
Memory Subsystem Performance

of Programs Using Copying Garbage Collection

Amer Diwan

David Tarditi

Eliot Moss*

School of Computer Science

Carnegie Mellon University

5000 Forbes Avenue

Pittsburgh, PA 15213

Abstract

Heap allocation with copying garbage collection is believed

to have poor memory subsystem performance, We conducted

a study of the memory subsystem performance of heap alloca-

tion for memory subsystems found on many machines. We

found that many machines support heap allocation poorly.

However, with the appropriate memory subsystem organi-

zation, heap allocation can have good memory subsystem

performance.

1 Introduction

Heap allocation with copying garbage collection is widely

believed to have poor memory subsystem performance

[31, 38, 39, 24, 40]. To investigate this, we conducted an

extensive study of memory subsystem performance of heap

allocation intensive programs on memory subsystem organi-

zations typical of many workstations. The programs, com-

piled with the SML/NJ compiler [3], do tremendous amounts

of heap allocation, allocating one word every to 4 to 10

instructions. The programs used a generational copying

garbage collector to manage their heaps. To our surprise,

we found that for some configurations corresponding to ac-

tual machines, such as the DECStation 5000/200, the mem-

ory subsystem performance was comparable to that of C and

*The authors can be reached electronically via Internet addresses

diwan@cs.umass. edu, dtarditi@cs.cmu. edu, moss@ cs.umass.edu,

This work was done while Amer Diwan and Eliot Moss were on leave from
University of Massachusetts.

This research is sponsored by the Defense Advanced Research Projects

Agency, DoD, through ARPA Order 8313, and monitored by ESD/AVS un-

der contract F19628-9 1-C-0168. Views and conclusions contained in this

document are those of the authors and should not be interpreted as represent-

ing the official policies, either expressed or implied. of the Defense Advanced

Research Projects Agency or the United States Government. David Tarditi

is also supported by an AT&T PhD Scholarship.

Permksion to copy without fee all or part of this material is

granted provided that the copies ere not mede or distributed for
direct commercial edventage, the ACM copyright notice and the
title of the publication and its date eppeer, end notice is given

that copying is by permission of the Association for Computing

Mechinery. To copy otherwise, or to republish, requires a fee

and/or epecific permission,

POPL 94- 1~4, Portland Oregon, USA

@ 1994 ACM 0-69791 -636-0/94/001..$3.50

Fortran programs [10]: programs ran only 16% slower than

they would have with an infinitely fast memory. This perfor-

mance is similar to that for C and Fortran programs For other

configurations, the slowdown was often higher than 100%,

The memory subsystem features important for achieving

good performance with heap allocation are subblock place-

ment with a subblock size of one word combined with write-

allocate on write-miss, a write buffer and page-mode writes,

and cache sizes of 32K or larger. Heap allocation performs

poorly on machines which do not have one or more of these

features; this includes most current workstations.

Our work differs from previous reported work [31, 38,39,

24, 40] on memory subsystem performance of heap alloca-

tion in two important ways. First, previous work used overall

miss ratios as the performance metric and neglected the po-

tentially different costs of read and write misses. Overall

miss ratios are misleading indicators of performance: a high

overall miss ratio does not always translate to bad perfor-

mance. We separate read misses from write misses. Second,

previous work did not model the entire memory subsystem: it

concentrated solely on caches. Memory subsystem features

such as write buffers and page-mode writes interact with the

costs of hits and misses in the cache and should be simulated

to give a correct picture of memory subsystem behavior. We

simulate the entire memory subsystem,

We did the study by instrumenting programs to produce

traces of all memory references. We fed the references into

a memory subsystem simulator which calculated a perfor-

mance penalty due to the memory subsystem. We fixed the

architecture to be the MIPS R3000 [23] and varied cache con-

figurations to cover the design space typical of workstations

such as DECStations, SPARCStations, and HP 9000 series

700. All the memory subsystem configurations we studied

had a write buffer and page-mode writes. We studied eight

substantial programs.

We varied the following cache parameters: size (8K to

128 K), block size (16 or 32 bytes), write miss policy (write

allocate or write no allocate), subblock placement (with and
without), and associativit y (one and two way). We simulated

only split instruction and data caches, i. e,, no unified caches.

We report data only for write-through caches but the results

extend easily to write-back caches (see Section 5.2).

1

Section 2 gives background information. Section 3 de-

scribes related work. Section 4 describes the simulation

methods used, the benchmarks used, and the metrics used to

measure memory subsystem performance. Section 5 presents

the results of the simulation studies, and an analysis of those

results. Section 6 concludes.

2 Background

The following sections describe memory subsystems, copy-

ing garbage collection, SML, and the SML/NJ compiler.

2.1 Memory subsystems

This section reviews the organization of memory subsystems.

Since terminology for memory subsystems is not standard-

ized we use Przybylski’s terminology [32].

It is well known that CPUS are getting faster relative to

DRAM memory chips; main memory cannot supply the CPU

with instructions and data fast enough. A solution to this

problem is to use a cache, a small fast memory placed be-

tween the CPU and main memory that holds a subset of

memory. If the CPU reads a memory location which is in

the cache, the value is returned quickly. Otherwise the CPU

must wait for the value to be fetched from main memory.

Caches work by reducing the average memory access time.

This is possible since memory accesses exhibit temporal and

spatial locality. Temporal locality means that a memory loca-

tion that was referenced recently will probably be referenced

again soon and is thus worth storing in the cache. Spatial

locality means that a memory location near one which was

referenced recently will probably be referenced soon. Thus,

it is worth moving the neighboring locations to the cache.

2.1.1 Cache organization

This section describes cache organization for a single level of

caching. A cache is divided into blocks, each of which has an

associated tag. A cache block represents a block of memory.

Cache blocks are grouped into sets. A memory block may

reside in the cache in exactly one set, but may reside in any

block within the set, The tag for a cache block indicates what

memory block it holds. A cache with sets of size n is said to be

n-way associative. If n= 1, the cache is called direct-mapped.
Some caches have valid bits, to indicate what sections of a

block hold valid data. A subblock is the smallest part of

a cache with which a valid bit is associated, In this paper,

subblockplacement implies a subblock size of one word, i. e,,

valid bits are associated with each word, Moreover, on a

read miss, the whole block is brought into the cache not just

the subblock that missed. Przybylski [32] notes that this is a

good choice.

