

For future purposes, we observe that we can tell H 
independently about whether or not each cur hns any pointers 
to the object in question. Again, the key point is that H will 
correctly know whether or not there are any pointers at all. 

6 This is simplified by our assumption of in-order message 
delivery. 
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4.3.3 Further reducing the detail required at H 

Incorporating the first optimisation means that H will keep 
only net counts based on (0, A+B) for pointers to o sent from 
A to B, net counts inHeap(o, B) for pointers to o in the heap at 
B, and inBuffers(o, B) for pointers in message receive buffers. 
Can we reduce the number of counts further? It turns out that we 
need counts of sends and receives (onIy) for each receiving 
node, and counts of numbers of pointers at each node (see 
[HMMM97] for details). 

4.3.4 Piggy-backing and compressing messages 

As previously observed, messages informing home nodes of 
pointer events can be held and piggy-backed on other 
communications. Further, sequences of events can be 
compressed, especially if they are guaranteed to be delivered all 
at once. For example, an r event, then a + event, then a d event 
can be processed to compress the r and d events together. We 
will not pursue the issue further here, since it does not relate to 
correctness or completeness of our algorithms, though the 
performance improvements may be important in practice. 

4.3.5 Combining events 

It is possible to combine the d and - events as long as it is 
remembered that the r event acts as both a + event at the 
receiver and a balance for s in the virtual channel.7 The effect of 
this is to alter the counts kept at H for pointer tracking and to 
reduce the any predicate from (#r # #d) v (% # #-) to #& # #-. 
While this optimisation does not reduce the number of events 
generated dynamicahy, it does simplify the calculation of any 
by reducing the number of kinds of events from five to four and 
it reduces the size of the bookkeeping data. 

If we incorporate all the optimisations above, then only 
two counts for each object and node are required: an 
inTrunsit(o, +B) count to record the number of pointers to 
object o sent out to node B but not yet received, and a 
pointersTo(o, B) count to record whether node B has any 
pointers to object o. The effect on these counts of messages 
arriving at H is summarised in Table 2. 

Effect at H 

inTransit(o, +B)ll pointersTo(o, B) 

1 ct. o,Bz t 
<-, o, B> I I 

Table 2: Optimised Counts at H 

The inTransit count can take on any integer value 
including negative numbers. The pointersTo count can be only 
0 or I, and the collection of these counts for a single object o 
encodes what we will call the current remembered set, the set of 
nodes currently known to possess pointers to o. 

5 Object Substitution Protocol 

DMOS is a copying collector. When it copies an object, all 
references to the old copy must be updated to refer to the new 
copy. While DMOS does not need to make copies across nodes, 

7 Note that the r and + events cannot be combined since the r 
event is required to balance the s event. 

we have designed the object substitution protocol to support 
cross-node copying (object migration), A mutator, or a 
collector with a different policy, may take advantage of this 
capability. 

Any object substitution protocol must 

l work while references are being updated (safety), and 

l find and update all references eventually (completeness). 

The above must be combined with our goal of asynchrony. 
The specific goal of object substitution is to replace 

object o, home node H, with object o’, home node H’ (where H 
may or may not be H), and to have all pointers to o in the entire 
system eventually replaced with pointers to 0’. 

To support object substitution, home nodes, H, maintain 
for each moved object o, KnownNodes( the set of nodes that 
H knows have had pointers to o since the decision was made to 
substitute o’ for o. Likewise, al1 nodes maintain object 
reZocution tobIes with entries of the form OJO’, meaning that 
o has been substituted by 0’. 

The algorithm is described through the messages required 
to support it and how nodes. should respond to those 
messages:* 

When o is substituted by o’, H adds 030’ to its relocation 
table, and initialises KnownNodes to contain those nodes 
X for which any(o, X, E) is true in H’s current view E. Then H 
sends a message [m, o, 0’1 (m is for move) to each node in 
KnownNodes( Note that the m message should be 
considered an s event for o’, but not for o, in the pointer 
tracking algorithm. 

When a node X receives a message [m, o, 0’1, it adds 0-0’ to 
its object relocation table. The m message should be treated 
as an r event of o’ but not o, and the relocation table entry 
should count as an occurrence of o’ but not of o. 

Once X has inserted a relocation table entry OJO’, it should 
(at its leisure, but before deleting the table entry) replace any 
receive buffer or heap pointers to o with pointers to 0’. Such 
replacement is considered a <-, o’, X> event and a 
et, 0, X> event. 

If X receives a pointer to o while it has OJ o’ in its 
relocation table, it should replace o with o’, causing events 
cr, o, x>, <t, 0’. Xz, and <-, o, X>. 

