
MC2: High-Performance Garbage Collection for
Memory-Constrained Environments

Narendran Sachindran J. Eliot B. Moss Emery D. Berger
Department of Computer Science

University of Massachusetts
Amherst, MA 01003, USA

{naren, moss, emery}@cs.umass.edu

ABSTRACT
Java is becoming an important platform for memory-constrained con-
sumer devices such as PDAs and cellular phones, because it provides
safety and portability. Since Java uses garbage collection, efficient
garbage collectors that run in constrained memory are essential. Typ-
ical collection techniques used on these devices are mark-sweep and
mark-compact. Mark-sweep collectors can provide good throughput
and pause times but suffer from fragmentation. Mark-compact col-
lectors prevent fragmentation, have low space overheads, and provide
good throughput. However, they can suffer from long pause times.

Copying collectors can provide higher throughput than either of
these techniques, but because of their high space overhead, they pre-
viously were unsuitable for memory-constrained devices. This pa-
per presents MC2 (Memory-Constrained Copying), a copying gener-
ational garbage collector that meets the needs of memory-constrained
devices with soft real-time requirements. MC2 has low space over-
head and tight space bounds, prevents fragmentation, provides good
throughput, and yields short pause times. These qualities make MC2

attractive for other environments, including desktops and servers.

Categories and Subject Descriptors
D.3.4 [Programming Languages]: Processors—Memory manage-
ment (garbage collection)

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Java, copying collector, generational collector, mark-sweep, mark-
compact, mark-copy, memory-constrained copying

1. INTRODUCTION
Handheld consumer devices such as cellular phones and PDAs are
becoming increasingly popular. These devices tend to have limited
amounts of memory. They also run on a tight power budget, and

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
OOPSLA’04, Oct. 24-28, 2004, Vancouver, British Columbia, Canada.
Copyright 2004 ACM 1-58113-831-8/04/0010 ...$5.00.

the memory subsystem consumes a considerable fraction of the total
power. As a result, it is extremely important to be able to run applica-
tions in constrained memory, and to minimize memory consumption
during execution.

Java is becoming a popular platform for these handheld devices. It
allows developers to focus on writing applications, without having to
be concerned with the diverse and rapidly evolving hardware and op-
erating systems of these devices. Since Java uses garbage collection to
manage memory, efficient garbage collection in constrained memory
has become a necessity.

While a small memory footprint is an essential requirement, ap-
plications in the handheld space make other demands on the garbage
collector. Cellular phones now contain built-in digital cameras, and
run multimedia applications such as games and streaming audio and
video. PDAs run scaled-down versions of desktop applications such
as web browsers and e-mail clients. While all these applications re-
quire good throughput from the garbage collector, many interactive
and communications applications also require the collector to have
short pause times. For instance, cellular phones need to code, de-
code, and transmit voice data continuously without delay or distortion.
Hence, in order to meet the demands of applications on handheld de-
vices, modern garbage collectors must be able to satisfy all three of
these requirements: bounded and low space overhead; good through-
put; and reliably short pause times.

Java implementations on handheld devices [23, 29] typically use
mark-sweep (MS) [22, 25], mark-(sweep)-compact (MSC) [13], or
generational variants of these collectors [20, 30] to manage dynami-
cally allocated memory. MS collectors can provide excellent through-
put, and they can be made fully incremental (provide short pause times
consistently). However, they suffer from fragmentation, which affects
both space utilization and locality. MS collectors typically need to use
additional compaction techniques to lower the impact of these prob-
lems. MSC collectors can provide good throughput and their space
utilization is excellent. However, they tend to have long pauses mak-
ing them unsuitable for a range of applications that require good re-
sponse times.

We present in this paper a memory-constrained copying collec-
tor, MC2, that addresses the problems that the above collectors face.
MC2 provides good throughput and short pause times with low space
overheads. The collector is based on the mark-copy collection tech-
nique [24]. MC2 runs in bounded space, thus making it suitable for
devices with constrained memory. Since the collector regularly copies
data, it prevents fragmentation, minimizes memory requirements, and
yields good program locality. The collector also limits the amount of
data copied in every collection, thus obtaining short pause times.

We organize the remainder of this paper as follows. We first de-
scribe related work in Section 2. In Section 3, we describe the ba-

81

sic mark-copy technique and its limitations. We explain in Section 4
how the new collector overcomes these limitations, bounding space
utilization and providing short pause times. To explore the space of
collectors appropriate for memory-constrained environments, we built
a generational mark-compact collector. We describe the implementa-
tion of this collector, a generational mark-sweep collector, and MC2

in Section 5. We then compare the throughput and pause time charac-
teristics across the collectors and a range of benchmarks in Section 6,
and conclude in Section 7.

2. RELATED WORK
We classify related work according to collector algorithm, discussing
in turn related work in mark-sweep, mark-(sweep)-compact, copying,
and generational collection.

2.1 Mark-Sweep
A number of incremental collection techniques use mark-sweep col-
lection. Examples of collectors in this category (which in fact run con-
currently with the application) are the collector by Dijkstra et al. [14]
and Yuasa’s collector [32]. The problem with mark-sweep collectors
is that they suffer from fragmentation. Johnstone and Wilson [18]
show that fragmentation is not a problem for carefully designed allo-
cators, for a range of C and C++ benchmarks. However, they do not
demonstrate their results for long running systems, and our experience
indicates that this property is not necessarily true with Java programs.
Fragmentation makes purely mark-sweep collectors unsuitable for de-
vices with constrained memory.

Researchers and implementors have also proposed mark-sweep col-
lectors that use copying or compaction techniques to combat fragmen-
tation. Ben-Yitzhak et al. [7] describe a scheme that incrementally
compacts small regions of the heap via copying. However, they re-
quire additional space during compaction to store remembered set en-
tries, and do not address the problem of large remembered sets. Fur-
ther, for a heap containing n regions, they require n marking passes
over the heap in order to compact it completely. This can lead to poor
performance when the heap is highly fragmented. In order to com-
pact the heap completely our collector requires only a single round of
marking.

The only collector we are aware of that meets all the requirements
we lay out for handheld devices is the real-time collector implemented
by Bacon et al. [5]. They use mark-sweep collection and compact the
heap using an incremental copying technique that relies on a read bar-
rier. They demonstrate good throughput and utilization in constrained
memory. However, in order to make their read barrier efficient, they
require advanced compiler optimization techniques. Our collector
does not require compiler support beyond that generally available,
such as support for write barriers, and therefore is simpler to imple-
ment, especially in the absence of a significant compiler optimization
infrastructure.

2.2 Mark-Compact
Mark-(sweep)-compact (MSC) collectors [13, 15, 19, 21] use bump
pointer allocation, and compact data during every collection. They
prevent fragmentation and typically preserve the order of allocation
of objects, thus yielding good locality. Compaction typically requires
two or more passes over the heap. However, since these heap traver-
sals exhibit good locality of reference, they are efficient. MSC collec-
tors can provide good throughput and their space utilization is excel-
lent. They run efficiently in very small heaps. However, they tend to
have long pauses.

MC2 is similar in many ways to MSC collection, but because its
copying is incremental it gains the added benefit of shorter pauses.

2.3 Copying
Purely copying techniques also have incremental versions. The most
well-known of these are Baker’s collector [6], Brooks’s collector [10],
and the Train collector [16]. Baker’s and Brooks’s techniques use
semi-space copying and hence have a minimum space requirement
equal to twice the live data size of a program. Also, they use a read
barrier, which is not very efficient. The Train collector can run with
very low space overheads. It can suffer from large remembered sets,
though there are proposals on limiting that space overhead. However,
our experiments with the Train collector show that it tends to copy
large amounts of data, especially when programs have large, cyclic
structures. In order to obtain good throughput, we found that the col-
lector typically requires space overheads of a factor of 3 or higher.
We conclude that the Train algorithm is not well-suited to memory-
constrained environments.

2.4 Generational collection
Generational collectors divide the heap into multiple regions called
generations. Generations segregate objects in the heap by age. A
two-generation collector divides the heap into two regions, an allo-
cation region called the nursery, and a promotion region called the
old generation. Generational collectors trigger a collection every time
the nursery fills up. During a nursery collection, they copy reachable
nursery objects into the old generation. When the space in the old
generation fills up, they perform a full collection and collect objects
in the old generation.

Generational collection is based on the hypothesis that, for many
applications, a large fraction of objects have very short lifetimes, while
a small fraction live much longer. The frequent nursery collections
weed out the short-lived objects, and less frequent older generation
collections reclaim the space occupied by dead long-lived objects.
While generational collectors can provide good throughput and short
average pause times, the limitations of the collection technique used
in the old generation (namely, fragmentation, minimum space over-
head being twice the maximum live size, and large maximum pause
time) determine the overall space requirements and pause time char-
acteristics of the collector. The drawbacks of MS, copying, and MSC
therefore carry over to generational collection.

3. BACKGROUND
We introduced the basic mark-copy algorithm, MC, in a previous pa-
per [24]. In this section we summarize MC and describe its limita-
tions with respect to the requirements of memory-constrained envi-
ronments.

3.1 Mark-Copy
MC extends generational copying collection. It divides the heap into
two regions, a nursery, and an old generation. The nursery is identical
to a generational copying collector’s nursery. MC further divides the
old generation into a number of equal size subregions called windows.
Each window corresponds to the smallest increment that can be copied
in the old generation. The windows are numbered from 1 to n, with
lower numbered windows collected before higher numbered windows.

MC performs all allocation in the nursery, and promotes nursery
survivors into the old generation. When the old generation becomes
full (only one window remains empty), MC performs a full heap col-
lection in two phases: a mark phase followed by a copy phase.