A memory access for which a block is resident in the cache

is called a hit. Otherwise, the memory access is a miss.

A read request for memory location m causes m to be

mapped to a set. All the tags and valid bits (if any) in the set

are checked to see if any block contains the memory block

for m. If a cache block contains the memory block form, the

word corresponding tom is selected from the cache block. A

read miss is handled by copying the missing block from the

main memory to the cache.

A write hit is always written to the cache. There are

several policies for handling a write miss, differing in their

performance penalties. For each of the policies, the actions

taken on a write miss are:

1. write no allocate:

● DO not allocate a block in the cache

s Send the write to main memory, without putting

the write in the cache.

2. write allocate, no subblock placement:

● Allocate a block in the cache.

● Fetch the corresponding memory block from main

memory.

o Write the word to the cache and to memory.

3. write allocate, subblock placement:

c Allocate a block in the cache.

● Write the word to the cache and to memory.

● Invalidate the remaining words in the block.

Write allocate/subblock placement will have a lower write

miss penalty than write allocateho subblockplacement since

it avoids fetching a memory block from main memory. In

addition, it will have a lower penalty than write no allocate if

the written word is read before being evicted from the cache.

See Jouppi [22] for more information on write miss policies.

A miss is a compulsory miss if it is due to a memory block

being accessed for the first time. A miss is a capacity miss if

it results from the cache (size C) not being big enough to hold

all the memory blocks used by a program, This corresponds

to the misses in a fully associative cache of size C with LRU

replacement policy (minus the compulsory misses). It is a

conflict miss if it results from two memory blocks mapping

to the same set. [20]

A write buffer may be used to reduce the cost of writes to
main memory. A write buffer is a queue containing writes

that are to be sent to main memory. When the CPU does

a write, the write is placed in the write buffer and the CPU

continues without waiting for the write to finish. The write

buffer retires entries to main memory using free memory

cycles. A write buffer stall occurs if the write buffer is full

when the CPU tries to do a write or tries to read a location

queued up in the write buffer.

1ReC~l subblock size is assumed to be 1 word.

.4

Main memory is divided into DRAM pages. Page-mode

writes reduce the latency of writes to the same DRAM page

when there are no intervening memory accesses to another

DRAM page.

2.1.2 Memory subsystem performance

This section describes two metrics for measuring the perfor-

mance of memory subsystems. One popular metric is the

cache miss ratio. The cache miss ratio is the number of

memory accesses that miss divided by the total number of

memory accesses. Since different kinds of memory accesses

usually have different miss costs, it is useful to have miss

ratios for each kind of access.

Cache miss ratios alone do not measure the impact of

the memory subsystem on overall system performance. A

metric which better measures this is the contribution of the

memory subsystem to CPI (cycles per useful instruction).

CPI is calculated for a program as number of CPU cycles

to complete a program/total number of useful instructions

executed. It measures how efficiently the CPU is being uti-

lized. The contribution of the memory subsystem to CPI is

calculated as number of CPU cycles spent waiting for the

memory subsystem /total number of useful instructions exe-

cuted. As an example, on a DECStation 5000/200, the lowest

CPI possible is 1, completing one instruction per cycle. If

the CPI for a program is 1,50, and the memory contribution

to CPI is 0.3, 2070 of the CPU cycles are spent waiting for

the memory subsystem (the rest may be due to other causes

such as nops, multi-cycle instructions like integer division,

etc.). CPI is machine dependent since it is calculated using

actual penalties.

2.2 Copying garbage collection

A copying garbage collector [18, 11] reclaims an area of

memory by copying all the live (non-garbage) data to another

area of memory. This means that all data in the garbage-

collected area is now garbage, and the area can be re-used.

Since memory is always reclaimed in large contiguous areas,

objects can be sequentially allocated from such areas at the

cost of only a few instructions. Figure 1 gives an example

of pseudo-assembly code for allocating a cons cell. ra

contains the car cell contents, rd contains the cdr cell

contents, al 1 oc is the address of the next free word in the

allocation area, and top contains the end of the allocation

area.

The SML/NJ compiler uses a simple generational copying

garbage collector [28]. Memory is divided into an old gen-

eration and an allocation area. New objects are created in

the allocation area; garbage collection copies the live objects

in the allocation area to the old generation, freeing up the
allocation area. Generational garbage collection relies on the

ZAI] in$~ction~ besides nops are considered to be useful. A noP (null

operation) instruction is a software-controlled pipeline statl

% check for heap overflow

cmp alloc+12, top

branch- if-gt call-gc

% write the object

store tag, (allot)

store ra,4(alloc)

store rd, 8 (allot)

% save pointer to object

move alloc+4, result

% add 12 to allot pointer

add allot, 12

Figure 1: Pseudo-assembly code for allocating an object

fact that most allocated objects die young; thus most objects

(about 99% [3, p. 206]) are not copied from the allocation

area. This makes the garbage collector efficient, since it

works mostly on an area of memory where it is very effective

at reclaiming space.

The most important property of a copying collector with

respect to memory subsystem behavior is that allocation ini-

tializes memory which has not been touched in a long time

and is thus unlikely to be in the cache. This is especially true

if the allocation area is large relative to the size of the cache

since allocation will knock everything out of the cache. This

means that for small caches there will be a large number of

(write) misses.

For example consider the code in Figure 1. Assume that a

cache write miss costs 16 CPU cycles and that the block size

is 4 words. On average, every fourth word allocated causes

a write miss. Thus, the average memory subsystem cost of

allocating a word on the heap is 4 cycles. The average cost

for allocating a cons cell is seven cycles (at one cycle per

instruction) plus 12 cycles for the memory subsystem over-

head. Thus, while allocation is cheap in terms of instruction

counts, it is expensive in terms of machine cycle counts.

2.3 Standard ML

Standard ML (SML) [30] is a call-by-value, Iexically scoped

language with higher-order functions, garbage collection,

static typing, a polymorphic type system, provable safety

properties, a sophisticated module system, and a dynami-

cally scoped exception mechanism.

