
Exploiting Reflection to Add Persistence and Query
Optimization to a Statically Typed Object-Oriented Language

Gökhan Kutlu J. Eliot B. Moss

Department of Computer Science
University of Massachusetts
Amherst, MA 01003, USAfkutlu,mossg@cs.umass.edu

Abstract

It is popular and appealing to design and construct a persistent programming language by extending the
semantics of a non-persistent language appropriately and then modifying its compiler and run-time system
to implement the extended semantics. We describe here how toachieve this, and furthermore, how to sup-
port query optimization, which is typically neglected in persistent programming language implementations,
through judicious exploitation of reflection. Significantly, we avoid modifying the structure of the source
language or its compiler in any way, and minimize and localize the modifications to the run-time system.
We work in the context of the Java programming language, and conclude that the key features required in
our approach are: a typed intermediate representation (as provided by Java class files), reflection supporting
code inspection (an extension to the standard Java virtual machine), and dynamic loading of code generated
at run-time. We also require virtual machine extensions to support read and write barriers and to trigger our
reflective optimization and code generation. Further, we argue that optimization at the reflective level can
remove much of the overhead of the read and write barriers.

1 Introduction

We are interested in building adatabase programming language(DBPL) by minimal extension of an ex-
isting (statically typed, object–oriented) language. A DBPL is apersistent programming language(PPL)
that also provides one or morecollection types and supports the processing (optimization) of queries on
collections. A PPL is a programming language in which created objects are persistent—they continue to
exist and retain their values between runs of a program. The data are kept in apersistent store, which the
programmer views as an extension of volatile memory. The language implementation and run-time system
work together to make persistent data memory-resident on demand, and to propagate the program’s modifi-
cations of persistent data into the persistent store. As shown in Figure 1, one appealing way to achieve the
transition from programming language to database programming language is to extend the language with
persistence and query processing.

persistence
(fine-grained)

(bulk data)

query processing

PL

DBPL

PPL

Figure 1: Transition from programming language to databaseprogramming language.

Supporting a PPL (persistence) demands implementation of at least the following:

Movement/translation of objects to/from the persistent store. Objects need to be converted into the
persistent store format before they are written. Similarly, they need to be translated into the language’s
heap object format as they are read in from the store. We call these transformationspackingand
unpacking1 (see Figure 2). Since our persistent store (Mneme [Moss, 1990]) uses OIDs to reference
objects, these OIDs may need to beswizzled—converted into direct memory pointers—as part of
unpacking. Pointer references areunswizzledduring packing.
Read barrier. Not all objects referenced within a program will be resident at all times. Aread
barrier detects uses of references to non-resident objects (objectfaults) and triggers actions to make
these objects resident.
Write barrier . A write barrier records which objects have been modified since the last update. At a
checkpoint, only modified objects need to be packed and written back to the store.
Transaction/checkpoint model. A transaction/checkpoint model dictates the way in which and when
modifications to persistent objects are made permanent (committed) in the persistent store. We do not
consider such models in detail.

Program
Relation row

format OID

OID

Mneme buffer

read

write

write barrier

unpacking

read barrier

triggers

packingtriggers

unformat

unformat

format

pointer OID
unswizzle

swizzle

Figure 2: Read and write barriers trigger packing and unpacking.

Supporting query optimization, on the other hand, requiresan understanding of the following:

The operation to be performed.Because the query is defined imperatively, its intention (meaning)
has to be inferred from an analysis of the program, which requires access to (seeing) the query code.
The data operated upon.We need to know the (static/dynamic) type of the data in orderto identify
possible optimizations, and the objects being queried (e.g., collections) so as to know the specific
associated operations and tools available for use in optimization, such as indices.

The language, its compiler, or both can be extended to provide the kinds of support listed above. Unfortu-
nately, modifying the language and its compiler this way is atedious and painful process. Besides, the code
written in the extended language is not readily portable.