During the mark phase, MC traverses live objects in the heap, and
marks them as reachable. It also performs two other tasks while mark-
ing. First, it counts the total volume of live data in each old generation
window. Second, it constructs remembered sets for each of the win-
dows. The remembered sets are unidirectional: they record slots in
higher numbered windows that point to objects in lower numbered

82

A C

D

E

FB

High RegionLow Region

Old Generation Nursery

Root1

H

G

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

Root2

(a) Heap layout before a nursery collection

A C

D

E

B

High RegionLow Region

Old Generation Nursery

Root1

G

HF U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

Root2

(b) Heap layout after a nursery collection

A C

D

E

B

High RegionLow Region

Old Generation Nursery

G

HF U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

Root1 Root2

(c) Heap layout after a full heap mark

C

D

E

High RegionLow Region

Old Generation Nursery

G

HF

B

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

Root1 Root2

(d) Heap layout after one copy pass

High RegionLow Region

Old Generation Nursery

B

C

D

GU
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

U
nm

ap
pe

d

Root1 Root2

(e) Heap layout after two copy passes

Root1, Root2 − stack/static roots

X

X Marked Object

Heap Object

Remembered Set

Figure 1: Mark-Copy: An example of a nursery collection followed by a full collection

windows. The requirement is to record pointers whose target may
be copied (moved) before the source. An implication of using uni-
directional remembered sets is that the collector cannot change the
order of collection of windows once the mark phase starts. While MC
can overcome this limitation by using bidirectional remembered sets
(recording all cross-window pointers), this is not generally desirable
since bidirectional sets tend to occupy much more space.

Once the mark phase completes, the collector performs the copy
phase. The copy phase is broken down into a number of passes. Each
pass copies data out of a subset of the windows in the old generation.
Since the collector knows the exact amount of live data in each win-
dow, and the total amount of free space in the heap, it can copy data
out of multiple windows in each pass. After each copy pass, MC un-
maps the pages occupied by the windows evacuated in that pass, thus
limiting the total virtual memory mapped at any time during the col-
lection. After finishing all copy passes, the collector resumes nursery
allocation and collection.

Figure 1 offers an example of a nursery collection followed by a
full collection using MC. For this example, we assume that all objects

allocated in the heap are the same size, and that the heap can accom-
modate at most 10 objects. The heap consists of an old generation
with 5 windows. Each of these windows can hold exactly 2 objects.
Root1 and Root2 are root (stack/static) pointers. Figure 1(a) shows a
nursery collection, which results in objects G and H being copied into
the old generation. (G is copied because it is reachable from a root,
and H is copied because it is reachable from an object (E) in the old
generation.) At this point, the old generation is full (Figure 1(b)). MC
then performs a full heap mark and finds objects B, C, D, and G to be
live. During the mark phase it builds a unidirectional remembered set
for each window. After the mark phase (Figure 1(c)), the remembered
set for the first window contains a single entry (D→B). All other re-
membered sets are empty, since there are no pointers into the windows
from live objects in higher numbered windows. In the first copy pass,
there is enough space to copy two objects. Since the first window
contains one live object (B) and the second window contains two live
objects (C, D), MC can copy only the first window in this pass. It
copies B to the next free window and then unmaps the space occu-
pied by the first window (Figure 1(d)). It also adds a remembered set

83

entry to the second window to record the pointer from B to D (since
B is now in a higher-numbered window than D, and B needs to be
updated when D is moved). The old generation now contains enough
free space to copy 3 objects. In the next copying pass, MC copies the
other 3 live objects and then frees up the space occupied by windows
2, 3, and 4 (Figure 1(e)).

3.2 Limitations of Mark-Copy
MC suffers from several limitations. First, it maps and unmaps pages
in windows while performing the copying phase. It thus depends on
the presence of virtual memory hardware, which may not always be
available on handheld devices. Second, the collector always copies
all live data in the old generation. This is clearly not efficient when
the old generation contains large amounts of long-lived data. Third,
and perhaps most significantly for many applications, the marking and
copying phases can be time-consuming, leading to large pauses. The
MC paper [24] describes techniques to make the collector incremen-
tal, but demonstrates only incremental copying. MC2 uses the same
basic algorithms, but makes several enhancements. Finally, although
the collector usually has low space overheads, it occasionally suffers
from large remembered sets. In the worst case, the remembered set
size can grow to be as large as the heap. The original paper describes
a technique that can be used to bound space overhead by using an ex-
tra word per object. However, it is not possible to make that technique
incremental.

4. MC2

The new collector, memory-constrained copying (MC2) uses the basic
MC technique to partition the heap: there is a nursery, and an old
generation divided into a number of windows. A full collection marks
live objects in the heap, followed by a copy phase that copies and
compacts live data. However, MC2 overcomes the cited limitations of
MC. We describe below a series of features of the collector that allow
it to obtain high throughput and low pause times in bounded space.

4.1 Old generation layout
As previously stated, MC2 divides the heap into equal size windows.
It requires that the address space within each window be contiguous.
However, the windows themselves need not occupy contiguous mem-
ory locations: MC2 maintains a free list of windows and assigns a new
window to the old generation whenever a previously-assigned window
cannot accommodate an object about to be copied. Unlike MC, which
uses object addresses to determine the relative location of objects in
the heap, MC2 uses indirect addressing to determine this information
in order to decouple actual addresses from logical window numbers.
It uses a byte array, indexed by high order bits of addresses, to indicate
the logical window number for each window.

While this indirection adds a small cost to the mark phase, it has
several advantages. First, it removes the need to map and unmap
memory every time MC2 evacuates a window, in order to maintain
MC2’s space bound. Second, the indirection removes the need to
copy data out of every window; we can assign the window a new
logical number and it will be as if the data had been copied. This is
important for programs with large amounts of long-lived data. Third,
it allows the collector to change the order of collection of windows
across multiple collections. We describe the details of these features
in Section 4.3.

MC2 also differentiates between physical windows and collection
windows. It divides the heap into a number of small windows (typi-
cally 100) called physical windows. MC2 maintains remembered sets
for each of these windows. A collection window defines the maxi-
mum amount of live data that MC2 normally collects during a copying
increment. Collection windows are usually larger than physical win-

dows. This scheme allows MC2 to occasionally copy smaller amounts
of data (e.g. when a physical window contains highly referenced ob-
jects). In the following sections we use the term window to refer to a
physical window.

A B

DC

(a)

A B

DC

(b)

A B

DC

(c)

Figure 2: Example of an error during incremental marking

4.2 Incremental marking
MC marks the heap when the free space drops to a single window.
While this gives good throughput, it tends to be disruptive: when MC
performs a full collection, the pause caused by marking can be long.
In order to minimize the pauses caused by marking, MC2 triggers the
mark phase sooner than MC, and spreads out the marking work by
interleaving it with nursery allocation.

After every nursery collection, MC2 checks the occupancy of the
old generation. If the occupancy exceeds a predefined threshold (typ-
ically 80%), MC2 triggers a full collection and starts the mark phase.
It first associates a bit map with each window currently in the old gen-
eration (the collector has previously reserved space on the heap for the
bit maps). Marking uses these bit maps to mark reachable objects, and
to check if an object has already been marked. Apart from the benefit
to marking locality, the bit maps also serve other purposes, described
in Section 4.3.

MC2 then assigns logical addresses to each of the windows. Mark-
ing uses these addresses to determine the relative positions of objects
in the old generation. MC2 marks data only in windows that are in
the old generation when a full collection is triggered. It considers any
data promoted into the old generation during the mark phase to be
live, and collects it only in the next full collection. After MC2 assigns
addresses to the windows, it cannot alter the order in which they will
be collected for the duration of the current collection. Finally, MC2

allocates a new window in the old generation, into which it performs
subsequent allocation.

After triggering the mark phase, MC2 allows nursery allocation to
resume. Every time a 32KB block in the nursery fills up, MC2 marks
a small portion of the heap.1 In order to compute the volume of data
that needs to be marked in each mark increment, MC2 maintains an
average of the nursery survival rate (NSR). It computes the mark in-
crement size using the following formulae:

1We chose 32KB as a good compromise in terms of interrupting mu-
tator work and allocation often enough, but not too often. This value
determines the incrementality of marking.

84

numMarkIncrements = availSpace/(NSR∗nurserySize)
markIncrementSize = totalBytesToMark/numMarkIncrements
totalBytesToMark = totalBytesToMark−markIncrementSize

MC2 initializes totalBytesToMark to the sum of the size of the win-
dows being marked, because in the worst case all the data in the win-
dows may be live. If the heap occupancy reaches a predefined copy
threshold (typically 95% occupancy) during the mark phase, MC2 will
perform all remaining marking work without allowing further alloca-
tion.

MC2 maintains the state of marking in a work queue, specifically
a list of the objects marked but not yet scanned. When it succeeds in
emptying that list, marking is complete.

Write barrier
A problem with incremental marking is that the mutator modifies ob-
jects in the heap while the collector is marking them. This can lead to
a situation where the collector does not mark an object that is actually
reachable. Using the tri-color invariant [14], we can classify each ob-
ject in the heap as white (unmarked), gray (marked but not scanned),
or black (marked and scanned). The problem arises when the mutator
changes a black object to refer to a white object, destroys the original
pointer to the white object, and no other pointer to the white object
exists.

Figure 2 shows an example illustrating the problem. In Figure 2(a),
the collector has marked and scanned objects A and C, and it has
colored them black. The collector has not yet reached objects B and D.
At this point, the program swaps the pointers in A and B (Figure 2(b)).
When the collector resumes marking, it marks B (Figure 2(c)). Since
B points to C, and the collector has already processed C, the collector
wrongly concludes that the mark phase is complete, although it has
not marked a reachable object (D).