SML encourages a non-imperative programming style.

Variables cannot be altered once they are bound, and by

default data structures cannot be altered once they are cre-

ated. Lisp’s rplaca and rplacd do not exist for the de-

fault definition of lists in SML. The only kinds of assignable

data structures are ref cells and arrays3, which must be ex-
plicitly declared. To emphasis the point, assignments are

sA1thoUghthe Imguage definition omitted arrays, all implementations

have arrays.

2

permitted but discouraged as a general programming style.

The implications of this non-imperative programming style

for compilation are clear: SML programs tend to do more

allocation and copying than programs written in imperative

languages.

SML is most closely related to Lisp and Scheme[34].

Implementation techniques for one of these languages are

mostly applicable to the other languages, with the following

caveats: SML programs tend to be less imperative than Lisp

or Scheme programs and Scheme and SML programs use

function calls more frequently than Lisp, since recursion is

the usual way to achieve iteration in Scheme and SML.

2.4 SML/NJ compiler

The SML~J compiler [3] is a publicly available compiler for

SML. We used version 0.91. The compiler concentrates on

making allocation cheap and function calls fast. Allocation

is done in-line, except for the allocation of arrays. Ag-

gressive ~-reduction (inlining) is used to eliminate functions

calls and their associated overhead. Function arguments are

passed in registers when possible, and register targeting is

used to minimize register shuffling at function calls. A split

caller/callee-save register convention is used to avoid exces-

sive spilling of registers. The compiler also does constant-

folding, elimination of functions which trivially call other

functions, limited code hoisting, uncurrying, and instruction

scheduling.

The most controversial design decision in the compiler was

to allocate procedure activation records on the heap instead

of the stack [1, 5]. In principle, the presence of higher-order

functions means that procedure activation records must be

allocated on the heap. With a suitable analysis, a stack can

be used to store most activation records [25]. However,

using only a heap simplifies the compiler, the run-time system

[2], and the implementation of first-class continuations [19].

The decision to use only a heap was controversial because

it greatly increases the amount of heap allocation, which is

believed to cause poor memory subsystem performance.

3 Related Work

There have been many studies of the cache behavior of sys-

tems using heap allocation and some form of copying garbage

collection. Peng and Sohi [31] examined the data cache
behavior of some small Lisp programs. They used trace-

driven simulation, and proposed an ALLOCATE instruction

for improving cache behavior, which allocates a block in

the cache without fetching it from memory. Wilson et. al.

[38, 39] argued that cache performance of programs with

generational garbage collection will improve substantially

when the youngest generation fits in the cache. Koopman

et. al. [24] studied the effect of cache organization on com-

binator graph reduction, an implementation technique for

lazy functional programming languages. Combinator graph

reduction does more heap allocation and assignments than

SML/NJ programs. They observed the importance of a write-

allocate policy with subblock placement for improving heap

allocation. Zorn [40] studied the impact of cache behavior

on the performance of a Common Lisp system, when stop-

and-copy and mark-and-sweep garbage collection algorithms

were used. He concluded that programs run with mark-and-

sweep have substantially better cache locality than when run

with stop-and-copy.

These works all used data cache miss ratios to evaluate

cache performance. They did not separate read and write

misses, despite the different costs of these misses. Also,

they did not simulate the entire memory subsystem. Our

work separates read misses from write misses and completely

models the memory subsystem, including write buffers and

page-mode writes.

Appel [3] estimated CPI for the SML/NJ system on a single

machine using elapsed time and instruction counts. His CPI

differs substantially from ours. Apparently instructions were

undercounted in his measurements [4].

Jouppi [22] studied the effect of cache write policies on

the performance of C and Fortran programs. Our class of

programs is different from his, but his conclusions support

ours: that a write-allocate policy with subblock placement is

a desirable architecture feature. He found that the write miss

ratio for the programs he studied was comparable to the read

miss ratio, and that write-allocate with subblock placement

eliminated the cost of write misses. For programs compiled

with the SML/NJ compiler, this is even more important due

to the high number of write misses caused by allocation.

4 Methodology

We used trace-driven simulations to evaluate the memory

subsystem performance of programs. For trace-driven sim-

ulations to be useful, there must be an accurate simulation

model and a good selection of benchmarks. Simulations that

make simplifying assumptions about important aspects of

the system being modeled can yield misleading results, Toy

benchmarks, or unrepresentative benchmarks, can be equally

misleading. We have devoted much effort to addressing these

issues.

4.1 Tools

We have extended QPT [7, 26, 27] to produce memory traces

for SML/NJ programs. QPT rewrites an executable program

to produce a full instruction and data trace. Because QPT

operates on the executable program, it can trace both the

SML code and the garbage collector (written in C).

We used Tycho [21] for the memory subsystem simula-

tions. Tycho uses a special case of all-associativity simula-

tion [29] to simulate multiple caches concurrently. We have

added a write-buffer simulator to Tycho, which concurrently

simulates a write buffer for each instruction and data cache

4

pair being simulated. The write-buffer simulator also takes

page-mode writes and memory refreshes into consideration.

4.2 Simplifications and Assumptions

We wanted to simulate the memory subsystems as completely

as we could. Thus, we have tried to minimize simplifications

which may reduce the validity of our data. The most impor-

tant simplifications are:

1.

2.

3.

4.

4.3

We ignore the effects of context switches and system

calls.

Our simulations are driven by virtutd addresses

even though many current machines have physically-

addressed caches.

We use default compilation flags which enable exten-

sive optimization. We set the soft limit of the garbage

collector to 20000K4.

When comparing different cache organizations we as-

sume that the CPU cycle time is the same.

Benchmarks

Table 1 describes the benchmark programs5. Knuth-Bendix,

Lexgen, L$e, Simple, VLIW, and YACC are identical to the

benchmarks measured by Appel [3]6. Table 2 gives the sizes

of the benchmarks in terms of lines of SML code (excluding

comments and blank lines), maximum heap size in kilobytes,

size of the compiled code in kilobytes (does not include the

garbage collector and other run-time support code which is

about 60K)7, and run time, in seconds, on a DECStation

5000/200. The run times are the minimum of five runs.