If H has 030’ in its relocation table and is informed of an 
event of the form <s, o, X>, <r, o, X>, <-, o, X>, or 
c+, o, X> then it should check whether X is in 
KuownNodes(o); if it is not, then it should be added and an m 
message sent to X. 

Since H deletes the contents of o during the substitution, a 
<- , . ..> event is induced at H for each pointer in o. Likewise 
a c+ , . ..> event is induced at H’ for each pointer in 0’. If 
H f I-l’ then appropriate s and r events are also induced. As 
soon as the contents of o have been copied either directIy 
into o’ or into a message to I-I’ then the space occupied by o 
may be reclaimed. This works since the object identifier o is 
unique and will not be reused. 

If H # H’, then the creation and management of the copy 
requires more steps. H sends a message to I-l’ indicating that 
it would like to migrate o and requesting a pointer to the 
copy o’ that I-l’ will allocate. This message includes the 
contents of o, and is considered an s event at H for each 
pointer in the contents of o, but this communication to H’ 

. 

* From now on we will use the optimisations given in 
Section 4. 
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should not be considered an s event of o to H’. H’ sends back 
a response to H with the new pointer, which is considered an 
s event of 0’. H proceeds as described above. This protocol 
does not allow H’ to reject the request. 

l If H # H’, and H receives a message to manipulate o, then in 
addition to the protocol steps above, H forwards the request 
to H’. 

5.1 Cleaning up the Tables 

Upon detection of absence(o, E) using the pointer tracking 
algorithm and completion of substitution of o’ for o at H, H 
sends [e, o, 0’1 (e is for end move) to each node X ,in 
KnownNodes( deletes KnownNodes( and removes 030’ 
from its relocation table. This last step is a <-, 0’. H> event. 
An [e, o, 0’1 message is not an s event for either o or 0’. 

When node X receives [e, o, 0’1, it removes OJO’ from 
its relocation table which is a <-, o’, A> event. 

Note that the substitution protocol is entirely 
asynchronous and never delays computation. 

5.2 Multiple Substitutions 

Suppose we have a series of substitutions in progress for the 
same object, e.g., O=JO’ and 0% 0”. It is simplest if we 
maintain multiple relocation table entries and view the 
substitutions as happening one after the other. However, we 
need not notify H’ of the pairs of <+, o’, . ..> and <-, o’, . ..> 
events, and in effect we directly substitute o” for o. With care 
one could flag this directly in the relocation table. 

5.3 Opaque Addressing 

An obvious optimisation to the basic DMOS collector can be 
made if object addressing is opaque or semi-opaque, that is, if 
nodes maintain a mapping from external references to local 
addresses. Substituting an object within the node becomes a 
matter only of updating the’ local map. This is a simple 
operation if an indirection table is employed but may be 
slightly more complicated in the presence of pointer 
swizzling. In either case it does not entail the participation of 
other nodes since the external address does not change. Thus 
the object substitution protocol may be greatly simplified. 
Note also, however, that since the substituted object usually 
resides in a different car, appropriate - and + events usually 
occur for every pointer in the contents of the substituted 
object. 

The solution does not, however, work for object 
migration, where we have to revert to our original method. 

6 Car and Train Management 

To support the DMOS collector, we retine the pointer tracking 
algorithm to indicate at o’s home node H which cars have 
pointers to o at H. That is, H will maintain tables indicating 
the cars C that have one or more pointers to o, and + and - 
messages will indicate the cars gaining and losing any pointers 
to o. Another way of understanding this is that the pointer 
tracking algorithm is the DMOS correlate of remembered set 
maintenance. 

In order to solve a completeness problem that we explain 
later, we distinguish between the current remembered set for o 
and the sticky remembered set for o. The current remembered set 
is as previously described in the pointer tracking algorithm, as 
refined to track on a per car basis. The sticky remembered set 
accumulates every car that is ever known by H to point to o and 
is deleted when o is substituted by another object. The current 
remembered set will thus always be a subset of the sticky 
remembered set. 

The DMOS collector rules constrain the choices of where 
to move objects from a car C in order to evacuate C. DMOS uses 
the object substitution algorithm to accomplish. those 
movements. C is evacuated and its space can be reclaimed once 
all of C’s reachable objects have been copied. 

DMOS does require some additional protocols, described 
in more detail below. Firstly, it must be able to create and 
delete cars and trains, and clean up any associated data 
structures. Secondly it must be able to detect when a frain’s 
sticky remembered set is empty (i.e., there are no pointers to 
objects in the train from outside of the train), to reclaim the 
entire train. 