1.1 Reflection

The termreflectionrefers to the ability of a program to observe or change aspects of its own behavior and
execution environment at run time. A programming language is said to bereflectivewhen it provides its
programs with reflection. The ability of a program to generate new program fragments and integrate these
into its own execution is known aslinguistic reflection[Stempleet al., 1992]. Incompile-timelinguistic

1The metaphor is that of an object being packed (arranged, enclosed) into a case or box upon write, and unpacked on read; it
does not imply compression.

reflection, reflective constructs are compiled and executedduring compilation. When generation of new
code takes place at run-time, the process is termedrun-timelinguistic reflection. A good example of run-time
linguistic reflection is the use of a run-time callable compiler together with the ability to bind and execute
newly compiled program fragments within the running program [Stempleet al., 1993]. With behavioral
reflection, a program alters its own meaning by changing the behavior ofits interpreter.

Reificationis the process by which aspects of a program, which were implicit in the translated program
and the run-time system, are brought to the fore using a representation (data structures, procedures, etc.)
expressed in the language itself and made available to the program, which can inspect and modify them as
ordinary data [Malenfantet al., 1996]. Linguistic reflection is concerned with the abilityof the language
to reify both the program (code) currently executing as wellas its data types. Behavioral reflection, on
the other hand, is concerned with the ability of the program to reify its own execution state and that of the
(abstract) interpreter on which the program is running.

1.2 Java

Java2 is a class-based, statically typed, object-oriented programming language [Lindholm & Yellin, 1997].
The Java compiler generatesbytecodes for the Javavirtual machine(JVM) [Goslinget al., 1996]. Bytecodes
are typed abstract machine code executed by the Java interpreter and run-time system that implement the
JVM. The Java compiler compiles each Java class definition written in the Java programming language into
aclass file, which contains a symbol table of type definitions and methodbytecodes. The class file contains
adequate information for strong type checking upon loading. The JVM can preload the class file, or load it
dynamically on demand. The Java heap is managed automatically, by a garbage collector.

Each class has a set of associated literals and constants, such as the names of classes instantiated in
the methods of the class and constant values used. These constants are kept in aconstant pool. The class
constants have to be resolved to the objects that they represent before they can be used. A class name, for
example has to be converted to a reference to the class object. This process of binding constants to their
corresponding objects is calledresolution.

Java is statically type-checked (i.e., at compile- and load-time, in advance of execution), but allows
dynamic loading of classes. This nice tension between static and dynamic behavior allows interesting fea-
tures to be realized in Java. In particular, it is possible tosupport reflection in the language using dynamic
class (method) generation and loading. Reflection, in turn,lends itself to interesting implementation of
functionalities such as persistence and query optimization.

1.3 Overview

In this paper, we describe our planned implementation of persistence and query optimization using reflection
without modifying Java, its compiler, or its class file format. Java currently does not support reflection (in
the sense in which we use the word). Extending Java with reflection will imply changing the virtual machine
to some extent, but we will keep these changes minimal. Also,we will add new bytecodes to the original
bytecode set, and, with the help of reflection, insert them appropriately into Java code to help implement
read and write barriers.

Reflection supports more transparent and general implementation of persistence, because it allows au-
tomatic generation of code that carries out the transformation between memory and disk data formats, and
incorporation of that code into the run-time system. Neither a compiler nor a pre-processor needs to be
involved.

Reflection can provide support for query optimization and also eliminate the need to extend the base
language with incompatible (query language) features. Reflection does not require new language constructs.
We can build reflection in the virtual machine over Java’s existing reflective package, and use it to provide

2Java is a trademark of Sun Microsystems, Inc.

query optimization. Furthermore, with run-time reflection, the optimizer can take advantage of the run-time
specifics of the data store, such as the existence of indices,the clustering of data on disk, the distribution of
data among the sets in the data store, or values of parametersto the query.