Table 3 characterizes the memory references of the bench-

mark programs. The Writes column lists the number of full

word writes done by the program and the garbage collec-

tor; the Assigmnents column lists the non-initializing writes

done by the program only, The Partial Writes column lists

the number of partial word (bytes, half-word, etc.) writes

done by the program and the garbage collector*. All the

benchmarks have long traces; most other work on memory

system performance uses traces that are an order of magni-

tude smaller. The benchmark programs do few assignments;

the majority of the writes are initializing writes.

Table 4 gives the allocation statistics for each benchmark

program. All allocation and sizes are reported in words. The

Allocation column lists the total allocation done by the bench-

mark. The remaining columns break down the allocation by

4~,~ is Imge enough to allow the garbage collector to resize the heap ~

needed.
5Av~lable from the authors.

c~e ttescriptionof these benchmarks have been copied from [3].
7~e code size includes 207K for the standard libraries.

sp~i~.~~rd Wn&S are distinguished from full-word wnteS since theY

are often more expensive than full-word writes. We charge 11 cycles for

each partial-word write.

kind: closures for escaping functions, closures for known

functions, closures for callee-save continuations, records,

and others (includes spill records, arrays, strings, vectors, ref

cells, and store list records). For each allocation kind, the 70

column is the percentage of total allocation allocated for that

kind of object and Size is the average size (including the 1

word tag) for that kind of object.

4.4 Metrics

We state cache performance numbers in cycles per useful in-

struction (CPZ). All instructions besides nops are considered

useful.

Table 5 lists the penalties used in the simulations. These

numbers are derived from the penalties for the DECStation

5000/200, but are similar to those in other machines of the

same class. Note that write misses have no penalty (besides

write buffer costs) for caches with subblock placement 10.

5 Results and Analysis

Section 5.1 qualitatively analyzes the memory behavior of

programs. Section 5.2 lists the cache configurations sim-

ulated and explains why they were selected. Sections 5.3

presents and analyzes data for memory subsystem perfor-

mance.

5.1 Qualitative Analysis

Recall from Section 2 that SML/NJ uses a copying collector

which leads to a large number of write misses. The slowdown

this translates into depends on the cache organization being

used.

Recall from Section 4.3 that SML/INJ programs have the

following properties. First, they do few assignments; the

majority of the writes are initializing writes. Second, pro-

grams do heap allocation at a furious rate: 0.1 to 0.22 words

per instruction. Third, writes come in bunches because they

correspond to initialization of a newly allocated area.

The burstiness of writes combined with the property of

copying collectors mentioned above suggests that an aggres-

sive write policy is necessary. In particular, writes should

not stall the CPU. Memory subsystem organizations where

the CPU has to wait for a write to be written to memory
will perform poorly. Even memory subsystems where the

CPU does not need to wait for writes if they are issued far

apart (e.g., 2 cycles apart in the HP 9000 series 700) may

perform poorly due to the bunching of writes. This leads to

two requirements on the memory subsystem. First, a write

$’C]osures for c~lee-save continuations can be trivially allocated on a

strickin the absence of first class continuations.
101n ~ actu~ implementation, the penahy of a miss -Y be one cYcle

since unlike hits, the tag and valid bits needs to be written to the cache after

the miss is detected. This will not change our results since it adds at most

0.02–0.05 to the CPI of caches with subblock placement.

5

Program Description

Cw The Concurrency Workbench [12] is a tool for analyzing networks of finite state processes

expressed in Milner’s Calculus of Communicating Systems.
Leroy An implementation of the Knuth-Bendix completion algorithm.

Lexgen A lexical-analyzer generator [6], processing the lexical description of Standard ML.

Life The game of Life implemented using lists [33].

PIA The Perspective Inversion Algorithm [37] decides the location of an object in a perspective

video image.
Simple A spherical fluid-dynamics program [13].

VLIW A Very-Long-Instruction-Word instruction scheduler.

YACC An implementation of an LALR(l) parser generator [36] processing the grammar of Stan-

Table 1: Benchmwk Programs

w---

Program Lines Heap size (K) Code size (K) Non-gc (see) Gc (see)

Cw 5728 1107 894 22.74 3.09

Knuth-Bendix 491 2768 251 13.47 1,48
---- -., -

305 15.07 1.06

221 16.97 0.19

291 6.07 0.34

314 25.58 4.23

Lexgen 1L.z4 Llbl

Life 111 1026

PIA 1454 1025

Simrrle 999 11571

VLti 3207 1088] 486 23.70 I 1.91

YACC I 5751 I 1632 I 580 I 4.60 I 1.98

Table 2: Sizes of Benchmark programs

Program Inst Fetches Reads (%) Writes (%) Partial Writes (%) Assignments (%) Nops (%)

Cw 523,245,987 17.61 11.61 0.01 0.41 13.24

Knrrth-Bendix 312,086,438 19.66 22.31 0.00 0.00

Lexgen

5.92

328,422,283 16.08 10.44 0.20 0.21 12.33

Life 413,536,662 12.18 9.26 0.00 0.00 15.45

PIA 122,215,151 25.27 16.50 0.00 0.00

Simple

8.39

604,611,016 23.86 14.06 0.00 0.05 7.58

VLIW 399,812,033 17.89 1599 0.10 0.77 9.04

YACC 133,043,324 18.49 14.66 0.32 0.38 11.14

Table 3: Characteristics of benchmark programs

Escaping Known Crdlee Saved Records Other

Program Allocation % Size % Size % Size % Size % Size

Cw 56,467,440 4.0 4.12 3.3 15.39 672 6.20 19.5 3.01 6.o 4.00

Krmth-Bendix 67,733,930 37.6 6.60 0.1 15.22 49.5 4.90 12.7 3.00 0.1 15.05

Lexgen 33,046,34!