6.1 Basic Train Management 

We identify each train with a pair n:A, where the positive 
integer n indicates the logical birth date9 of the train (i.e., 
higher numbers are younger), and A is the node that created the 
train (we term it the train’s master node). The number n is 
unique within the master node, thus n:A is unique within the 
whole system. We assume that nodes are also ordered (e.g., by 
some kind of node numbers), and n:A < m:B iff n < m or 
(n = m and A c B), i.e., lexicographic ordering. The master 
node A of train n:A is responsible for creating, managing, and 
cleaning up the train. 

Although node A created train n:A, any number of nodes 
may’contain cars of n:A. All nodes holding cars of n:A are 
linked together in a logical token passing ring, where each 
node X in the n:A ring knows its successor, written 
successor(X, n:A), at any given time. Initially 
successor(A, n:A) is A. Nodes may join or leave the train 
independently. 

Joining a ring: If a node X wishes to create a car at X 
in n:A but is not currently in the n:A ring, it sends a 
ijoin, X, n:A] message to A. When A receives that message, it 
sends the message [succ, successor(A, n:A), n:A] to X and 
updates successor(A, n:A) to be X. That is, A inserts X after A 
in the circularly linked list of nodes in the n:A ring. 

Leaving a ring: If node X has no cars of n:A but is still 
in the n:A ring, it can send a message 
[leave, X, successor(X, n:A), n:A] to its successor, to start 
exiting the ring. The general idea is that the [leave, .,,I 
message propagates around the ring to X’s predecessor, which 
then cuts X out of the ring (using the knowledge of X’s 
successor that X thoughtfully provided in the leave message) 
and informs X that it has in fact been removed. In the meantime 
X must continue to pass messages around the ring. 

However, multiple nodes may be trying to exit the ring at 
the same time, so the complete algorithm is a little more 
complicated, and we describe it according to how nodes should 
process leave messages. Suppose the message 
[leave, Y, 2. n:A] arrives at node X; X responds according to 
these cases and actions: 

Case 1: Y = successor(X, n:A), i.e., X is Y’s predecessor: X 
sets successor@& n:A) to be Z (Y’s successor) and sends the 
message [left, n:A] to Y. 

Case 2: Z = X and X is not in the process of leaving the ring: 
X sends the message [leave, Y, Z, n:A] to successor(X, n:A), 

Case 3: Z = X and X is in the process of leaving the ring: X 
sends a [leave, Y, successor(X, n:A), n:A] message to 
successor(X, n:A). 

g The birth date need not indicate a date or time but is used 
only to indicate relative ages of trains. 
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The first two cases are fairly obvious, but the third one is more 
subtle because it passes a modified message further along the 
ring. It pertains when X’s predecessor, Y in this case, starts to 
remove itself from the ring while X is being removed. 
Modifying the message guarantees that Y’s predecessor will cut 
both Y and X from the ring. The technique is general and will 
work for any number of simultaneous deletions from the ring. 
The algorithm depends on the fact that messages flowing 
around the ring cannot pass one another. . 

[leave, 

and only if the train is not locally represented) to add cars to 
existing trains. A train can even come into existence, be 
reclaimed, and be created again, with no ill effect. 

When are trains created in DMOS? New young trains can 
be created at any time; we do not specify any particular policy. 
However, each node should have at least two trains and should 
work to move objects reachable from local roots to younger 
trains. Other than new trains, the collector may create a new 
representative of an existing (or previously existing) train T at 

[leave, Y, Z, n:X] 

1. Both Y and Z leave the train 2. Z changes the [leave, . . .I message from Y 

3. Y sends [left, . . .] message to Z and changes its successor. 
X sends [left, . ..I message to Y and changes its successor 

Figure 3: Two Nodes Leave a Train Ring at the Same Time 

Figure 3 shows the sequence of [leave, . ..] messages when 
two adjacent nodes leave a train ring at the same time. In the 
diagram there are three nodes X, Y, and Z, with X as the master 
node, The successor of a node is indicated in braces beside the 
node. Nodes Y and Z each send a [leave, . ..] message to their 
respective successors. Node Z is in the process of leaving when 
the [leave, . ..] message arrives from Y, so it alters Y’s 
successor in the message to its own successor X and sends the 
amended message to X. Y knows that its successor is Z, so 
when Y receives Z’s [leave, . ..I message it changes its 
successor to the successor in the message and sends a [left, . ..I 
message to Z thereby cutting Z out of the ring. Similarly the 
[leave, . . .I message from Y arrives at X (Y’s predecessor) and X 
sets its successor to the one in the message, cutting Y from the 
ring, and sends a [left, . ..I message to Y. 