This paper is structured as follows. Section 2 reviews related work. In Section 3, we describe our
extensions to the Java VM. Sections 4 and 5 discuss object faulting and object updates. Section 6 describes
our query optimization model. Extending Java with powerfulreflective capabilities raises several issues. We
discuss these issues in Section 7 and conclude in Section 8.

2 Related work

The work presented in this paper relates to work on implementing persistent programming languages, for
example, E [Richardsonet al., 1993], Persistent Smalltalk [Hosking, 1995], PJama [Atkinsonet al., 1996],
etc. Our work differs from all the above in that it applies a new technique to implement persistence, namely
reflection. None of the persistent programming languages above support query optimization.

Stemple, et al. [Stempleet al., 1992] are the first to mention the use of reflection as a viabletechnique
for query optimization. Recently, Kirby, et al. [Kirbyet al., 1998a] describe how linguistic reflection may be
provided in Java and used to implement natural join [Kirbyet al., 1998b]. Similarly, reflection has been used
to implement new functionalities in programming languages, such as atomic types [Stroud & Wu, 1995],
and fault tolerance [Fabreet al., 1995].

We take advantage of compiler optimization techniques to build a query optimizer. In particular, we use
loop optimizations to transform join loops in a query. Lieuwen [Lieuwen, 1992] has used similar techniques
to transform loops in an object-oriented database programming language.

The use of Java’s dynamic, late binding nature as an opportunity for improving program performance is
similar to the approach taken in Self [Ungar & Hözle, 1987].In Self, methods that are used frequently are
dynamically re-compiled to optimize their execution.

3 Reflection Extensions

Java supports limited reflection,3 allowing access to the class meta-information via theClass class.Class
objects provide access to (public) field and method definitions via theField andMethod classes. The
Field class provides access to the name, type, and modifiers of a field, and allows reading or modifying
the corresponding field in an instance of the class. Similarly, Java provides means to access the definition
of a class method through theMethod class. AMethod object provides access to the name, parameter
types, and return types of a method. It also allows invoking the method, but it does not allow access to its
bytecodes.

We are extending Java with true linguistic reflection, that is, the ability to change the definition of a
class and its methods at run-time (or load-time). Furthermore, we provide behavioral reflection by allowing
changes to the virtual machine execution state.

As shown in Figure 3, the reflective loop consists of class reification, editing, and reflection. The rei-
fied representation for a class, field, and method is an instance of the extended reflection support classes
XClass,4 XField, andXMethod, respectively. Unlike the ones provided by Java, these classes, along
with their corresponding editors (XClassEditor,XFieldEditor, andXMethodEditor), allow the
program to add, remove, or modify fields and methods via classediting. The program commits these changes
to the class run-time definition via reflection.

Below, we describe in more detail the various phases a methodgoes through during the reflective pro-
cess.

3This is in fact a misnomer for Java’s package, because Java provides mostly reification and only limited reflection.
4The prefixX stands for eXtended.

XClass

Class class

XClassClass class

edit

Java Program Virtual Machine

reflect

Class File

XClasswrite

load internalize

Reflection Loop

reify

Figure 3: Run-time and load-time reflection.

3.1 Reification: Code Inspection

In order to work on a Java method at the program level, we need access to a representation of the method. As
mentioned above, we allow an extended reification of method bytecodes via theXMethod class.XMethod
provides essentially all of the information found in the class file. In particular, it includes method bytecodes
and a handle to the class constant pool. TheXMethodEditor object puts the method bytecodes in a form
that supports the inspection, analysis and optimization, and/or transformation of a method, and production
of a new class (file) with the new method.

3.2 Editing: Code Generation

TheXMethodEditor class supports creation and editing ofXMethod objects. Among the operations
supported are local variable creation, and bytecode insertion, deletion, and replacement. The editor commits
the generated or modified method back into theXClassEditor, which, in turn, commits the updated class
via reflection.