Life 37,

PIA 13J

F====Simple

VLIW

YACC

9 3.4 6.20 5.4 12.96 72.7 6.40 15.1 3.00 3.7 6.97

,849,681 0.2 3.45 0.0 15.00 77.8 5.52 22.2 3.00 0.0 10.29

,047,041 0.6 5,56 40.4 11.99 36.5 4.73 18,4 3.41 4.1 16.01

67,261,664 4.8 5.70 1.3 15.33 81.8 6.43 9.9 3.00 2.2 5.01

59,496,919 9.9 5.22 6.0 26.62 61.8 7.67 20.3 3.01 2.1 2.60

17,015,250 2.3 4.83 15.3 15.35 54.8 -?.44 23.7 3.04 4.0 10.22

Table 4: Allocation characteristics of benchmark programs

6

I Task Penalty (in cycles)

Non Daxe mode write 1 51

Page mode write 1

Read 16 bytes from memory 15

Read 32 bvtes from memosw 19

=

Write hit (16 bytes, no subblocks)

Write hit (32 bytes no subblocks)

Write miss (16 bytes, no subblocks)

Write miss (32 bytes, no subblocks)

Table 5: Penalties of memory operations

buffer or fast page mode writes are essential to avoid waiting

for writes to memory, Second, on a write miss, the memory

subsystem must avoid reading a cache block from memory

if it will be written before being read. Of course, this re-

quirement only holds for caches with a write-allocate policy.

Subblock placement [24], a block size of 1 word, and the

ALLOCATE directive [31] can all achieve this“ 11. For large

caches, when the allocation area fits in the cache and thus

there are few write misses, the benefit of subblock placement

will be reduced.

5.2 Cache configurations simulated

Since the design space for memory subsystems is enormous

we had to prune the design space that we could study. In this

study, we restrict ourselves to features found in currently pop-

ular RISC workstations. Exploration of more exotic memory

subsystem features is left to future work. Table 6 summarizes

the cache organizations simulated. Table 7 lists the memory

subsystem organization for some popular machines.

We simulated only separate instruction and data caches

(i.e., no unified caches). While many current machines have

separate caches (e.g., DECStations, HP 9000 series), there

are some exceptions (notably SPARCS).

We simulated cache sizes from 8K to 128K. This range

includes the primary caches of most current machines (see

Table 7). We consider only direct mapped and two-way set

associative caches (with LRU replacement).

We simulated block sizes of 16 bytes and 32 bytes. Przy-

bylski [32] notes that block sizes of 16 or 32 bytes optimize

the read access time for the memory parameters used in the

CPI calculations (see Section 4.4).

We report data only for write-through caches but the CPI

for write-back caches can be inferred from our graphs. Write-

through and write-back caches give identical misses, but the

penalties for write hits and write misses differ. A write hit or

miss in a write-back cache may take one cycle more than in

a write-through cache [22]. This tells us at most how much

the write-through graphs need to be shifted to obtain the CPI

graphs for write-back caches, For instance, if the program
has w writes and n useful instructions, then we must add

11Since the effects on cache performance of these featUreS are so .SiIS3i1W

we tatk just about subblock placement.

w/n to the CPI. For CW this adds 0.13. Write-through and

write-back caches may have different write buffer penalties.

We expect the write buffer penalties for write-back caches

to be smaller than that for write-through caches since writes

to main memory are less frequent for write-back caches than

for write-through caches. In any case, write buffer penalties

are negligible even for write-through caches (Section 5.3).

Two of the most important cache parameters are write

allocate versus write no allocate and subblock placement

versus no subblock placement. Of these, the combination

write no allocate/subblockplacement offers no improvement

over write no allocate/no subblock placement for cache per-

formance. Thus, we did not collect data for the write no

allocatefsubblo ckplacement configuration.

We restrict ourselves only to the first two levels of the

memory hierarchy, which on most current machines corre-

sponds to the primary cache and main memory. The results,

however, are mostly applicable when the second level is a sec-

ondary cache and the cost of accessing the secondary cache

is similar to the cost of accessing main memory on the DEC-

Station 5000/20012. In such machines, there is a memory

subsystem contribution to the CPI that we did not measure: a

miss on the second level cache. Therefore the CPI obtained

on these machines can be higher than that reported here.

We do not simulate the exotic features appearing on some

newer machines, such as stream buffers, prefetching, and

victim caches. These features can reduce the cache miss

rates and miss costs. Further work is needed to understand the

impact of these features on performance of heap allocation.

5.3 Memory Subsystem Performance

Memory subsystem performance is presented in summary

graphs and breakdown graphs. Each summary graph summa-

rizes the memory subsystem performance of one benchmark

program for a range of write-miss policies (write allocate

or no write allocate), subblock placement (with or with-

out), cache sizes (8K to 128 K), and associativity (1 or 2).

Each curve in a summary graph corresponds to a different

memory subsystem organization. There are two summary

graphs for each program, one for a block size of 16 bytes

and another for a block size of 32 bytes. Each breakdown

graph breaks down the memory subsystem overhead into read

misses, instruction-fetch misses, write-buffer overhead, and

partial-word write overhead for one configuration in a sum-

mary graph. The write-buffer depth in these graphs is fixed

at 6 entries.

In this paper we present only the summary graphs for

CW (Figure 2). The summary graphs for other programs

are similar to those for CW and are thus omitted for space

considerations13. Any significant differences between CW’S
graphs and the omitted graphs are noted in the text. Figures

12For instance, Borg et at. [8] use 12 cycles as the latency for going to

the second level cache and 200–250 cycles for going to memory.
ISThe fu]] set of graphs are available

ibis. cs.umass.edu in pub/memory-subsystem.

via anonymous ftp from

Note:

*

*

●

●

Write Policy Write Miss Policy Write Buffer Subblocks Assoc Block Size jCache Sizes

through allocate 6 deep yes 1,2 16,32 bytes 8K-128K

through allocate 6 deep no 1,2 16,32 bytes 8K-128K

through no allocate 6 deep no 1,2 16,32 bytes 8K-128K

Table 6: Cache organizations studied

Archhecture Write Policy Write Miss Policy Write Buffer SubblocksAssocBlock Size CacheSize

DS31OO[16] through allocate 4 deep — 1 4 bytes 64K

DS5000/200 [15] through allocate 6 deep yes 1 16 bytes 64K

HP 9000 [35] back allocate none no 1 32 bytes 64K-2M

SPARCStation II [14] through no allocate 4 deep no 1 32 bytes 64K

SPARCStations have umfied caches.