We do need one special rule, though: A may not delete 
itself from the n:A ring unless and until it is the only node in 
n:A. This is because A is the authority for adding nodes to n:A. 
If A could delete itself before n:A is otherwise empty then we 
could end up with two independent rings. 

Note that while a node is in the process of being deleted 
from the n:A ring, it cannot create cars in n:A. We will return to 
this point in the discussion of the train reclamation algorithm. 

The approach we have described allows any node to create 
new trains without synchronising with other nodes. It also 
requires minimal synchronisation (with a train’s master node, 

a node, if local objects have references from T in their sticky 
remembered set. These are the only ways in which trains are 
created in DMOS. Note that after a certain point, the DMOS 
collector will not create trains of a given birth date, i.e., once 
that date is earlier than the birth date of any train currently in 
the system. In our approach, trains are cleaned up without any 
global knowledge. Thus, we have achieved train management 
that is simple, fully distributed, and minimally synchronised. 

6.2 Train Reclamation 

The original MOS algorithm, as well as the PMOS and DMOS 
algorithms, depends on being able to detect when there are no 
pointers into a train from outside of the train, allowing the 
whole train to be reclaimed at once. Such detection is trivial for 
MOS and PMOS because they are neither distributed nor 
asynchronous; as might be expected, we need a more subtle 
algorithni for DMOS. 

The basic idea in detecting that there are no pointers into 
a train is to pass a token around the train’s ring. We first 
describe a protocol that works if no objects can be created in 
the train or added to the train during detection. We later describe 
a problem with that restriction, and extend the basic algorithm 
to relax the restriction. 

At any given time the token resides at a single node in the 
ring, and under specific circumstances is passed from the 
current token holder to that holder’s successor in the ring. The 
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token also bears a value, which indicates a node in the ring 
where a current round of detection of absence of external 
pointers began. An external pointer iS a pointer from outside 
the train to an object in the train; significantly, a root pointer 
is considered external. 

Each node X in n:A maintains a changed bit related to 
n:A, which indicates whether X has been aware of any external 
pointers to objects in n:A at X, since the last time the token 
was held by X. When X joins the ring, its changed bit is 
initialised to true. A’s changed bit is likewise true initially. If 
an external pointer is entered into a sticky remembered set at X 
then X will set the appropriate changed bit to true. 

Initial state: The token for n:A starts at node A; its initial 
value is A. 

Starting the token: If node X holds the token, and goes 
from having external pointers in its sticky remembered sets to 
having none,*O it sets its changed bit to false and sends the 
token to its successor, with value X. 

Receiving the token: If node Y receives the token, it 
either holds it or passes it on, according to these rules: 

Rule 1: If Y has external pointers in its sticky remembered 
sets for the train, then Y retains the token, and must wait until 
none of its sticky remembered sets contain external pointers, 
at which time Y will start the token. 

Rule 2: If Y has no external pointers in its sticky remembered 
sets for the train, but its changed bit is true, Y passes the 
token, but with the value set to Y. At the same time, Y sets its 
changed bit to false. 

Rule 3: If Y has no external pointers in its sticky remembered 
sets for the train, and its changed bit is false, Y passes the 
token with the value as Y received it. As a special case, if the 
received value is Y, then we have detected that there are no 
external pointers to the train, at any node of the train, and the 
train can be reclaimed. 

no new objects are added to the train. We want to demonstrate 
that we detect no external pointers if and only if there are in 
fact no external pointers. Note that if at some instant of time 
there are no external pointers to a given train, none will be 
created in the future: since the objects are unreachable, the 
mutator will not create external pointers: since the collector 
moves objects to other trains only if they are reachable from a 
root or pointed to from another train, the collector will not 
create external pointers either. 

The “if” part is easy: once there are no external pointers, 
the token will make at most two circuits of the ring, setting the 
changed bits to false on the first circuit and accomplishing its 
detection pass on the second circuit. Note also that since no 
objects are created in the train, no nodes will be joining the 
ring, etc. 

The “only if’ part of the argument is a little harder. 
Suppose we detect no external pointers via a token that starts 
and ends at node X (see Figure 4). We claim that at the time X 
started the token, there were in fact no external pointers (which 
is a stable condition). Call that time Xn-1; clearly X had no 
external pointers at time Xn-1. Consider any other node on the 
ring, Y; let Yn be the time that the token most recently passed 
Y, and Yn-1 the time it left Y on the previous pass, NOW 
Y,-1 < Xn,1 < Yn. Further Y had no external pointers at 
time Yn-1, and, since Y’s changed bit is false at time Yn, Y had 
no pointers at any time between Yn-1 and Yn, SO Y had no 
external pointers at time Xn,1. This argument holds for nil 
other nodes in the ring, so none of the nodes in the ring had 
external pointers at time Xn-1. Figure 4 argues this 
diagrammatically.” 