Two techniques exist to handle this problem, termed by Wilson [31]
as snapshot-at-the-beginning and incremental update. Snapshot col-
lectors [32] tend to be more conservative. They consider any object
that is live at the start of the mark phase to be live for the dura-
tion of the collection. They collect objects that die during the mark
phase only in a subsequent collection. Whenever a pointer is over-
written, a snapshot collector records the original target and marks it
gray, thus ensuring that all reachable objects are marked. Incremental
update collectors [14, 28] are less conservative than snapshot collec-
tors. When the mutator creates a black-to-white pointer, they record
either the source or the new target of the mutation. Recording the
source causes the collector to rescan the black object, while recording
the new target causes the white object to be grayed, thus making it
reachable.

Figure 3 shows pseudo-code for the write barrier that MC2 uses.
The write barrier serves two purposes. First, it records pointer stores

writeBarrier(srcObject, srcSlot, tgtObject){
if (srcObject not in nursery) {
if (tgtObject in nursery)

record srcSlot in nursery remset
else if (tgtObject in old generation) {

if (srcObject is not mutated) {
set mutated bit in srcObject header
record srcObject in mutated object list

}
}

}
}

Figure 3: MC2 write barrier

that point from outside the nursery to objects within the nursery (in
order to be able to locate live nursery objects during a nursery col-
lection). Second, it uses an incremental update technique to record
mutations to objects in the old generation. When an object muta-
tion occurs, and the target is an old generation object, the write bar-
rier checks if the source object is already recorded as mutated. If so,
MC2 ignores the pointer store. If not, it records the object as mutated.
When MC2 performs a mark increment, it first processes the mutated
objects, possibly adding additional objects to the list of those need-
ing to be scanned. After processing the mutated objects, it resumes
regular marking.

4.3 Incremental copying
When MC performs a full collection, it copies data out of all win-
dows, without allowing any allocation in between. While this is good
for throughput, the pause caused by copying can be long. MC2 over-
comes this problem by spreading the copying work over multiple nurs-
ery collections. (The MC paper [24] described and offered prelim-
inary results for a version of incremental copying. It did not offer
incremental marking, the bounded space guarantee, or the short pause
times of MC2.)

High occupancy windows
At the end of the mark phase, MC2 knows the volume of data marked
in each window. At the start of the copy phase, MC2 uses this informa-
tion to classify the windows. MC2 uses a mostly-copying technique.
It classifies any window that has a large volume of marked data (e.g.,
> 98%) as a high occupancy window, and does not copy data out of
the window.

Once MC2 classifies a window as high occupancy, it discards the
remembered set for the window, since no slots pointing to that window
will be updated in the current collection.

Copying data
After MC2 identifies the high occupancy windows, it resumes nursery
allocation. At every subsequent nursery collection, it piggybacks the
processing of one old generation group. MC2 groups windows based
on the amount of data they contain. Each group consists of one or
more old generation windows, with the condition that the total amount
of marked data in a group is less than or equal to the size of a collection
window. Since MC2 scans high-occupancy windows sequentially, and
the processing does not involve copying and updating slots, it treats a
high-occupancy window as equivalent to copying and updating slots
for half a window of live data. MC2 also allows one to specify a
limit on the total number of remembered set entries in a group. If the
addition of a window to a group causes the group remembered set size
to exceed the limit, MC2 places the window in the next group.

In order to pace old generation collection, MC2 uses information it
has about the total space that will be reclaimed by the copy phase. The
target for the copy phase is to reduce the heap occupancy below the
mark phase threshold. To achieve this goal, MC2 resizes the nursery
at every nursery collection, based on the average survival rate of the
nursery and the space that will be reclaimed by compacting the old
generation data.

When MC2 processes an old generation group, it first checks if the
group contains high occupancy windows. If so, MC2 uses the mark bit
map for the windows to locate marked objects within them. It scans
these objects to find slots that point into windows that have not yet
been copied, and adds the slots to remembered sets for those windows.
It then logically moves the windows into to-space. In subsequent col-
lections, MC2 places these high occupancy windows at the end of the
list of windows to be collected. If they still contain large volumes of
live data, they do not even have to be scanned, and the copy phase can

85

W1 W2W0

100% 65%

W3

98%

W4 W5

50%

FromSpace ToSpace

Unused Unused

(a) Start of copy phase

100%

W1 W2

65%

W3

98%

W4 W0 W5

FromSpace ToSpace

UnusedUnused

(b) After first copy pass

W2

65%

W3

98%

W4 W0 W5 W1

ToSpace

Unused

From
Space

(c) After second copy pass

98%

W3 W4 W0 W1W2W5

ToSpaceFrom
Space

Unused

(d) Third copy pass – after copying

W4 W0 W5 W2 W1 W3

Unused

(e) After third copy pass

W0−−W5 − windows

x% − Window occupancy

From space live data

To space live data

Figure 4: Stages in the copy phase for MC2

terminate when it reaches these windows. This technique turns out
to be especially helpful for SPECjvm98 benchmarks such as db and
pseudojbb, which allocate large amounts of permanent data.

If a window group contains objects that need to be copied, MC2

locates marked objects in the window by scanning the root set and re-
membered set entries. It copies these objects into free windows using
a regular Cheney scan [11]. While scanning to-space objects, MC2

adds slots that reference objects in uncopied windows to the corre-
sponding remembered set.

Write barrier
As in the mark phase, the write barrier keeps track of mutations to old
generation objects during the copy phase. It records mutated objects
at most once. At every copy phase collection, MC2 updates mutated
slots that reference objects in windows being copied, and adds mu-
tated slots that reference objects in uncopied windows to the corre-
sponding remembered sets.

Figure 4 shows an example of the copy phase of the collector. The
example assumes that the physical window and collection window

sizes are identical i.e. MC2 will copy at most one physical window
worth of data in each pass. Figure 4(a) shows the old generation lay-
out before the copy phase starts. The old generation contains four
marked windows (W0–W3). MC2 classifies W1 and W3 as high oc-
cupancy since they contain 100% and 98% marked data respectively
and places them in separate groups. It also places W0 and W2 in sep-
arate groups. In the first copy pass (Figure 4(b)), MC2 copies data
from the nursery and W0 into W4. It then adds W0 to the list of free
windows. In the second pass (Figure 4(c)), MC2 scans objects in W1
and adds W1 to the end of to-space. It copies nursery survivors into
W4 and W0. In the third pass (Figure 4(d)), MC2 copies objects out
of the nursery and W2 into windows W0 and W5. It then adds W2
to the list of free windows. At this point, the only remaining window,
W3, is high occupancy, so MC2 adds it to the end of to-space and ends
the copy phase.

4.4 Bounding space overhead
The remembered sets created during MC collection are typically small
(less than 5% of the heap space). However, they occasionally grow to
be large. There are two typical causes for such large remembered sets:

86

popular objects (objects heavily referenced in a program), and large
arrays of pointers. MC2 uses two strategies to reduce the remembered
set overhead, both of which involve coarsening remembered set en-
tries.

Large remembered sets
MC2 sets a limit on the total amount of space that remembered sets
can occupy. When the space overhead reaches the limit, it coarsens
remembered sets starting from the largest, until the space overhead
is below the limit. Also, when the size of a single remembered set
exceeds a predefined limit, MC2 coarsens that particular remembered
set. This coarsening involves converting the remembered set represen-
tation from a sequential store buffer (SSB) to a card table. (Our usual
representation for a remembered set for a window W is a sequential
list of addresses of slots containing pointers into W. Whenever we de-
tect a reference into W that needs recording, we simply add it to the
end of this list. The list may contain duplicates as well as stale entries
(slots that used to point into W but no longer do). The physical repre-
sentation of the list is a chain of fixed sized chunks of memory, where
each chunk is an array of slot addresses.)

We use the scheme described by Azagury et al. [3] to manage card
tables. While they describe the scheme for the Train collector, it
works well with MC2. MC2 divides every window into cards of size
128 bytes. For every window, it creates a card table that contains a
byte for each card in the window. The byte corresponding to a card
stores the logical address of the first window containing an object that
is referenced from the card. The collector also maintains a window
level summary table (that stores the lowest logical address contained
in each window’s card table) .

When it is time to collect a target window TW whose remembered
set is a card table the collector proceeds as follows. It first scans the
summary table to identify windows that contain references into TW .
For each source window SW that contains a reference into TW , the
collector scans the card table of SW to find cards within SW that con-
tain references into TW . It then scans every object in each of these
cards, to find the exact slots that point into TW . If a particular slot
does not point into TW , and it points to a window whose remembered
set is a card table, MC2 records the window number of the slot ref-
erence. It uses this information to update the card table with a new
value at the end of the scan.

The process of converting the remembered set representation for
a window TW is straightforward. MC2 scans the SSB sequentially,
and for every recorded slot, it checks if the contents still refer to an
object in TW . If so, it finds the source window and card corresponding
to the object that contains the slot. If the current entry for the source
window card is larger than the logical address of TW , MC2 overwrites
the entry with the lower logical address.

With a card size of 128 bytes, the size of the card table is about
0.78% of the total heap space. MC2 ensures that the total sum of
the space taken by the SSB remembered sets and the card table does
not exceed a specified limit. For example, if the limit is set at 5%
of the total space, MC2 starts coarsening remembered sets when their
occupancy reaches 4.2% of the total space. (Another possibility is
to use only a card table, and not use SSBs. We briefly compare the
performance of MC2 with both remembering schemes in the results
section.)