Most HP 9000 series 700 caches are much smaller &an 2M, 128K instruction cache and 256K data cache for models 720 and 730. and 256K instmcbon cache and 256K data

cache for model 750

The DS5000/200 actually has a block size of four bytes with a fetch size of sixteen bytes. This is actually stronger than subblock placement since it has a full tag on every

“subblock”.

The higher end HP 9000 machines (model 735 and above) prowde a cache-control hint in theu store insmactions [9]. The Mint can specify that a block will be overwritten

before being read, W avoids the read if the write nusses.

Table 7: Memory subsystem organization of some popular machines

3 and 4 are the breakdown graphs for CW for the 16 byte

block size configurations; the remaining breakdown graphs

for CWare omitted for space considerations. The breakdown

graphs for the other benchmarks are similar and are thus also

omitted for space considerations 14.

In the summary graphs, the rtops curve is the base CPI: the

number of useful (not nop) instructions executed divided by

the total number of instruction executed; this corresponds to

the CPI for a perfect memory subsystem15. For the break-

down graphs, the nop area is the CPI contribution of nops;

read miss is the CPI contribution of read misses; if miss is the

CPI contribution of instruction fetch misses; write bu~er is

the CPI contribution of the write buffer; partial word is the

CPI contribution of partial-word writes*6.

The 64K point on the write allot, subblock, assoc=l curves

corresponds closely to the DECStation 5000/200 memory

subsystem.

In the following sections we describe the impact of write-

miss policy and subblock placement, associativity, block size,

cache size, write buffer, and partial-word writes on the mem-

ory subsystem performance of the benchmark programs.

5.3.1 Write Miss Policy and Subblock Placement

From the summary graphs, it is clear that the best cache

organization we studied is write allocate/subblock place-

lJ Lexge~>s graphsarea little different in that there is a steep drop in the

instruction cache contribution to the CPI in going from an SK to 16K cache.

15nqrs constitute between 5 .9q0 and 15.4% of afl instructions executed

for the benchmarks (see Section 4.3).
16TKIS overhead is so small that it is not visible in most of the breakdown

graphs.

ment; in every case, write-allocatelsubblock placement sub-

stantially outperforms all other configurations. Surprisingly,

for sufficiently large caches with the write allocate/subblock

placement organization, the memory subsystem performance

of SML/NJ programs is acceptable (around 1770 or less

overhead) *7. For caches with write allocate/subblock place-

ment, the average memory subsystem contribution to the CPI

over all benchmarks is 16?I0for 64K direct mapped caches and

17% for 32K two-way associative caches. The DS5000/200

organization does well for most programs. It is worth empha-

sizing that the memory subsystem performance of SML/NJ

programs is good on some current machines despite the very

high miss rates; for a 64K write allocate/no subblock place-

ment organization with a block size of 16 bytes, the write miss

and read miss ratios for cw are 0.18 and 0.04 respectively.

Recall that in Section 5.1 we argued that subblock place-

ment would be a big win, but its benefit would decrease for

larger caches. Our data indicates that the reduction in ben-

efit is not substantial even for 128K cache sizes although a

slight tapering off is seen in CW.This indicates that 128K is

not large enough to hold the allocation area of most of the

benchmark programs.

The performance of write allucate/no subblock is almost

identical to that of write no allocate/no subblock (Leroy is
18 This suggests that an address is being readan exception) .

soon after being written; even in an 8K cache, an address is

17For the pen~ties used, a 17% overhead translates roughly into one fetch

from memory-instruction or data-every 100 useful instructions,
lg~e difference between write allocate/no subblock and write no all~~-

cate/no subblock is so smafl in most graphs that the two curves overlap.

8

read after being written before it is evicted from the cache (if

it was evicted from the cache before being read, then write

allocate\no subblock would have inferior performance). The

only difference between these two schemes is when a cache

block is read from memory. In one case, it is brought in on

a write miss; in the other, it is brought in on a read miss.

Bmause SML/NJ programs allocate sequentially and do few

assignments, a newly allocated object remains in the cache

until the program has allocated another C bytes, where c is
the size of the cache. Since our programs allocate 0.4-0.9

bytes per instruction, our results suggest that a read of a block

occurs within 9K–20K instructions of it being written.

5.3.2 Changing Associativity

From Figure 2 we see that increasing associativity improves

all organizations. However the improvement in going from

one-way to two-way set associativity is much smaller than

the improvement obtained from subblock placement: inmost

cases, it improves the CPI by less than 0.1. The maximum

benefit from higher associativity is obtained for small cache

sizes (less than 16K). However, increasing associativity may

increase CPU cycle time and thus the improvements may not

be realized in practice [20].

From Figures 3 and 4 we see that higher associativity

improves the instruction cache performance but has little

or no impact on data cache performance. Surprisingly, for

direct mapped caches (Figures 3 (a) and 4 (a)) the instruction

cache penalty is substantial for caches smaller than 128K.

For caches with subblock placement, the instruction cache

penalty dominates the penalty for the memory subsystem.

The improvement observed in going to a two-way associative

cache suggests that a lot of the penalty from the instruction

cache is due to conflict misses and that from the data cache

is due to capacity misses: the data cache is simply not big

enough to hold the working set. When the code produced

by SML/NJ is examined, the performance of the instruction

cache is not surprising: the code consists of small functions

with frequent calls, which lower the spatial locality. Thus,

the chances of conflicts are greater than if the instructions

had strong spatial locality.

5.3.3 Changing Block Size

From Figure 2 we see that increasing block size from 16 to

32 bytes also improves performance. For the write allocate

organizations, an increased block size decreases the number

of write misses caused by allocation. When the allocation

area does not fit in the cache, doubling the block size can

halve the write-miss rate. Thus, larger block sizes improve

performance when there is a penalty for a write miss [24].

In particular, larger block sizes have little to offer to caches
with write allocate/subblock placement. From Figure 2 we

see that the write no allocate organizations benefit just as

much from larger block size as write allocate/no subblock

placement; this suggests that the spatial locality in the reads

is comparable to that in the writes.