We observe that our token ring algorithm is a particular 
kind of distributed termination algorithm, i.e., an algorithm 
that discovers a stable global property in a distributed system, 
in this case the non-existence of external pointers to objects 
on a set of nodes. There have been many distributed 
termination algorithms published [DFG83, CM86, Mattem871, 

Time at which no node in the train has an 
external pointer to any of its objects Range of time during which 

there are certainly no external 
pointers to objects at node C I 

Figure 4: IIlustration of Correctness of the Train Reclamation Algorithm 

Though we will need to extend this algorithm, let us first 
gain understanding of how it works under the assumption that 

and we suspect that just about any of them could be adapted and 
used to solve the train reclamation problem. Why, then did we 
choose this one? We felt that a token passing ring would be 

lo While no individual sticky remembered set has pointers 
removed, car collection causes entire sets to be deleted, 
thus possibly removing external pointers in sticky 
remembered sets at the node. 

1 1 The time argument does not rely on any notion of global 
time, but only on the inherent causal ordering of events in 
the system. 
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simple and convincing, even in the face of changing 
membership in the train. Also, we believe that the token ring’s 
overhead is low and that its latency is not problematic in this 
case since train reclamation is not urgent. In any case, the 
particular distributed termination algorithm used is not of 
importance to the completeness of the DMOS collector. 

6.2.1 The Unwanted Relative Problem 

The token ring algorithm just described assumes that no 
objects are added to the train while the algorithm is running. To 
prevent new objects from being added, each node always marks 
one or more of its oIdest trains as closed, meaning no new 
objects may be created in the train, and starts or passes a train’s 
token only if the train is closed at the node.12 It is hard to 
prevent the collector from trying to move objects into a train, 
as shown by the following scenario (illustrated in Figure S), 
which we term the unwanted relative: 

In Figure 5, train n:A has no external pointers in its 
sticky remembered set but has a pointer to an object in an older 
train m:B. Train i:C is younger than train n:A and also has a 
pointer to the same object. When collecting the car in train 
m:B the collector moves the object into train n:A thereby 
creating an external pointer from i:C to n:A. 

l Since the problem does not occur if n:A is the oldest train, 
attempt to reclaim a train only if it is the oldest. This would 
delay train reclamation needlessly; it wouId also require a 
global protocol to determine when a train is oldest. 

The alternative we adopt is to introduce-the notion of epochs of 
object creation in a train. Each node in the train ring associates 
each of its cars in the train with either the old epoch or the new 
epoch. When node X starts the token for n:A, it associates all 
of its n:A cars with the old epoch and sets its changed bit to 
false. Cars added at node X when the changed bit is false are 
added to the new epoch; cars added when the changed bit is true 
are added to the old epoch. Further, if the changed bit switches 
from false to true at X, all n:A, cars at X become associated with 
the old epoch. The changed bit for n:A at X is set only if X sees 
an external pointer to an object in an old epoch car of n:A at X. 

We claim that the token ring algorithm, modified as just 
described, correctly detects that the old epoch n:A cars are not 
reachable and can be discarded. The only way in which the 
previous arguments could fail is if a new epoch object n points 
to an old epoch object o (and n is itself reachable). Since the 
train was closed, n was moved into the train from outside and 
had a pointer to o. So there was an external pointer to o at a 

Train i:C I Train i:C 

Train n:A Train n:A 

Train m:B Train m:B 

Figure 5: The “Unwanted Relative” Problem 

Further, note that n:A need no Ionger actually point to the 
object in m:B, since m:B’s information can be out of date 
because of asynchrony in the system. 

We considered the following design options, rejecting 
each for the reasons indicated: 

l Disallow moving unwanted relatives into n:A. This is 
undesirable since it implies a synchronous inter-node 
protocol for the collector to check whether a relative is 
unwanted. 

l Delay moving the relative in until the train’s status is better 
determined. This is messy, and the delay cannot be bounded. 
Again, it introduces delays and dependencies into a 
collection process where we prefer to avoid inter-node 
interaction. 

time o was unreachable, a contradiction. 
A key observation here is that at the time the token starts 

its last circuit, not only do all of the nodes in the n:A ring 
believe that there are no external pointers to their (old epoch) 
n:A objects, it is in fact true. That is, their perception is up to 
date. The reasoning is similar to that used in arguing the 
correctness of the pointer tracking algorithm. 