The bounded space overhead can come at a run-time cost. Setting
a byte in a card table is more expensive than inserting into a sequen-
tial store buffer. Also, scanning a card table and objects in a card to
identify slots that point into a target window is more expensive than
simply traversing a buffer sequentially.2 However, large remembered

2While our platform (Jikes RVM) uses an object format that precludes

sets are relatively rare, and when MC2 creates a large remembered
set, we use a technique described below to prevent the situation from
recurring.

Popular objects
Very often, large remembered sets arise because of a few very highly
referenced objects. For example, in javac, occasionally a large re-
membered set occurs when a small number of objects (representing
basic types and identifiers of Java) appear in the same window. These
objects can account for over 90% of all references in a remembered
set of size 600KB (about 4.5% of the live data size). MC2 identifies
popular objects during the process of converting an SSB to a card ta-
ble. While performing the conversion, it uses a byte array to maintain
a count of the number of references to each object in the window.
(Since the collector always reserves at least one window worth of free
space, there is always enough space for the byte array without ex-
ceeding our space budget.) As MC2 scans the SSB, it calculates the
offset of each referenced object, and increments the corresponding en-
try in the byte array. When the count for any object exceeds 100, MC2

marks it as popular.
During the copy phase, MC2 treats windows containing popular

objects specially. Any window that has a coarsened remembered set
(and hence popular objects), is placed in a separate collection group,
even if the amount of live data in the window is less than one collec-
tion window. This helps reduce the amount of data copied and focuses
collection effort on updating the large number of references into the
window, hence lowering pause time.

MC2 copies popular objects into a special window. It treats ob-
jects in this window as immortal and does not maintain a remembered
set for this window in subsequent collections. However, if the occu-
pancy of the window grows to be high, MC2 can add it back to the list
of collected windows. So, if popular objects exist, MC2 may take a
slight hit on pause time occasionally. However, it ensures that these
objects are isolated and do not cause another disruption. MC2 cannot
avoid this problem completely. To be able to do so, it would have to
know in advance (at the point when a popular object is copied out of
the nursery), that a large number of references will be created to the
object.

Large reference arrays
MC2 divides large reference arrays (larger than 8 KB) into 128-byte
cards. Rather than store every array slot in the remembered sets, MC2

always uses a card table for large objects. When MC2 allocates a large
object, it allocates additional space (one byte for every 128 bytes in the
object) at the end of the object. These bytes function as a per-object
card table in the exact same manner as the technique described in the
previous section. MC2 also adds a word to the header of the object
to store the logical address of the first window referenced from the
object. The card scan and update is identical to the scheme described
in the previous section.

4.5 Worst case performance
It is important to note that MC2 is a soft real time collector, and cannot
provide hard guarantees on maximum pause time and CPU utilization.
In the worst case MC2 behaves like a non-incremental collector. For
instance, if an application allocates a very big object immediately af-
ter the mark phase commences, causing the heap occupancy to cross
the heap size limit, MC2 must perform all marking and copying non-
incrementally in order to reclaim space to satisfy the allocation. If
such a situation arises, then the program will experience a long pause.

sequential scanning of a region by simple examination of its contents,
we use the mark bit map to find (marked) objects within a card. Only
the marked objects are relevant.

87

Status

BA C

(a) Before threading

BA C

Status

(b) After threading

Figure 5: An example of pointer threading performed by the Mark-Compact collector

MC2 does not assume any knowledge about peak allocation rates of
the running program and provides a best effort service based on statis-
tics it can compute as the program runs. Programs with very high al-
location rates during a full collection will experience longer pauses
than programs with lower allocation rates.

As described in the previous section, popular objects can also cause
MC2 to exhibit poor performance occasionally. In the worst case,
every word on the heap points to a single object, and moving the object
requires updating the entire heap, causing a long pause. However,
these situations are rare and MC2 provides good pause time behavior
under most conditions.

5. METHODOLOGY
In order to evaluate garbage collection for memory-constrained en-
vironments, we needed to implement garbage collectors described in
the literature that are appropriate to that environment. In this section,
we describe the implementation of these collectors, followed by our
experimental setup.

5.1 Implementation Details
We used the Jikes RVM Java virtual machine [1, 2], release 2.2.3,
to implement and evaluate the collectors. We used the Java memory
management toolkit (MMTk [8]), standard with Jikes RVM 2.2.3, as
the base collector framework. MMTk includes a generational mark-
sweep collector, and it provided us with most of the generic function-
ality required for a copying collector. While none of the collectors
requires virtual memory mapping support, they happen to use map-
ping because the MMTk framework uses it. This support speeds up
the performance of all collectors by allowing a faster write barrier (no
indirection in mapping addresses to logical regions).

MMTk divides the available virtual address space into a number of
regions. The region with the lowest addresses stores the virtual ma-
chine “boot image”. The region adjacent to the boot region stores im-
mortal objects—objects never considered for collection. The immor-
tal region uses bump pointer allocation and maps memory on demand
in blocks of size 32KB. MMTk allocates all system objects created
at run time in the immortal region. It also allocates type information
block (TIB) objects, which include virtual method dispatch vectors,
etc., in immortal space. Additionally, we allocate all type objects and
reference offset arrays for class objects into immortal space, since the
mark-compact collector requires that these objects not move during
collection.

Next to the immortal region is the region that stores large objects.
All collectors allocate objects larger than 8KB into this region. MMTk
rounds up the size of large objects to whole pages (4 KB), and allo-
cates and frees them in page-grained units. The remainder of the ad-
dress space can be used by the collectors to manage regular objects
allocated in the heap.

All collectors we evaluate in this paper are generational collectors.
We implement the collectors with a bounded nursery: the nursery is
bounded by a maximum and minimum size. When the size of the
nursery reaches the upper bound, even if there is free space available,
we trigger a nursery collection, and if the nursery shrinks to the min-
imum size, we trigger a full heap collection. The unusual aspect is
the upper bound, because it triggers collection earlier than necessary
on grounds of available space. This early triggering is important in
bounding pause time. It is important to realize that we consider here
only the bounded nursery variants of each of the collectors we com-
pare.

5.1.1 Generational mark-sweep
The MMTk MS collector divides the heap space into two regions. The
region with lower addresses contains the old generation, and the re-
gion with higher addresses contains the nursery. The write barrier
records, in a remembered set, pointers that point from outside the
nursery into the nursery. The write barrier is partially inlined [9]: the
code that tests for a store of an interesting pointer is inlined, while the
code that inserts interesting pointers into the remembered set is out
of line. The nursery uses bump pointer allocation, and the collector
copies nursery survivors into an old generation managed by mark-
sweep collection.

The mark-sweep collector uses segregated free lists to manage the
heap memory. The collector divides the entire heap into a pool of
blocks, each of which can be assigned to a free list for any of the size
classes. An object is allocated in the free list for the smallest size class
that can accommodate it. After garbage collection, if a block becomes
empty, the collector returns it to the pool of free blocks.

5.1.2 Generational mark-compact
We implemented a mark-compact generational collector (MSC), based
on the threaded algorithm described by Martin [21]. Threaded com-
paction does not require any additional space in the heap, except when
handling internal pointers. While this is not a problem for Java ob-
jects, since Java does not allow internal pointers, Jikes RVM allocates
code on the heap, which contains internal code pointers. However,
the space requirement for these pointers is not very high, since there
is only one code pointer per stack frame. MSC also requires a bit
map (space overhead of about 3%) in Jikes RVM, because the ob-
ject layout (scalars and arrays in opposite directions) does not allow a
sequential heap scan. MSC divides the heap into nursery, old gener-
ation, and bit map regions. It uses the same write barrier as MS. Its
compaction operates in two phases. During the mark phase, the col-
lector marks reachable objects. At the same time it identifies pointers
that point from higher to lower addresses. These pointers are chained
to their target object starting from the status word of the target (Jikes
RVM uses a status word in every object that stores lock, hash and

88

Old Write Barrier

Immortal LOS NurseryOld GenerationBoot Image

New Write Barrier

Figure 6: Heap layout in a MMTk generational collector. The
old write barrier records pointers into the nursery from objects
outside the nursery. The new write barrier additionally records
mutations to boot image objects.

GC information). For internal pointers, we use extra space to store an
additional offset into the target object.

Figure 5 shows an example illustrating how MSC performs thread-
ing during the first phase. A, B, and C are three objects in the heap.
A contains a self-referential pointer (considered a backward pointer),
and B and C contain one pointer each to A. The collector creates a
linked list starting from the status word for A. The status (which is
distinguished by having its low bits non-zero) is stored in the slot at
the end of the linked list.

At the end of the mark phase, the collector has identified all live
objects. Also, it has chained to each object all backward pointers to
that object, and they can be reached by traversing a linked list starting
from the object header. During the second phase, MSC performs the
actual compaction. As it moves an object, it updates all pointers refer-
ring to the object and copies the original status word into the header
of the new copy. Also, it chains all (forward) pointers from the object
to target objects not yet moved, so that it will update these pointers
when it moves the target object later in the phase.

5.1.3 Non-Incremental Collector Improvements
We describe here a couple of refinements we make to the MMTk MS
collector and our MSC collector described above. These refinements
help to improve execution and pause times significantly in small and
moderate size heaps.