Note that subblock placement improves performance more

than even two-way associativity and 32 byte blocks com-

bined.

5.3.4 Changing Cache Size

Increasing the cache size improves performance for all con-

figurations. In most cases, the performance improvement

from doubling the cache size is small. We expect to see

a sharp improvement in performance for some larger cache

size once the allocation area fits in the cache (this will not be

nearly as significant for caches with subblock placement) 19.

From the breakdown graphs we see that the cache size has

little effect on the data cache miss contribution to CPI. Most

of the improvement in CPI that comes from increasing the

cache size is due to improved performance of the instruction

cache. As with associativity, cache sizes have interactions

with the cycle time of the CPU: larger caches can take longer

to access. Thus, improvement due to increasing the cache

size may not be achieved in practice.

5.3.5 Write Buffer and Partial-Word Write Overheads

From the breakdown graphs we see that the write buffer and

partial word write contribution to the CPI is negligible. A six

deep write buffer coupled with page-mode writes is sufficient

to absorb the bursty writes. As expected, memory subsystem

features which reduce the number of misses (such as higher

associativity and larger cache sizes) also reduce the write

buffer overhead.

6 Conclusions

We described an in-depth study of the memory subsystem per-

formance of programs compiled with SMLINJ. The important

characteristics of these programs, with respect to memory

subsystem performance, were intensive heap allocation and

the use of copying garbage collection.

In agreement with[31, 38, 39,40], programs with intensive

heap allocation performed poorly on most memory subsys-

tem organizations. However, on some current machines (in

particular the DECStation 5000/200), the performance was

good.

The memory organization parameter crucial for good per-

formance was subblockplacement. For caches with subblock

placement, the memory subsystem overhead was under 17%

for 64K or bigger caches; for caches without subblock place-

ment, the overhead was often as high as 100Yo.

Associativity and cache sizes (up to 128K) had little im-

pact on data cache performance. but were more important for
instruction cache performance. While higher associativity,

lgsub~q~ent work has shown that 5 12K is large enough to hold the

allocation area of most of the benchmark programs [17].

9

3

F

~ write-no-allcc, no-subblk,assw= 1

2.8

i

~— ~rite.dl~, n~.~”bblk,a~~m.l

2.6

1.4

1.2

..m
‘-- 0--

------ .~ .

tk e

1 ; I

8K 16K 32K 64K 128K

I and D cache sizes

(a) block size=16 bytes

3

2.8

2.6

1.4

L

~ write-no-alloc, no-subblk,asscc=

~ wnte-allcc,subblk, asscw.l

-— ~rite.~l~,n~.S”bb~,aSS~=l

-¤- --- ~nte.”~.allm,n~. Subb~,aSS~=:

L......------
‘----- .

‘-w-
------ . .[.

--y=-

“-’”’ - .-w......------... -.. .
.0--

------ .~ .

1

?.K 16K 32K 64K 128K

I and D cache size

(b) block size=32 bytes

Figure 2: CW summary, write buffer depth=6

3

2.8

2.6 [
■ partial word

z 2.4

.s

❑ write buffer

~ 2.2
❑ if miss

~

22
❑ read miss

~ 1.8

K
u 1.6

1,4 ,,

1,2’’’’”

1
-4

UK 16K
32K 64K

128K

...
I and D cache size

(a) assoc=l

3

2,8

2.6

f r-
■ @id wo][d

z 2.4

,2 t
❑ write buffer

~ 2.2

&

32

$1.8

$1,6

1.4

1

SK
16K 32K

64K 128K

I and D cache size

(b) assoc=2

Figure 3: CW breakdown, write no allot, no subblk, block size= 16, wb depth=6

11

3

2.8

2.6
[

z 2.4

1 n

■ Ptid word

.2 ❑ write buffer

g 2.2

~ ❑ if miss

1.2

1

8K 16K 32K 64K

I and D cache sizs

(a) assoc=l

‘T
2,8 +

❑ write buffer

❑ if miss

I ❑ Ieadmss

j 1.8

K
■ nop

v 1.6
I

1.4
,,

1.2 6

, I

1 I

8K 16K 32K 64K 128K

I and D cache size

(b) assoc=2

128K

1

Figure 4: CW breakdown, write allot, subblk, block size= 16, wb depth=6

12

larger cache sizes, and larger block sizes improved perfor-

mance, their contribution to performance was usually small.

To summarize, most current machines support heap allo-

cation poorly. For these machines, compilers should avoid

heap allocation as much as possible. However, with the ap-

propriate memory subsystem organization, heap allocation

can achieve good memory subsystem performance.

7 Acknowledgements

We would like to thank Edoardo Biagioni, Eric Brown,

Brad Chen, Olivier Danvy, Alessandro Forin, Urs Hoel-

zle, Kathryn McKinley, Erich Nahum, and Darko Stefanovi6

for comments on drafts of this paper. We thank Peter Lee

for his encouragement and advice during this work. We

thank Brian Milnes and the facilities at CMU for setting up

the hardware according our every whim. We thank Tom

Dewey for explaining the partial-word write mechanism in

the DS5000/200 to us. We thank Andrew Appel, Dave Mac-

Queen and many others for creating SML/NJ. We thank

James Larus for creating qpt and for answering the ques-

tions which arose while we were extending his tool. We

thank Mark Hill for creating his cache simulators, Tycho and

DineroIII. Last but not least, we thank all the members of the

Fox project for their interest in this work and for accommo-

dating our demand for compute cycles.

References

[1]

[2]

[3]

[4]

[5]

[6]

[71

Andrew W. Appel. Garbage collection can be faster

than stack allocation. Information Processing Letters,

25(4):275–279, 1987.

Andrew W. Appel. A Runtime System. Lisp and

Symbolic Computation, 3(4):343–380, November

1990.

Andrew W. Appel. Compiling with Continuations.

Cambridge University Press, first edition, 1992.

Andrew W. Appel. Personal Communication. March

221993.

Andrew W. Appel and Trevor Y. Jim.

Continuation-Passing, Closure-Passing Style. In

Proceedings of the 16th Annual ACM Symposium on

Principles of Programming Lunguages, pages

293-302, Austin, Texas, January 1989. ACM.