6.2.2 Cleaning up Trains 

Once the old epoch has been detected as unreachable, the new 
epoch becomes the old one, the new one becomes empty, and 
the system starts all over. This is accomplished by sending an 
[end-of-epoch, Xl message around the ring, where X is the 
node that started the token. As each node receives the message, 
it deletes its old epoch cars, marks any new epoch ones as old, 
and passes on the end-of-epoch message. When X receives the 
end-of-epoch message, it restarts the token passing algorithm 
on the new epoch. 

l2 Receiving the token may indicate that the train is a good 
one to close. 
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But this leaves the question: how do we ever get rid of a 
train if we can keep creating new epochs in it? One answer is 
that, as previously mentioned, eventually the train will become 
the oldest in the system and will no longer have objects moved 
into it. However, we believe that taking advantage of this fact 
requires a protocol to detect the oldest train. 

The problem is somewhat easier than that since the 
collector can be designed so that when it moves an object from 
one train to another, it does so only within a single node.13 
Thus, we can decide to remove a node X (other than A) from the 
n:A ring if X has no objects in n:A or older trains. Once we 
start removing X from n:A, we disallow moving objects into 
n:A at X until X receives the [left, X, n:A] message, at which 
time it can rejoin n:A if necessary or desired. So, we prohibit 
some object substitutions temporarily. This temporary 
prohibition will not affect the collector’s completeness since 
it merely slows the collector downI 

If we reach a situation where A is the only node in the n:A 
ring, and the n:A train is empty at A, we can delete n:A 
entirely. Due to asynchrony, it is possible that another node X 
might later request to join n:A, and we can simply recreate n:A 
at A at that time. 

7 Collector Safety and Completeness Arguments 

As with many algorithms for continuously running systems, 
correctness of incremental garbage collection algorithms 
breaks down into two distinct parts. One is safety, in this case 
that the collector never deletes a reachable object. The otheris 
liveness (or progress), in this case that the collector eventually 
reclaims every unreachable object, which has come to be called 
completeness. 

7.1 Safety 

We now argue that the collector never discards a reachable 
object. Let us first consider the atomicity of object 
substitution. If o’ is substituted for o with both o’ and o at node 
H, H can ensure that the substitution is atomic locally. Other 
nodes can only pass around pointers to o, and the object 
substitution protocol ensures that pointers to o will be replaced 
with pointers to o’, provided the number of nodes involved is 
bounded. Further, the substitution algorithms work by making 
the substitution atomically at each affected node, as the 
information reaches that node. Any later messages containing 
pointers to o are updated before the mutator can see them. 

If o and o’ are on different home nodes H and H’, H’ takes 
over responsibility for the migrated object as soon as the 
information arrives at H’, and H gives up manipulating o as 
soon as it sends it to H’. There is a period of time during which 
H does not know the new identifier o’ for o at H’, and will have 
to refer application requests concerning o to. H’ under the 
identifier o, but H’ will use its relocation table to rewrite the 
incoming pointer to o’, so everything works out without 
indefinite waits. 

Our point is that object deletion related to object 
substitution is not a problem. Observe also that since object 

l3 The only constraint this imposes is that inter-node 
migration of objects must be done by having the new and 
old versions of the object in the same train, which in no 
way inhibits migration from node to node. 

l4 Alternatively, we can thread the n:A ring through the cars 

of n:A (instead of the nodes), which supports adding new 
cars (at a possibly different position in the ring) while old 
cars are being deleted. 
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relocation tables are considered to contain pointers to the new 
objects (0’ in the example), the new object will not be deleted 
until we have cleaned up all pointers to the old one, or the new 
object is itself substituted. 

Where else does the algorithm delete objects7 In car 
collection and train reclamation. The car collection algorlthm 
discards only objects not reachable from outside the car. These 
objects must be in the absence(o, E) condition as used in the 
pointer tracking algorithm. Therefore, they can be reached 
only through other objects on the same node; but remembered 
sets are always accurate with respect to references from our own 
node, so there is no path to the objects deleted. 

The train reclamation algorithm was separately argued: 
the old epoch objects in the train were unreachable from outside 
the train, and also unreachable from new epoch objects in the 
train, and so are unreachable and it is correct to discard them. 

7.2 Completeness 

The completeness argument is similar to those found in Bishop 
lBishop77], Hudson and Moss [HM92], Moss et al. [MMH96], 
and Seligmann and Grarup [SG95]. The argument proceeds in 
two main steps. Firstly, we show that the oldest train will 
eventually be evacuated and secondly that all garbage in trains 
present at a given time t will be eventually collected. 