3.3 Linguistic Reflection: Code Insertion

Once a new method is generated dynamically, it needs to be reflected back into the run-time environment.
One way to implement reflection in Java is to clone (at run time) the original class, extend it with the method,
and load it via the usual loading mechanism to overwrite the previous definition. The Java VM supports
dynamic loading of classes, provided as a sequence of bytes,typically (but not necessarily) originating from
a class file, so the new class definition may be written to a file or buffer before being loaded.

It is also possible, though more difficult, to extend the original class incrementally with the new method.
Java does not allow incremental extension of class definitions. However, it may be more efficient to add a
new method into a class rather than generate a new class and load it in its entirety. This requires adding to
Java support for incremental class extension via code insertion.

We support code insertion via theXClassEditor class. An instance of this class acts as an editor for
a particular class at run-time. As described above, the program uses theXMethodEditor to create a new
XMethod instance from its bytecodes and constant pool handle. It then commits the edits by passing the
XMethod to the class editor, which internalizes the method.

myQuery’

myQuery myQuery

CFG

CFG’

myQuery’
internalize

trigger

(myset)

myQuery’

result
return

transform:
optimize

generate
code

result

invoke

invoke

internalize

myQuery’ CFG’ (myset)

Interpreter (VM) Alternate-Interpreter Tables

cache miss

probe

cache hit

cache

myquery’

(info)

Name

Optimized Method Cache

ParametersFlow Graph

Field Index ClusteringClass

ageThing

Data Characteristics

Figure 4: Alternate interpreter and optimization example.

The incorporation of a new method into the definition of a class is similar to loading a method from
the class file. In particular, the VM verifies the method and (possibly later) resolves its constants. During
verification, the method is type checked to make sure that itsargument and return types are valid, any
returned object matches the return type, and so on. Once the new method passes all checks, it is ready for
execution using the existing invocation mechanisms.

3.4 Behavioral Reflection: Alternate Interpreter

We extend Java with behavioral reflection via thealternate interpretermechanism. In our run-time model,
each method has an associated interpreter. For most methodsthis is the base (built-in) interpreter and
nothing unusual happens when the method is invoked. However, one can associate a (suitably typed) Java
method as analternateinterpreter. When the original method is invoked, the alternate interpreter code is run,
passing the original method’s code (as anXMethod) and the original arguments. The alternate interpreter
can proceed in an arbitrary fashion, and whatever it returnsis returned as the result of the original method
invocation.

As shown in Figure 4, the optimizing alternate interpreter receives anXMethod object (the method
code) and arguments, transforms the code, and incorporatesthe new method into the run-time environment
of the already running program through the reflective mechanisms described above. The alternate interpreter
then executes the method and returns the result as the resultof the original. It also caches information about
the optimization, to reduce effort on optimizing the same orsimilar calls in the future.

The only requirement is that the return type and argument types are the same as those of the original
method. Ideally, the alternate interpreter executes code that is semantically equivalent to the original, al-
though, one can think of degrees of permission that can be granted by the programmer, to give the interpreter
more flexibility.

Annotations provided with the class file can be used to assigninterpreters to methods. Alternatively,
interpreters can be assigned through an analysis step. In the query optimization example, any of the triggers

mentioned in Section 6 will result in the optimizing interpreter being assigned the method.

3.5 Code Transformation Using Alternate Interpreter

A special form of editing is code transformation. We assign amethod we want transformed to a transforming
interpreter for execution. In this paper, we focus primarily on an interpreter that optimizes queries, but this
idea is easily extended to, for example, code optimizationsthat exploit the target machine architecture (e.g.,
just in time(JIT) compilation). In the extended model, one can think of the program running on a number of
such specialized optimizing interpreters and being passedfrom one interpreter to another according to the
type of optimization or transformation that gets triggered.