Andrew W. Appel, James S. Mattson, and David

Tarditi. A lexical analyzer generator for Standard ML.

Distributed with Standard ML of New Jersey, 1989.

Thomas Ball and James R. Larus. Optimally Profiling
and tracing programs. In 19th Symposium on

Principles of Programming Lunguages. ACM, January

1992.

[8]

[91

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

Anita Borg, R. E, Kessler, Georgia Lazana, and

David W. Wall. Long address traces from RISC

machines: Generation and analysis. Technical Report

89/14, DEC Western Research Laboratory, September

1989.

Brian Case. PA-RISC provides rich instruction set

within RISC framework. Microprocessor Report, 5(6),

April 1991.

J. Bradley Chen and Brian N. Bershad. The impact of

operating system structure on memory system perf

ormance. In Fourteenth Symposium on Operating

System Principles. ACM, Dec 1993.

C.J. Cheney. A nonrecursive list compacting

algorithm. Communications of the ACM,

13(1 1):677-678, 1970.

Rance Cleveland, Joachim Parrow, and Bernhard

Steffen. The Concurrency Workbench: A

semantics-based tool for the verification of concurrent

systems. Transactions on Programming Languages

and Systems, 15(1):36-72, January 1993.

W. P. Crowley, C. P. Hendrickson, and T. E. Rudy. The

SIMPLE code. Technical Report UCID 17715,

Lawrence Livermore Laboratory, Livermore, CA,

February 1978.

Cypress Semiconductor, Ross Technology Subsidiary.

SPARC RISC User’s Guide, second edition, February

1990.

Digital Equipment Corporation, DS5000\200 KN02

System Module Functional Speci$cation.

Digital Equipment Corporation, Palo Alto, CA.

DECStation 3100 Desktop Workstation Function

Specification, 1.3 edition, August 1990.

Amer Diwan, David Tarditi, and Eliot Moss. Memory

subsystem performance of programs with intensive

heap allocation. Work in progress, oct 1993.

R. R. Fenichel and J. C. Yochelson. A LISP

garbage-collector for virtual-memory computer

systems. Communications of the ACM,

12(11):611-612, 1969.

Robert Hieb, R. Kent Dybvig, and Carl Bruggeman.

Representing control in the presence of first-class

continuations. In Proceedings of the SIGPLAN ’90

Conference on Programming Lunguage Design and
Implementation, pages 6G77, ACM, June 1990.

Mark D. Hill. A case for direct mapped caches.

Computer, 21(12):2540, December 1988.

13

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

M.D. Hill and A.J. Smith. Evaluating associativity in

CPU caches. IEEE Transactions on Computers,

38(12):1612–1630, December 1989.

Norman P. Jouppi. Cache write policies and

performance. In Proceedings of the 20th Annual

International Symposium on Computer Architecture,

pages 191–201, San Diego, California, May 1993.

Gerry Kane and Joe Heinrich. MIPS RISC

Architecture. Prentice-Hall, 1992.

Philip J. Koopman, Jr., Peter Lee, and Daniel P.

Siewiorek. Cache behavior of combinator graph

reduction. Transactions on Programming Languages

and Systems, 14(2):265–277, April 1992.

David Kranz, Richard Kelsey, Jonathan Rees, Paul

Hudak, James Philbin, and Norman Adams. ORBIT:

An optimizing compiler for Scheme. In Proceedings

of the SIGPLAN ’86 Conference Symposium on

Compiler Construction, pages 219–233, Palo Alto,

California, June 1986. ACM.

James R. Larus. Abstract Execution: A technique for

efficiently tracing programs. Soflwa~ Practice and

Experience, 20(12): 1241–1258, December 1990.

James R. Larus and Thomas Ball. Rewriting

executable files to measure program behavior.

Technical Report Wk 1083, Computer Sciences

Department, University of Wisconsin-Madison, March

1992.

H. Lieberman and C. Hewitt. A real-time garbage

collector based on the lifetimes of objects.

Communications of the ACM, 26(6):419-429, 1983.

R. L. Mattson, J. Gecsei, D. R. Slutz, and I. L. Traiger.

Evaluation techniques for storage hierarchies. IBM

Systems Journal, 9(2), 1970.

Robin Milner, Mads Tofte, and Robert Harper. The

Definition of Standard ML. MIT Press, 1990.

Chih-Jui Peng and Gurindar S. $ohi. Cache memory

design considerations to support languages with

dynamic heap allocation. Technical Report 860,

Computer Sciences Department, University of

Wisconsin-Madison, July 1989.

Steven A. Przybylski, Cache and Memory Hierarchy

Design: A Performance-Directed Approach. Morgan

Kaufmann Publishers, first edition, 1990.

Chris Reade. Elements of Functional Programming.

Addison-Wesley, Reading, MA, 1989.

Jonathan Rees and William Clinger. Revised report on

the algorithmic language Scheme. SZGPLAN Notices,

21(12):37–79, December 1986.

[35]

[36]

[37]

[38]

[39]

[40]

Michael Slater. PA workstations set price/performance

records. Microprocessor Report, 5(6), April 1991.

David Tarditi and Andrew W. Appel. ML~YACC,

version 2.0. Distributed with Standard ML of New

Jersey, April 1990.

Kevin G. Waugh, Patrick McAndrew, and Greg

Michelson. Parallel implementations from function

prototypes: a case study. Technical Report Computer

Science 90/4, Heriot-Watt University, Edinburgh,

August 1990.

Paul R. Wilson, Michael S. Lam, and Thomas G,

Moher. Caching considerations for generational

garbage collection: a case for large and set-associative

caches. Technical Report EECS-90-5, University of

Illinios at Chicago, December 1990.

Paul R. Wilson, Michael S. Lam, and Thomas G.

Moher. Caching considerations for generational

garbage collection. In 1992 ACM Conference on Lisp

and Functional Programming, pages 32-42, San

Francisco, California, June 1992.

Benjamin Zorn. The effect of garbage collection on

cache performance. Technical Report CU-CS-528-91,

University of Colorado at Boulder, May 1991.

14