First we argue that the oldest train will be eventually 
collected. Consider the set of cars C in a train T ot time t, nnd 
consider the situation after each car in C has been collected. If 
there are no external sticky remembered set entries with 
pointers into train T then the entire train is eventunlly 
collected by the train reclamation protocol. If there are such 
entries then as we collect the cars these objects are evncuated 
thus showing progress collecting the train during each pass 
through the cars of the train. If the train is the oldest then no 
new objects can be created in or moved into the train so each 
pass through the cars reduces the number of objects in T and by 
induction T will eventually be completely evacuated. Note that 
the stickiness of sticky remembered set entries (i,e., that the 
sticky remembered set may be a superset of the current 
remembered set) is crucial to guaranteeing progress in the case 
that there are external sticky remembered set entries, since it Is 
one of these entries that will be used to identify an object to be 
moved out of the train. Otherwise the mutator could move 
pointers around such that there were no current externnl 
pointers at any car when we collected that car, but that there 
were such pointers for other cars. This is the problem identified 
by Seligmann and Grarup [SG95]. 

We now argue that garbage is eventually reclaimed. 
Consider a time t; let G be the set of unreachable objects at 1, 
and S be the set of trains existing at that time. Remembered set 
entries at time t can only be from trains in S. Since garbage is 
immutable, remembered set entries for objects in G will never 

mention trains not in S so garbage will not move to trains not 
in S. Eventually the oldest train in S will be evacuated, and then 
the next oldest and thus eventually every train in S will be 
evacuated, and at that point all objects in G will have been 
collected. The final inductive step in the argument depends on 
two additional properties: that mutators do not allocate new 
objects in the oldest train, and that only a finite number of 
trains can be created of ages intermediate between two trains 
(which is ensured because train numbers n:A are formed from 
positive integers n, and node names A from a finite set of 
nodes). 

8 Related Work 

Work in distributed garbage collection has become 
increasingly active as distributed systems become increasingly 



important; we do not attempt to cover all related work, but 
focus on the most relevant contributions. Plainfossd and 
Shapiro [PS95] offer a survey. Previous and ongoing research 
in this area falls into three categories: object migration, 
reference counting, and tracing. Some proposed algorithms are 
hybrids that combine these techniques. We will discuss the 
approaches one at a time and indicate how they have been 
combined. 

8.1 Migration 

Bishop presents a ‘non-distributed garbage collection 
algorithm that divides the heap into multiple areas [Bishop77]. 
Users specify the area in which each object is allocated. These 
areas are designed to be garbage collected individually so that 
the collections do not interfere with processes that do not use 
the area being collected. In order to allow independent 
collection, each area keeps track of pointers both into the area 
and out of the area. Referencing an object in another area is 
accomplished using a level of indirection. 

Bishop points out that related areas could be collected at 
the same time. He handles multiple area cycles of garbage 
either by collecting all areas involved in the cycle at the same 
time, or by moving objects to consolidate the cycle of objects 
into one area. He presents an inductive proof to show that his 
technique of moving objects guarantees that all unreachable 
objects are collected. Bishop does not bound the size of an area 
or provide ways to collect individual areas incrementally. The 
obvious distributed version of Bishop’s algorithm uses one 
area per node, which requires object migration to collect inter- 
node cyclic garbage. Our algorithm does not require migration 
and is aIso incremental. 

8.2 Reference Counting 

Reference counting has been used to collect distributed objects. 
The advantage of reference counting is that the rules appear 
simple; but reference counting alone cannot guarantee 
completeness (because of cyclic data structures), and making a 
copy of a reference requires contacting the owner of the referent 
object. 

Bevan [Bevan87] and Watson and Watson [WW87] 
introduce a refinement to traditional reference counting called 
weighted reference counting where each reference count is 
divided into a partial weight and a total weight. Unlike the 
DMOS collector, weighted reference counting avoids the need 
to send a message to the owner of an object whenever an object 
reference is passed from node to node. However, it is still a 
reference counting scheme and suffers from inability to collect 
cycles. 

In reference /(sting [BEN+931 an entry is maintained for 
each node holding a reference to an object, while reference 
counting maintains only the count of such references. 
Reference listing uses more space than reference counting, but 
messages are idempotent so the system is resilient against 
message duplication and loss. Again reference listing does not 
handle cyclic garbage. 

Both reference listing and reference counting schemes 
require that cyclic garbage be rare and sufficient memory be 
provided to tolerate the leakage. Extensions to reference 
listing to. handle cycles include optimised weighted reference 
counting augmented with background global tracing 
[Dickmangl], and reference listing with partial tracing [RJ96]. 