Boot image remembered sets: During a full collection, the MMTk
MS collector scans the entire boot image to find pointers from boot
image objects into the heap. The collector needs to do this since it
does not record mutations to boot image objects. While this is simple
to implement and makes the write barrier fast, it is inefficient for small
and moderate size heaps, when full collections are frequent. This is
because most pointers within the boot image reference boot image

private final void writeBarrier(
VM_Address srcSlot, VM_Address tgtObj)

throws VM_PragmaInline {
// Record pointers from outside the nursery
// that point to objects in the nursery
if (srcSlot.LT(NURSERY_START) &&

tgtObj.GE(NURSERY_START))
nurseryRemset.outOfLineInsert(srcSlot);

VM_Magic.setMemoryAddress(srcSlot, tgtObj);
}

Figure 7: Original MMTk generational write barrier

private final void writeBarrier(VM_Address srcObj,
VM_Address srcSlot, VM_Address tgtObj)

throws VM_PragmaInline {
if (srcObj.LT(NURSERY_START) &&

tgtObj.GE(LOS_START))
slowPathWriteBarrier(srcObj, srcSlot, tgtObj);

VM_Magic.setMemoryAddress(src, tgtObj);
}

private final void slowPathWriteBarrier(
VM_Address srcObj, VM_Address srcSlot,
VM_Address tgtObj)

throws VM_PragmaNoInline {
// If source object is in the boot image
if (srcObj.LT(IMMORTAL_START)) {
// Check if object has already been recorded.
// If not, insert object address into boot
// remset and mark the object
VM_Word status =

VM_Interface.readAvailableBitsWord(srcObj);
if (status.and(Hdr.MUTATE_BIT).isZero()) {

VM_Interface.writeAvailableBitsWord(srcObj,
status.or(Hdr.MUTATE_BIT));

bootRemset.inlinedInsert(srcObj);
}

}
// Record slots outside nursery that point to
// nursery objects
if (tgt.GE(NURSERY_START))
nurseryRemset.inlinedInsert(src);

}

Figure 8: New generational write barrier

objects, and the collector spends a good portion of the collection time
following these pointers. Our measurements show that only about
0.4% of all boot image pointers reference objects in the heap. This
issue with boot image scanning has also been discussed by Bacon et
al. [4].

We modified the MMTk MS collector to avoid having to scan the
boot image during full collections. The modified MS collector uses
a new write barrier. Figure 6 shows the layout of the heap in MMTk
and the pointers that are recorded by the old and new write barriers.
Figure 7 shows the old MMTk MS write barrier and Figure 8 shows
the new write barrier (for a uniprocessor environment). The old write
barrier records pointers into the nursery from objects that lie outside
the nursery. The new barrier records all boot image objects that con-
tain pointers into the heap, in addition to recording pointers into the
nursery. During a full collection, the mutated boot objects are scanned
to find heap pointers, and the rest of the boot image is not touched.

The modified MS collector improves the full collection pause time
by up to a factor of 4 for small benchmarks (since boot image scanning
dominates collection time for these benchmarks). It usually has lower
execution times in small and moderate size heaps. In large heaps,
when fewer collections occur, the execution time is about the same
since the reduction in collection time is not significantly larger than
the increase in mutator time (due to the more expensive write barrier).

We also used this technique in a modified version of the genera-
tional mark-compact collector, and found improvements in execution
and pause times. We present in the results section the performance of
both versions of MS and MSC.

Code Region: MMTk collectors place compiled code and data in
the same space. We found that this can cause significant degradation
in the performance of MSC and MC2 due to poor code locality. We
modified the collectors to allocate code and data in different spaces.

89

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
1.47

2.94

5.87
6184 7730 9276 10822 12368 13914 15460 18552 21644 24736

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MSC
MSC-CODE

MSC-CODE-NEW-WB

(a) jack

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
2.63

5.26

10.51
13364 16705 20046 23387 26728 30069 33410 40092 46774 53456

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MSC
MSC-CODE

MSC-CODE-NEW-WB

(b) javac

Figure 9: GC time relative to best GC time for MSC, MSC with a separate code region (MSC-CODE), and MSC with a separate code
region and a new write barrier (MSC-CODE-NEW-WB). The new write barrier lowers GC time significantly.

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
7.90

8.29

8.69

9.48

10.27

11.85

15.80
6184 7730 9276 10822 12368 13914 15460 18552 21644 24736

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MSC
MSC-CODE

MSC-CODE-NEW-WB

(a) jack

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
15.56

16.34

17.12

18.67

20.23

23.34

31.12
13364 16705 20046 23387 26728 30069 33410 40092 46774 53456

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MSC
MSC-CODE

MSC-CODE-NEW-WB

(b) javac

Figure 10: Execution time relative to best execution time for MSC, MSC with a separate code region (MSC-CODE), and MSC with a
separate code region and a new write barrier (MSC-CODE-NEW-WB). The separate code region lowers execution time significantly by
reducing mutator time. The lower GC times with the new write barrier reduce execution time significantly.

For MSC, we achieved this by maintaining a separate code space to
store code objects which we compact in place. For MC2, we use sepa-
rate code windows to hold code objects. We do not use this technique
for MS, since the use of a separate MS space for code would not help
significantly (objects of different size are not placed together), and
would probably increase fragmentation. While the write barrier tech-
nique improves GC time (at a small expense in mutator time), the sep-
arate code region improves mutator time for the copying collectors
due to improved code locality.

Figure 9 shows MSC GC times for two benchmarks. The three
curves represent MSC with a common space for data and code, with
a separate code space (MSC-CODE), and MSC with a separate code
space and the new write barrier(MSC-CODE-NEW-WB). Figure 10
shows execution times for the three MSC variants. The GC times
for MSC and MSC-CODE are almost identical. Our performance
counter measurements show that MSC-CODE performs better due
to improved code locality (fewer ITLB misses). The graphs also
show that MSC-CODE-NEW-WB performs better than MSC-CODE

in small and moderate heaps because of lower GC times. In large
heaps, the two collectors have equivalent performance.

5.1.4 MC2

Our MC2 implementation divides the virtual address space for the old
generation into a number of fixed size frames. A frame is the largest
contiguous chunk of memory into which MC2 performs allocation.
We use a frame size of 8MB (the heap sizes for our benchmarks vary
from 6MB–120MB). Each frame accommodates one old generation
physical window. Windows are usually smaller than a frame, and the
portion of the address space within a frame that is not occupied by
a window is left unused (unmapped). The frames are power-of-two
aligned, so we need to perform only a single shift to find the physical
window number for an old generation object during GC; we use the
physical window number as an index into a byte array to obtain the
logical address of the window, as previously described. Each window
has an associated remembered set, implemented using a sequential
store buffer.

90

Benchmark Description Maximum Total
Live size (KB) Allocation (MB)

202 jess a Java expert system shell 5872 319
209 db a small data management program 12800 93
213 javac a Java compiler 13364 280
227 mtrt a dual-threaded ray tracer 12788 163
228 jack a parser generator 6184 279

pseudojbb SPECjbb2000 with a fixed number of transactions 30488 384

Table 1: Description of the benchmarks used in the experiments

Our implementation tags each remembered set entry to indicate
whether the entry belongs to a scalar object or an array (this informa-
tion is required to locate the object containing a slot while converting
remembered set representations). If the overall metadata size grows
close to 4.2% of the heap, MC2 converts the largest remembered sets
to card tables (we use a card table with a granularity of 128 bytes and
place a 5% limit on remembered set size). In our current implementa-
tion, we do not coarsen boot image slots since the number of entries
is small and limited.

5.2 Experimental Setup
Jikes RVM compiles all bytecode to native code before execution. It
has two compilers, a baseline compiler that essentially macro-expands
each bytecode into non-optimized machine code, and an optimizing
compiler. It also has an adaptive run-time system that first baseline
compiles all methods and later optimizes methods that execute fre-
quently. It optimizes methods at three different levels depending on
the execution frequency. However, the adaptive system does not pro-
duce reproducible results, because it uses timers and may optimize
different methods in different runs.

We used a pseudo-adaptive configuration to run our experiments
with reproducible results. We first ran each benchmark 7 times with
the adaptive run-time system, logging the names of methods that were
optimized and their optimization levels. We then determined the meth-
ods that were optimized in a majority of the runs, and the highest level
to which each of these methods was optimized in a majority of runs.
We ran our experiments with exactly these methods optimized (to that
optimization level) and all other methods baseline compiled. The re-
sulting system behavior is repeatable, and does very nearly the same
total allocation as a typical adaptive system run.

Jikes RVM is itself written in Java, and some system classes can be
compiled either at run time or at system build time. We compiled all
the system classes at build time to avoid any non-application compila-
tion at run time. The system classes appear in a region called the boot
image that is separate from the program heap.

6. RESULTS
We compare space overheads, GC times, total execution times, and
pause times for five collectors (MC2, MS, MS with the new write
barrier, MSC, and MSC with the new write barrier) across six bench-
marks. The MSC collectors and MC2 use separate regions for code
and data. Five benchmarks come from the SPECjvm98 suite [26],
and the sixth is pseudojbb, a modified version of the SPECjbb2000
benchmark [27]. pseudojbb executes a fixed number of transactions
(70000), which allows better comparison of the performance of the
different collectors. We ran all SPEC benchmarks using the default
parameters (size 100), and ignoring explicit GC requests. Table 1 de-
scribes each of the benchmarks we used. We compute the live size by
running each benchmark in the smallest heap for MSC, and recording
the largest amount of live data in the old generation after a full col-
lection. (MMTk uses a resource table that occupies 4MB in immortal

space. We move it to the boot image and do not include it in live size
measurements, since it skews the value considerably for small bench-
marks.)