3.6 Reflection Issues

Internalization of transformed methods at run-time raisesa number of issues. First, active invocations of
the original method being transformed need to be completed even if the new one is in effect. This requires
keeping the environments in use by these invocations activeuntil they all finish executing. This means that
multiple versions of a method may be available and may need tobe managed. Once completed, all versions
of the method except the most recent one would be reclaimed.

Second, we have to deal with type (class) evolution within anobject-oriented programming language.
This is an interesting context in which one can explore versioning. We need a mechanism to trap uses of old
objects and an object substitution operator to convert themto new formats. Similarly, one must be careful
with the subclasses of a modified class, since they are bound to changes in the superclass.

Third, the optimized method cache manager needs to be able toevict an entry associated with a method
that is no longer valid.

4 Object Faulting

The Java run-time system loads persistent data on demand, using the program’s attempts to access non-
resident data as triggers for retrieval. In order to access apersistent data item, the program needs to deref-
erence apointer. Traversing a pointer to a non-resident object causes (via the read barrier) anobject fault,
which triggers the retrieval of the object. As described below, the methods that carry out object packing and
unpacking during retrieval are generated automatically via the reflection mechanism.

Although it incurs a time penalty, the translation can carryout conversions between foreign and native
formats. This is especially valuable when the object may be from a remote source, or a different data model
(e.g., relational). A further generalization of this idea is to allow the user to choose the source and target
databases for their program data. The programmer could for example, replace the Mneme client with a
client of a different database, or access multiple databases.

4.1 Residency check bytecode

Supporting object faulting requires implementing the readbarrier, i.e., detecting references followed to non-
resident objects. We currently implement a read barrier viaa residency checkon each pointer followed to
see if it points to a valid object. We introduce aResidencyCheck bytecode, which ensures an object is
resident, faulting if necessary. This simple barrier is coded inline at load time into the method code using
method editing.5

TheResidencyCheck is inserted after every bytecode that pushes an object reference onto the stack.
If the reference is an OID, the bytecode triggers faulting via a callback to the (Java)getObject method

5We currently use editor classes provided by the BLOAT [Nystrom & Hosking, 1998] package. We will use the
XMethodEditor class instead once it is implemented.

of thePersistenceManager class.getObject interacts with Mneme to retrieve the object with the
specified OID, and uses its type information to create an empty Java object. The (Java) object constructs
itself by unpacking the Mneme object. The memory pointer to the Java object is swizzled (pushed back into
the stack).

4.2 Object Reading

In order to unpack and swizzle an object, the run-time systemmust know the object’s type structure.6 One
way to provide this information to the run-time system is to have the object reveal its structure via a method
that is generated by the compiler or a preprocessor, or hand-coded by the programmer. This technique does
not require any changes to the run-time system, but has to be carried out for every persistent class. Moreover,
the methods have to be re-generated every time the type definition changes.

Alternatively, the information Java provides via reflection can be used to iterate over the type information
of an object, translating or swizzling its fields one by one. This interpretive technique, based on run-time
type reflection, is inefficient, however, because it requires examining the type definition of an instance every
time, and it makes many Java method invocations.

Instead, we generate (transparently) a method for each class that is called to carry out unpacking. We
support two ways of doing this. In the approach we callload-time reflection, we extend each class with un-
packing methods generated automatically at load-time and inserted into the class definition via the reflective
mechanism described in Section 3.3.

In our just-in-time reflectionapproach, we further eliminate the cost of generating methods for classes
having no persistent instances. We do this by delaying the generation of unpacking methods until such a
method is invoked. In this scheme, a class does not have an unpacking method when first loaded, but inherits
one fromObject. The job of theObject unpacking method is to generate and insert the unpacking
methods into the class definition of the object originating the call. The first call to an unpacking method
invokes the one in theObject class, thereby triggering the generation of the methods in the object’s actual
class. Subsequent calls to the unpacking methods will invoke the generated methods.