8.3 Tracing 

Hughes [Hughes851 uses time stamps based on global time to 
trace live objects. Each trace initiated on a node uses the time 
stamp to mark objects. Each outgoing pointer uses the time 

stamp whenever it propagates the trace to other nodes. The 
algorithm requires a globally synchronised clock, and message 
delivery time must be bounded. Given these requirements, 
Hughes shows that any object with a time stamp older than a 
certain time is garbage and can be collected. The termination 
algorithm used by Hughes is not scalable and reclamation of 
distributed garbage can be blocked until the slowest node in the 
system performs a local garbage collection. 

Liskov and Ladin [LL86] propose using a centralised 
server to calculate global accessibility of .objects. The idea is 
that each node informs the centraliscd (but possibly replicated) 
server of any pointers into and out of the node. The local 
collector is responsible for determining the connectivity 
between the incoming and outgoing references. Rudalics 
[Rudalics90] points out an error in the original algorithm that 
is corrected by Ladin and Liskov [LL92] using an adaptation of 
Hughes’s time stamp algorithm. Their solution also uses the 
centralised server clock to simplify Hughes’s termination 
algorithm. 

Lang, Queninnec, and Piquer &QP92] propose a technique 
where spaces (or nodes) are grouped. Any garbage cycIe 
completely within a group is collected using a mark/sweep 
algorithm. The groups can be hierarchically ordered so that 
increasingly large groups are traced. Ultimately, the entire 
system needs to be traced in order to collect garbage not located 
entirely ,within a previously associated group. This is therefore 
not scalable and requires a considerable amount of co- 
ordination between the nodes. Maheshwari and Liskov mL97] 
claim that the algorithm will not terminate correctly if the 
object graph is mutated concurrently with tracing. 

Ferreira and Shapiro [FS96] propose a system that allows 
replication of segments at multiple sites. Each segment 
maintains a list of incoming and outgoing pointers and is 
traced using these pointers as roots. Segments that appear at 
the same site are collected together so cyclic structures that 
span segments can be collected only if they are gathered at a 
single site. The co-ordination of segments is not a problem 
since replication is assumed. I 

Maheshwari and Liskov [ML971 describe a partitioned 
garbage collector that piggy-backs global marking with the 
marking of partitioned data. Their scheme is guaranteed to 
terminate correctly, and while not as yet distributed, is 
optimised for efficient tracking of a partition’s incoming and 
outgoing pointers. 

8.4 Garbage Tracing 

Vestal [vestal871 suggests selecting objects suspected of being 
part of a cyclic garbage structure, and on a trial basis 
decrementing the reference count. If this causes all connected 
objects’ counts to drop to zero, then the structure is garbage. . 

Lins and Jones [LJ91] propose combining weighted 
reference counting with mark and sweep where the marking is 
not started with roots but with any object that experiences a 
reference deletion. The reference count is, copied and then 
decremented. If the trace returns to the start ‘then the object is 
part of a cyclic graph and can be deleted. While this does 
collect cyclic garbage it appears to be expensive. 

Maeda et al. [MKI+95] and Fuchs [Fuchs951 suggest 
techniques where potentially cyclic garbage is traced to see if it 
reaches a root. Fuchs traces the inverse graph to see if it 
reaches a root while Maeda et al. trace potential garbage to see 
if it forms an isolated cycle. 

All these schemes attempt to discover garbage and suffer 
from the same difficulty: they need a heuristic to select 
suspected cyclic garbage. There are no completeness arguments 
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for any of these schemes and all could result in much tracing of 
live objects. 

9 Conclusions 

We have presented a new garbage collection algorithm for 
distributed systems, DMOS (Distributed Mature Object Space). 
It is unique among distributed collectors in that it is safe, 
complete, non-disruptive, incremental, scalable, and non- 
blocking, as defined in the introduction. DMOS is an advance 
in that no prior distributed collector has possessed all these 
desirable properties. DMOS thus overcomes significant 
limitations in previous collectors: it is complete (unlike 
reference counting and partial tracing techniques), it is non- 
disruptive, incremental, and scalable (unlike global tracing), 
and it does not require object migration. 

Like the MOS and PMOS algorithms on which DMOS is 
based, each collection processes a bounded size region of 
objects, in this case on a single node, copying them to other 
regions, according to a set of rules that ultimately guarantee 
that all garbage is collected. We track cross-region and cross- 
node pointers, using a distributed termination algorithm to 
detect when an object has no more references. We also 
introduce a distributed termination algorithm to detect when a 
distributed set of regions (a train) has no pointers into it from 
outside, and distributed algorithms for managing trains. 

Interesting work remaining to be done including 
implementation and practical evaluation, algorithmic 
performance analysis, and extensions to tolerate node and 
communications failures, which we intend to address in future 
work. 
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