We ran our experiments on a system with a Pentium P4 1.7 GHz
processor, 8KB on-chip L1 cache, 12KB on-chip ETC (instruction
cache), 256KB on-chip unified L2 cache, and 512 MB of memory,
running RedHat Linux 2.4.20-31.9 (with the perfctr patch applied).
We performed our experiments with the machine in single user mode
to maximize repeatability.

6.1 MC2 Space Overheads
MC2 implemented using an SSB remembered set incurs the following
space overheads for its metadata:

• 3.12% of the total heap space for a bit map that is used both to
mark objects and locate objects during a window scan.

• At most 5% of the total heap space for window remembered
sets. A card table for 128 byte cards occupies 0.78% of the to-
tal space. MC2 coarsens SSB remembered sets when their total
size reaches 4.2% of the total space. Table 2 shows the max-
imum remembered set overhead (without coarsening) for the
six benchmarks, for heap sizes ranging from 1.5–2.5 times the
program live size. The overheads are low, and jess, jack, javac
(and mtrt at 1.5 times the live size) require some coarsening in
small heaps. The overheads shown here do not include pointers
from large and immortal objects into the windows. We always
use a card table for these objects.

• Work Queue overhead. Our current implementation does not
bound the total work queue overhead, but we account for the
space taken up by the queue, which is small. Table 3 shows the
maximum queue overheads for our benchmark suite.

6.2 Execution times and pause times
Figure 11 shows GC times for the collectors relative to the best GC
time. Figure 12 shows total execution times for the collectors rela-
tive to the best execution time. The x-axis on all graphs represents
the heap size relative to the maximum live size, and the y-axis repre-
sents the relative times. Table 4 shows the maximum pause times for
the collectors and relative execution times for the MS and MSC col-
lectors in a heap that is 1.8 times the program’s maximum live size.
This is the smallest heap in which MC2 provides a combination of
high throughput and low pause times for 5 of the 6 benchmarks, and
is the typical overhead to be expected for good performance. Table 5
shows minimum, maximum and geometric means of the pause times
across all benchmarks for MC2 in heaps ranging from 1.5–2.5 times
the live size. It also shows geometric means of pause times and av-
erage relative execution times for MS and MSC. All results are for
configurations using a nursery with a maximum size of 1MB and a
minimum size of 256KB. MC2 uses 100 physical windows and 30
collection windows in the old generation.

91

Heap Size relative to maximum live size
Benchmark 1.5 1.75 1.8 2 2.25 2.5

202 jess 7.95 4.86 6.63 6.91 3.88 3.32
209 db 1.64 1.37 1.26 1.14 1.01 0.90
213 javac 8.52 7.06 6.91 5.90 5.91 5.49
227 mtrt 4.51 3.07 2.74 3.14 2.08 0.51
228 jack 6.84 5.03 5.00 4.54 3.18 2.20

pseudojbb 2.24 1.81 1.78 1.54 1.38 1.23

Table 2: Remembered set size (without coarsening) as per-
cent of heap size (%), for MC2 using 100 physical windows
and 30 collection windows

Heap Size relative to maximum live size
Benchmark 1.5 1.75 1.8 2 2.25 2.5

202 jess 0.61 0.53 0.51 0.48 0.41 0.37
209 db 0.46 0.40 0.38 0.34 0.31 0.27
213 javac 0.70 0.57 0.54 0.32 0.47 0.43
227 mtrt 0.17 0.15 0.15 0.13 0.12 –
228 jack 0.46 0.39 0.38 0.34 0.31 0.28

pseudojbb 0.13 0.11 0.11 0.10 0.08 0.08

Table 3: Maximum mark queue size as percent of heap size
(%), for MC2 using 100 physical windows and 30 collection
windows

MC2 MS MS (New WB) MSC MSC (New WB)
Benchmark MPT MPT ET MPT ET MPT ET MPT ET
202 jess 17.15 202.20 1.16 53.15 1.11 244.53 1.06 65.69 1.04
209 db 19.89 278.00 1.10 123.02 1.11 353.55 0.96 198.51 0.96
213 javac 40.39 317.04 0.96 171.88 0.92 458.09 0.92 308.95 0.89
227 mtrt 29.57 284.40 1.06 138.05 1.02 379.55 1.01 225.24 0.96
228 jack 23.89 210.04 1.07 59.69 1.03 234.04 1.03 92.89 0.99

pseudojbb 41.47 322.97 1.12 168.20 1.08 445.99 1.01 314.53 0.98
Geo. Mean 27.18 264.68 1.08 107.67 1.04 340.88 1.00 172.68 0.97

Table 4: Maximum Pause Times (MPT, all in milliseconds) and execution times relative to MC2 (ET) for MC2, MS, and MSC, in a heap
that is 1.8 times the maximum live size. MSC and MC2 use separate data and code regions. All collectors use a 1MB nursery and MC2

uses 100 physical windows and 30 collection windows.

MC2 MS MS (New WB) MSC MSC (New WB)
Rel. Min. Max. Mean Mean Mean Mean Mean Mean Mean Mean Mean

Heap. MPT MPT MPT MPT ET MPT ET MPT ET MPT ET
1.50 15.97 119.47 37.92 263.43 1.06 104.65 1.00 338.04 0.97 166.85 0.92
1.75 16.18 48.40 26.98 261.56 1.06 102.85 1.03 338.23 0.98 165.01 0.95
2.00 18.01 40.70 26.93 254.45 1.07 95.62 1.04 328.20 0.99 149.68 0.97
2.25 17.50 47.46 30.11 254.96 1.06 94.24 1.04 321.15 0.99 153.59 0.97
2.50 18.26 48.64 27.61 255.71 1.08 99.25 1.05 334.05 0.99 163.36 0.99

Table 5: Min., max., and geometric mean of max. pause times (milliseconds) across all benchmarks for MC2. Geometric mean of max.
pause times (milliseconds) and geometric mean of execution times relative to MC2 across all benchmarks for MS and MSC. For each heap
size, we consider only benchmarks that cause invocation of at least one full collection for all collectors. MSC and MC2 use separate data
and code regions. All collectors use a 1MB nursery and MC2 uses 100 physical windows and 30 collection windows.

The execution times for MSC with the new write barrier are almost
always lower than MSC with the boot image scan. The GC plots show
that a significant reduction in GC time causes the performance im-
provement. Only for db is performance with the new barrier slightly
worse in moderate and large heaps. This is because db mutates a large
number of pointers into the old generation (90% of all stores), causing
invocation of the slow path barrier each time. The old barrier ignores
these writes since it records only pointers into the nursery.

Similarly, for MS the performance with the new barrier is usually
better in small and moderate size heaps. As with MSC, the perfor-
mance with the new barrier is slightly worse for db in moderate and
large heaps. In the following discussion, we consider MS and MSC
only with the new barrier.

MSC almost always has the best execution times among the col-
lectors. It always outperforms MS in small and moderate size heaps.
MC2 also generally performs better than MS in small and moderate
size heaps. The exceptions are db and javac, where MC2 performs
worse than MS in small heaps. In large heaps, MC2 and MS have
equivalent performance for all benchmarks apart from db and pseu-
dojbb. MC2 performs significantly better for these benchmarks.

MC2 has lower GC times than MS for jess and jack. For all other
benchmarks, GC times for MC2 are slightly worse than those for MS.
However, the overall performance of MC2 is usually better due to
improved locality.

For all benchmarks, the performance for MC2 is usually within 5%
of of MSC in heaps that are 1.5–1.8 times the program live size or
larger. javac again is an exception and MC2 is within 5-6% of MSC
only in heaps that are twice the live size or larger.

MSC performs better than the other collectors for a couple of rea-
sons. First, the GC cost for MSC is almost always the lowest. Second,
the collector preserves allocation order, which yields better locality
and thus lower mutator times.

Both db and pseudojbb contain significant amounts of permanent
data, which is advantageous to MC2. Since it uses a mostly-copying
technique, it does not copy large portions of data. It compacts a
smaller portion of the heap, which contains transient data. In spite
of copying little data, MC2 does not have lower GC times than MSC,
because MSC has the same property. It also does not repeatedly copy
permanent data, since permanent data flows toward the lower end of
the heap, and MSC does not move any live data at the start of the heap.

92

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
1.39

2.78

5.57
5872 7340 8808 10276 11744 13212 14680 17616 20552 23488

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(a) jess

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
0.41

0.83

1.66
12800 16000 19200 22400 25600 28800 32000 38400 44800 51200

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(b) db

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
2.63

5.26

10.51
13364 16705 20046 23387 26728 30069 33410 40092 46774 53456

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(c) javac

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
0.88

1.76

3.52
12788 15985 19182 22379 25576 28773 31970 38364 44758 51152

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(d) mtrt

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
1.47

2.94

5.87
6184 7730 9276 10822 12368 13914 15460 18552 21644 24736

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(e) jack

 1

 2

 4

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
3.30

6.60

13.21
30488 38110 45732 53354 60976 68598 76220 91464 106708 121952

G
C

 ti
m

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 G

C
 ti

m
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(f) pseudojbb

Figure 11: GC time relative to best GC time for MS, MSC, and MC2

The data in table 4 show that for all benchmarks, the maximum
pause times for MC2 are significantly lower than those for MS and
MSC, even in a tight heap. The geometric mean of the pause times for
MC2 is 27.18ms. The mean pause time for the MMTk MS collector is
264.68, almost a factor of 10 higher, with a mean performance degra-
dation of 8%. MS with the new write barrier performs much better,

but has a mean pause time that is a factor of 4 higher, with a mean
performance degradation of 4%.