4.2.1 Overriding the standard translation

The programmer can override the standard mappings that govern object packing/unpacking. In particu-
lar, one can imagine this as an opportunity for support of non-standard mappings, such as the compres-
sion/decompression (one-to-one) of an object, the compaction/decompaction of a set object (many-to-one),
or the linearization of the subcomponents of a larger object(one-to-many).

A subclass method can use the generated packing and unpacking methods for its superclasses and pro-
vide code only for its own fields:

classSubclassf
...
public void unpack ()f

super.unpack();
... unpack self ...g

...g
6Type information is needed for locating pointers, possiblelength and format conversions, type-checking, etc.

4.2.2 Multiple object stores

We intend to support bindings to more than one object store simultaneously. For this, we need to be able
to determine which store an object originated from just by looking at its OID. Currently, the two most
significant bits in an OID are available and can be used to distinguish up to four data sources/targets. We
could use more general OID mappings to make this more flexiblein the future.

5 Object Updating and Flushing

At certain points in its execution, a program may invoke a checkpoint operation to make permanent all mod-
ifications it has made to persistent objects. Updating modified objects at a checkpoint involves unswizzling
and packing (copying) modified (subranges of) objects and newly-created objects back to the store (see Fig-
ure 2). The transformation on write back is carried out by packing methods automatically generated for the
object’s class. As in the read case (see Section 4.2), it is possible to delay generation of these methods until
their first use.

In order to minimize the number of objects examined (considered) for packing, we use a simple write
barrier. We extend the Java bytecode set with aNoteUpdate bytecode. Upon a write into one of the
fields of a persistent object, theNoteUpdate bytecode enters the modified object7 into a remembered
set[Ungar, 1984].8 We insert aNoteUpdate bytecode before each object field write or array store byte-
code. For object-based remembering schemes, a block of writes to the same object results in the insertion
of unnecessary bytecodes. It is possible to collapse several suchNoteUpdate bytecodes into one. At
checkpoint time, we need to scan only remembered set entriesto identify all the modified objects.

After checkpointing makes the memory and store copies of data consistent,flushingmay be used to
reclaim persistent objects or release object locks. Flushing involves tracing the stack and transient (heap)
objects and unswizzling references to persistent objects.Flushing can be full or partial. We can unswizzle
all persistent space, or, e.g., limit our attention to the object graph rooted at a given object. Once we have
unswizzled all references to a set of resident persistent objects, ordinary heap garbage collection will reclaim
the space they consumed.

Although we will not go into detail here, we should mention that we may also need features to support
multi-user access, such as aLock bytecode to acquire read or write privileges to persistent objects.

6 Query Optimization

Note that our goal is to demonstrate that query optimizationcan be supported in a PPL with the help of
reflection. Therefore, our optimizations provide primarily proof of concept.

Optimization starts with an alternate interpreter invocation. A number of ways are possible for setting
up the triggers. For example, class file annotations can be used to set triggers on (certain) methods. The
method code and arguments are passed to the optimizing interpreter (see Figure 4). The interpreter analyzes
the query code, and its operands and their properties, to identify possible improvements. It extracts the query
into an abstract query plan representation and applies transformations to the plan to yield a semantically
equivalent but improved plan in terms of performance. It then converts the optimized query plan into an
executable sequence of bytecodes.

The interpreter creates a new method with the transformed code as its body and inserts (reflects) it into
the class definition of the object. The method is also cached,indexed by the values of various database
parameters and operands used in the optimization (similar to caching optimized queries in database man-

7Although we remember objects, one can also remember slots, i.e., record the modified slot of an object in the remembered set.
8Card marking [Sobalvarro, 1988] or other representations of the set of modified (portions of) objects are also valid implemen-

tations of theNoteUpdate bytecode.

agement systems). The cached method can be used next time if these values have not changed to render the
optimization invalid.