MSC with the boot image scan performs as well as MC2 on aver-
age, with an average pause time that is almost a factor of 12 higher.
With the new write barrier, MC2 is 3% slower on average but its pause
time is up to an order magnitude lower than MSC, with an average

93

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
6.68

7.01

7.35

8.02

8.68

10.02

13.36
5872 7340 8808 10276 11744 13212 14680 17616 20552 23488

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(a) jess

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
23.55

24.73

25.91

28.26

30.62

35.33

47.10
12800 16000 19200 22400 25600 28800 32000 38400 44800 51200

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(b) db

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
15.56

16.34

17.12

18.67

20.23

23.34

31.12
13364 16705 20046 23387 26728 30069 33410 40092 46774 53456

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(c) javac

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
6.09

6.39

6.70

7.31

7.92

9.13

12.18
12788 15985 19182 22379 25576 28773 31970 38364 44758 51152

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(d) mtrt

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
7.90

8.29

8.69

9.48

10.27

11.85

15.80
6184 7730 9276 10822 12368 13914 15460 18552 21644 24736

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(e) jack

 1

 1.05

 1.1

 1.2

 1.3

 1.5

 2

 1 1.25 1.5 1.75 2 2.25 2.5 2.75 3 3.5 4
22.62

23.75

24.88

27.14

29.41

33.93

45.24
30488 38110 45732 53354 60976 68598 76220 91464 106708 121952

E
xe

cu
tio

n
tim

e
re

la
tiv

e
to

 b
es

t (
lo

g)

T
ot

al
 e

xe
cu

tio
n

tim
e

(s
ec

on
ds

)
(lo

g)

Size relative to max. live size (log)

Total size (MB) (log)

MS
MS-NEW-WB

MSC
MSC-NEW-WB

MC2

(f) pseudojbb

Figure 12: Total execution time relative to best total execution time for MS, MSC, and MC2

pause time that is a factor of 6 lower. The only benchmark for which
the performance of MC2 is significantly worse is javac. MC2 requires
a slightly larger heap for javac and is usually about 5% worse than
MSC in heaps that are twice the live size or larger.

Table 5 summarizes results for the collectors in heaps from 1.5–
2.5 times the live size. In a heap that is 1.5 times the live size, MC2 is

about 8% slower than MSC on average and has a maximum pause time
of 119.47ms (this long pause occurs for javac because a few copying
passes are clustered together). In heaps between 1.75–2.5 times the
live size, the maximum pause time for MC2 is under 50ms for all
benchmarks. The average pause time varies from 27–30ms. MC2 is
3–5% faster than MS and 1–5% slower than MSC on average.

94

We also compared the performance of MC2 (using SSBs with coars-
ening) with a version of MC2 that uses only a card table. In very small
heaps (1.25 times the live size or lower) the card table technique usu-
ally performs better than the SSB technique. This is because it has a
smaller space overhead (always 0.78%) than the SSB collector. How-
ever, in heaps that are larger than 1.25 times the live size, the SSB
technique performs slightly better or about the same as the card tech-
nique. The pause times for the SSB collector also tend to be slightly
lower than the card technique since it knows the exact location of
slots pointing into windows. The card technique must examine ev-
ery pointer in every object in all cards that contain an object into the
window being collected, which can be more expensive.

Summary: The results show that MC2 can obtain low pause times
and good throughput in constrained heaps. The average pause time
for MC2 is 27.18ms in a heap that is 1.8 times the program live size.
Importantly, the execution times for MC2 are good—about 4% better
than a well tuned mark-sweep collector and about 3% worse than a
well tuned mark-compact collector.

6.3 Pause time distribution
Figure 13 shows the distribution of MC2 pause times for the six bench-
marks in a heap that is 1.8 times the benchmark’s maximum live size.
The figure contains three plots for each benchmark: the first contains
all pauses (nursery collection, mark phase, and copy phase), the sec-
ond only mark phase pauses, and the third only copy phase (nursery
and old generation window copying) pauses. The graphs also show
the durations of the median pause, and of the 90th and 95th percentile
pauses. The x-axis on all graphs shows the actual pause times and
the y-axis shows the frequency of occurrence of each pause time. The
y-axis is on a logarithmic scale, allowing one to see clearly the less
frequently-occurring longer pauses.

For all benchmarks, a majority of the pauses are 10ms or less. 80%
of all pauses for javac are 10ms or less, and 92% of pauses for pseu-
dojbb are in the 0–10ms range. (For jess, db, mtrt and jack, pauses that
are 10ms or less account for 97%, 93%, 87% and 93% of all pauses).

Most of these pauses are caused by the mark phase, which performs
small amounts of marking interleaved with allocation. These pauses
cause the median pause time value to be low. The graphs containing
mark-only pauses show that the maximum duration of a mark pause is
9ms, and this occurs for jack. jess, db, mtrt and pseudojbb have mark
pauses that are 5ms or less. All mark pauses for javac are at most 7ms
long.

The less frequent, longer pauses (up to 41ms long) typically result
from the copy phase. These collections copy objects out of both the
nursery and a subset of the old generation windows. The average
copy phase collection time for javac is 26ms, and the average copy
phase pause time for pseudojbb is 19ms. The longest copy pause time
(41ms) is for pseudojbb, and 88% of all copy pauses are shorter than
30ms in duration.

One possible technique we could use to reduce copy phase pause
times further is to collect the nursery and old generation windows sep-
arately. We call this a split phase technique. Using split-phase, MC2

would alternate between nursery collections and old generation win-
dow copying, with data from the windows copied when the nursery
is half full. However, this technique adds a cost to the write barrier,
to keep track of pointers from the nursery into the next set of old
generation windows being copied. We have not yet implemented and
evaluated this technique for MC2.

6.4 Bounded mutator utilization
We now look more closely at the pause time characteristics of the
collectors. We consider more than just the maximum pause times that
occurred, since these do not indicate how the collection pauses are

distributed over the running of the program. For example, a collector
might cause a series of short pauses whose effect is similar to a long
pause, which cannot be detected by looking only at the maximum
pause time of the collector (or the distributions).

We present mutator utilization curves for the collectors, following
the methodology of Cheng and Blelloch [12]. They define the utiliza-
tion for any time window to be the fraction of the time that the mutator
(the program, as opposed to the collector) executes within the win-
dow. The minimum utilization across all windows of the same size is
called the minimum mutator utilization (MMU) for that window size.
An interesting property of this definition is that a larger window can
actually have lower utilization than a smaller one. To avoid this, we
extend the definition of MMU to what we call the bounded minimum
mutator utilization (BMU). The BMU for a given window size is the
minimum mutator utilization for all windows of that size or greater.

Figure 14 shows BMU curves for the six benchmarks for a heap
size equal to 1.8 times the benchmark live size. The x-intercept of
the curves indicates the maximum pause time, and the asymptotic y-
value indicates the fraction of the total time used for mutator execution
(average mutator utilization).

Since it is difficult to factor out the write barrier cost, the curves
actually represent utilization inclusive of the write barrier. The real
mutator utilization will be a little lower. These graphs also do not
show the effects of locality on the overall performance. For instance,
for db, MC2 and MS have lower throughput. However, since this is
caused by higher mutator times (possibly because of locality effects),
and not because of higher GC times, the BMU curves do not reflect
the consequences.

The three curves in each graph are for MC2, MS, and MSC (all for
versions using the new write barrier). The curve with the smallest x-
intercept is for MC2. MSC has the curve with the largest x-intercept;
the MS curve has an x-intercept in between the other two.

For all benchmarks, MC2 allows some mutator utilization even for
very small windows. This is because of the low pause times for the
collector. For most benchmarks, the mutator can execute for up to
10–25% of the total time in the worst case, for time windows that
are about 50ms long. The non-incremental collectors, on the other
hand, allow non-zero utilization in the worst case only for much larger
windows, since they have large maximum pause times.

MC2 can provide higher utilization than MS in windows of time
up to 7 seconds for jess, windows up to 600ms for db, 300ms for
javac, mtrt, and pseudojbb, and windows up to 200ms for jack. When
compared with MSC, utilization is higher for windows up to 7s, 3s,
800ms, 500ms, 400ms and 300ms for jess, javac, pseudojbb, mtrt, db,
and jack respectively.

Beyond that, the utilization provided by MC2 for most benchmarks
is about the same, and the asymptotic y-values for the curves are very
close. For jack, utilization provided by MC2 is lower than MSC for
windows larger than 300ms but overall utilization is close. Only for
javac does MC2 provide significantly lower overall utilization (the
overall utilization for javac is much closer in heaps that are twice the
live size or higher).

Summary: The mutator utilization curves for the collectors show
that MC2 not only provides shorter pause times, it also provides higher
mutator utilization for small windows of time, i.e., it spreads its pauses
out well. This holds even for windows of time that are larger than the
maximum pause times for the non-incremental collectors. In windows
of time that are larger than one second, the utilization provided by all
collectors tends to be about the same.

95

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(a) jess (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(b) jess (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(c) jess (copy pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(d) db (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(e) db (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(f) db (copy pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(g) javac (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(h) javac (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(i) javac (copy pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(j) mtrt (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(k) mtrt (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(l) mtrt (copy pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(m) jack (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(n) jack (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(o) jack (copy pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(p) pseudojbb (all pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(q) pseudojbb (mark pauses)

 1

 10

 100

 1000

 0 5 10 15 20 25 30 35 40 45 50

F
re

qu
en

cy

Pause time (ms)

Median
90%
95%

(r) pseudojbb (copy pauses)

Figure 13: MC2 pause time distributions, in a heap that is 1.8 times the program live size. The first column shows all pauses. Mark pauses
(second column) are 9ms or less. Copy phase pauses (third column) are longer (4–41ms).