6.1 Kinds of analyses

We focus on queries expressed as a (possibly nested) loop iteration over one or more collections. We
analyze bytecodes of a method to identify the query loop structure and build an abstract query representation
amenable to transformations. We identify loops in this representation and analyze it for loop-invariant code
elimination, index identification, loop tiling, etc. In particular, we reorder nested loops in order to take
advantage of relational join optimization algorithms available. This is possible, it turns out, when the loop
statement(s) satisfy self-commutativity constraints [Lieuwen, 1992]. Consider the following simple group-
by loop (expressed in pseudo-code):

for (x1 of Set1) suchthat (P1(x1)): : :
for (xm of Setm) suchthat (Pm(x1, : : :, xm))

Stmt;

The statement Stmt is defined to beself-commutativerelative to x1, x2, : : :, xm if the code segment above
and the code segment below reach an identical, deterministic state from any starting state and under any
order of binding of variables:

for (x1 of Set1; : : : ; xm of Setm) suchthat (P1(x1) && : : : && Pm(x1, : : :, xm))
Stmt;

If Stmt is self-commutative, Lieuwen writes the above statement as a join followed by a sort. Self-commutativity
can be identified easily. A statement is self-commutative ifany two adjacent instantiations of it can be per-
muted without changing the final computation of the program.

6.1.1 Bytecode versus Source Code

While finding loop patterns in general may be quite hard, finding them from code written in a somewhat
stylized or idiomatic way should be much easier. On the otherhand, there is little or no difference between
finding these patterns in source code versus bytecodes. Bytecodes are a nearly complete representation
of the source code form, differing only in minor aspects suchas the availability of variable names, line
numbers, etc. All the typing and control flow structure is there.

6.2 Example

Figure 5 shows a sample query written in Java, and its optimized version, which uses an index. The
Enumeration e is initialized to the first set item at the beginning of the loop and thenextElement
operator allows iteration through the set elements. In thiscase, the optimizer identifies an index on the
query attributeThing.age and uses it to speed up the query. Using the index, the original full scan of a
possibly large set of objects is reduced to an iteration overa selected subset of the original set.

7 Additional Directions

7.1 Optimizing read/write barriers

We plan to analyze residency checks to eliminate redundant ones. For example, if an object remains resident
once it is faulted, then many residency checks will be redundant. Suitable data flow analysis should help
remove many such checks. The exact rules depend on the contract between the optimizer and the VM

Before:

Enumeration e= myset.elements();
while (e.hasMoreElements())f

Thing elt= (Thing) e.nextElement();
if (elt.age>= 13 && elt.age<= 19)

do stuff with eltg
After:

Enumeration e= myset.indexEnumerateIntegerRange (”age”, 13, 19);
while (e.hasMoreElements())f

Thing elt= (Thing) e.nextElement();
do stuff with eltg

Figure 5: A set iteration loop in Java before it is transformed and after.

regulating when the VM can flush resident objects. Hosking, et al. [Hoskinget al., 1998] have explored
possible contracts and measured their performance impact.

7.2 What about JIT compilers?

Query optimization as described above is a form of just in time optimization. It is possible to conceive of
JIT compilation performed by yet another interpreter. The concepts are essentially the same, although the
JIT compiler outputs native code, while the interpreter stays with Java bytecodes. It is always possible to
combine the optimization phase with native code generationto improve performance further.

Code generated at load-time is seen as ordinary code to a JIT compiler. JIT compilers do not cause a
problem for persistence if the residency checks are implemented via special bytecodes. These bytecodes
would be translated as part of compilation. The alternate interpreter concept limits the optimizations a JIT
compiler can do with respect to method dispatch, since the compiler cannot inline a call if the binding
between methods and their interpreters can be changed dynamically. The JIT compiler can be informed if
the binding is static and supported more directly by compiler.