96

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(a) jess

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(b) db

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(c) javac

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(d) mtrt

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(e) jack

 0

 0.2

 0.4

 0.6

 0.8

 1

 10000 100000 1e+06 1e+07

B
ou

nd
ed

 M
ut

at
or

 U
til

iz
at

io
n

(B
M

U
)

Window Size (µseconds) (log)

MC2

MS

MSC

(f) pseudojbb
Figure 14: Bounded mutator utilization for MC2, MS, and MSC in a heap that is 1.8 times the maximum live size. MC2 provides better
utilization in small windows (usually up to 300ms) due to lower pause times and good pause distribution.

7. CONCLUSIONS
We have presented an incremental copying garbage collector, MC2

(Memory-Constrained Copying), that runs in constrained memory and
provides both good throughput and short pause times. These prop-
erties make the collector suitable for applications running on hand-
held devices that have soft real-time requirements. It is also attrac-
tive for desktop and server environments, where its smaller and more

predictable footprint makes better use of available memory. We com-
pared the performance of MC2 with a non-incremental generational
mark-sweep (MS) collector and a generational mark-compact (MSC)
collector, and showed that MC2 provides throughput comparable to
that of both of those collectors. We also showed that the pause times
of MC2 are significantly lower than those for MSC and MS in con-
strained memory.

97

8. ACKNOWLEDGMENTS
This material is based upon work supported by the National Science
Foundation under grant number CCR-0085792. Additionally, Emery
Berger was supported by NSF CAREER award CNS-0347339. Any
opinions, findings, conclusions, or recommendations expressed in this
material are those of the authors and do not necessarily reflect the
views of the NSF. We are also grateful to IBM Research for making
the Jikes RVM system available under open source terms. The MMTk
component of Jikes RVM was particularly helpful in this work.

In addition, we thank Rick Hudson for the original idea that led
to the MC and MC2 collectors, and Kathryn McKinley and Csaba
Andras Moritz for discussions that helped shape the paper.

9. REFERENCES
[1] Bowen Alpern, C. R. Attanasio, Anthony Cocchi, Derek Lieber,

Stephen Smith, Ton Ngo, John J. Barton, Susan Flynn Hummel,
Janice C. Sheperd, and Mark Mergen. Implementing Jalapeño in Java.
In OOPSLA’99 ACM Conference on Object-Oriented Systems,
Languages and Applications, volume 34(10) of ACM SIGPLAN
Notices, pages 314–324, Denver, CO, October 1999. ACM Press.

[2] Bowen Alpern, Dick Attanasio, John J. Barton, M. G. Burke, P. Cheng,
J.-D. Choi, Anthony Cocchi, Stephen J. Fink, David Grove, Michael
Hind, Susan Flynn Hummel, D. Lieber, V. Litvinov, Mark Mergen, Ton
Ngo, J. R. Russell, Vivek Sarkar, Manuel J. Serrano, Janice Shepherd,
S. Smith, V. C. Sreedhar, H. Srinivasan, and J. Whaley. The Jalapeño
virtual machine. IBM System Journal, 39(1):211–238, February 2000.

[3] Alain Azagury, Elliot K. Kolodner, Erez Petrank, and Zvi Yehudai.
Combining card marking with remembered sets: How to save scanning
time. In Richard Jones, editor, ISMM’98 Proceedings of the First
International Symposium on Memory Management, volume 34(3) of
ACM SIGPLAN Notices, pages 10–19, Vancouver, October 1998. ACM
Press.

[4] David F. Bacon, Perry Cheng, and V.T. Rajan. Controlling
fragmentation and space consumption in the Metronome, a real-time
garbage collector for Java. In ACM SIGPLAN 2003 Conference on
Languages, Compilers, and Tools for Embedded Systems
(LCTES’2003), pages 81–92, San Diego, CA, June 2003. ACM Press.

[5] David F. Bacon, Perry Cheng, and V.T. Rajan. A real-time garbage
collecor with low overhead and consistent utilization. In Conference
Record of the Thirtieth Annual ACM Symposium on Principles of
Programming Languages, ACM SIGPLAN Notices, pages 285–298,
New Orleans, LA, January 2003. ACM Press.

[6] Henry G. Baker. List processing in real-time on a serial computer.
Communications of the ACM, 21(4):280–294, 1978. Also AI
Laboratory Working Paper 139, 1977.

[7] Ori Ben-Yitzhak, Irit Goft, Elliot Kolodner, Kean Kuiper, and Victor
Leikehman. An algorithm for parallel incremental compaction. In
ISMM ’02 [17], pages 100–105.

[8] Stephen M. Blackburn, Perry Cheng, and Kathryn S. McKinley. Oil and
Water? High Performance Garbage Collection in Java with MMTk. In
ICSE 2004, 26th International Conference on Software Engineering,
pages 137–146, Edinburgh, May 2004.

[9] Stephen M. Blackburn and Kathryn S. McKinley. In or out? Putting
write barriers in their place. In ISMM ’02 [17], pages 175–184.

[10] Rodney A. Brooks. Trading data space for reduced time and code space
in real-time garbage collection on stock hardware. In Guy L. Steele,
editor, Conference Record of the 1984 ACM Symposium on Lisp and
Functional Programming, pages 256–262, Austin, TX, August 1984.
ACM Press.

[11] C. J. Cheney. A non-recursive list compacting algorithm.
Communications of the ACM, 13(11):677–8, November 1970.

[12] Perry Cheng and Guy Blelloch. A parallel, real-time garbage collector.
In Proceedings of SIGPLAN 2001 Conference on Programming
Languages Design and Implementation, ACM SIGPLAN Notices,
pages 125–136, Snowbird, Utah, June 2001. ACM Press.

[13] Jacques Cohen and Alexandru Nicolau. Comparison of compacting
algorithms for garbage collection. ACM Transactions on Programming
Languages and Systems, 5(4):532–553, 1983.

[14] Edsgar W. Dijkstra, Leslie Lamport, A. J. Martin, C. S. Scholten, and

E. F. M. Steffens. On-the-fly garbage collection: An exercise in
cooperation. Communications of the ACM, 21(11):965–975, November
1978.

[15] B. K. Haddon and W. M. Waite. A compaction procedure for variable
length storage elements. Computer Journal, 10:162–165, August 1967.

[16] Richard L. Hudson and J. Eliot B. Moss. Incremental garbage
collection for mature objects. In Yves Bekkers and Jacques Cohen,
editors, Proceedings of International Workshop on Memory
Management, volume 637 of Lecture Notes in Computer Science, pages
388–403, University of Massachusetts, USA, 16–18 September 1992.
Springer-Verlag.

[17] ISMM’02 Proceedings of the Third International Symposium on
Memory Management, ACM SIGPLAN Notices, Berlin, June 2002.
ACM Press.

[18] Mark S. Johnstone and Paul R. Wilson. The memory fragmentation
problem: Solved? In Peter Dickman and Paul R. Wilson, editors,
OOPSLA ’97 Workshop on Garbage Collection and Memory
Management, pages 26–36, October 1997.

[19] H. B. M. Jonkers. A fast garbage compaction algorithm. Information
Processing Letters, 9(1):25–30, July 1979.

[20] Henry Lieberman and Carl E. Hewitt. A real-time garbage collector
based on the lifetimes of objects. Communications of the ACM,
26(6):419–429, 1983. Also report TM–184, Laboratory for Computer
Science, MIT, Cambridge, MA, July 1980 and AI Lab Memo 569,
1981.

[21] Johannes J. Martin. An efficient garbage compaction algorithm.
Communications of the ACM, 25(8):571–581, August 1982.

[22] John McCarthy. Recursive functions of symbolic expressions and their
computation by machine. Communications of the ACM, 3:184–195,
1960.

[23] NewMonics Inc., PERC virtual machine.
http://www.newmonics.com/perc/info.shtml.

[24] Narendran Sachindran and J. Eliot B. Moss. Mark-Copy: Fast copying
GC with less space overhead. In OOPSLA’03 ACM Conference on
Object-Oriented Systems, Languages and Applications, ACM
SIGPLAN Notices, pages 326–343, Anaheim, CA, November 2003.
ACM Press.

[25] H. Schorr and W. Waite. An efficient machine independent procedure
for garbage collection in various list structures. Communications of the
ACM, 10(8):501–506, August 1967.

[26] Standard Performance Evaluation Corporation. SPECjvm98
Documentation, release 1.03 edition, March 1999.

[27] Standard Performance Evaluation Corporation. SPECjbb2000 (Java
Business Benchmark) Documentation, release 1.01 edition, 2001.

[28] Guy L. Steele. Multiprocessing compactifying garbage collection.
Communications of the ACM, 18(9):495–508, September 1975.

[29] Sun Microsystems, The CLDC HotSpot Implementation Virtual
Machine, Java 2 Platform, Micro Edition J2ME Technology, March
2004. http://java.sun.com/products/cldc/wp/CLDC-HI whitepaper-
March 2004.pdf.

[30] David M. Ungar. Generation scavenging: A non-disruptive high
performance storage reclamation algorithm. ACM SIGPLAN Notices,
19(5):157–167, April 1984. Also published as ACM Software
Engineering Notes 9, 3 (May 1984) — Proceedings of the
ACM/SIGSOFT/SIGPLAN Software Engineering Symposium on
Practical Software Development Environments, 157–167, April 1984.

[31] Paul R. Wilson. Uniprocessor garbage collection techniques. Technical
report, University of Texas, January 1994. Expanded version of the
IWMM92 paper.

[32] Taichi Yuasa. Real-time garbage collection on general-purpose
machines. Journal of Software and Systems, 11(3):181–198, 1990.

98