7.3 Interactions With the Garbage Collector

The garbage collector must understand OIDs and not follow them as references. We currently use the least
significant bit as a flag to indicate that a reference is an OID.It is very easy to incorporate a filter into the
collector that ignores OIDS encountered while tracing roots and heap objects.

The garbage collector can help provide support for the writebarrier, object write back, and swizzling and
unswizzling. At the end of a checkpoint, all inter-object (heap) references and stack references need to be
unswizzled. This requires a stack and heap scan, a process also used in garbage collection. The checkpoint
operation can be optimized if unswizzling can be combined with (performed during) the heap and stack scan
phases of garbage collection. Similarly, during a heap and stack scan, the garbage collector can help swizzle
references to objects that are made resident. Finally, the collector can guarantee that inaccessible objects
are written back to disk by calling their pack methods beforedeallocating them. One might also extend or
exploit Java finalization mechanisms to help with writing back inaccessible resident persistent objects.

The reflective mechanisms described above can also be used togenerate helper methods for the garbage
collection at load time. For example, a method that iteratesthrough the references of its class instances
would be helpful in heap scans.

We need to research further the interactions of our mechanisms with Java finalization in main memory
and the store. Zigman and Blackburn [Zigman & Blackburn, 1998] have considered this issue in more detail.
We hope that a store collector can be written in Java exploiting our reflective mechanisms.

8 Summary and Conclusions

We described reflection as an approach for implementing persistence and query optimization in a program-
ming language without modifying the compiler and with minormodifications to the run-time system. We
suggested approaches to extending Java with more powerful reflective capabilities such as class, field, and
method creation, modification, and removal. We argued that judicious use of linguistic reflection can also
help support implementation of read and write barriers, anduse of behavioral reflection can allow support
for transparent query optimization.

References

[Atkinsonet al., 1996] M.P. Atkinson, L. Daynès, M.J. Jordan, T. Printezis, and S.Spence. An Orthogonally Persis-
tent Java.ACM Sigmod Record 25, 4 (December 1996), 68–75.

[Fabreet al., 1995] J. Fabre, V. Nicomette, T. Perennou, R. J. Stroud, and Z. Wu. Implementing Fault Tolerant
Applications using Reflective Object-Oriented Programming. InProceedings of the 25th IEEE Symposium on
Fault Tolerant Computing(1995).

[Goslinget al., 1996] J. Gosling, B. Joy, and G. Steele.The Java Language Specification. Addison-Wesley, 1996.

[Hoskinget al., 1998] A. Hosking, N. Nystrom, Q. Cutts, and K. Brahnmath. Optimizing the Read and Write Barrier
for Orthogonal Persistence. To appear in8th International Workshop on Persistent Object Systems (POS8), Tiburon,
CA, August 1998.

[Hosking, 1995] A. L. Hosking.Lightweight Support for Fine-Grained Persistence on Stock Hardware. PhD thesis,
Computer Science Department, University of Massachusetts at Amherst, 1995.

[Kirby et al., 1998a] G. N. C. Kirby, R. Morrison, and D. W. Stemple. LinguisticReflection in Java.Software –
Practice & Experience 28, 10 (1998), 1045–1077.

[Kirby et al., 1998b] G. N. C. Kirby, R. Morrison, and D. W. Stemple. Linguistic Reflection in Java: A Quantitative
Assessment. InProceedings of the 5th International IDEA Workshop, Fremantle, Western Australia(1998).

[Lieuwen, 1992] D. F. Lieuwen.Optimizing and Parallelizing Loops in Object-Oriented DatabaseProgramming
Languages. PhD thesis, University of Wisconsin — Madison, 1992.

[Lindholm & Yellin, 1997] T. Lindholm and F. Yellin. The Java Virtual Machine Specification. Addison-Wesley,
1997.

[Malenfantet al., 1996] J. Malenfant, M. Jacques, and F.-N. Demers. A Tutorial on Behavioral Reflection and its
Implementation. InProceedings of the First International Conference Reflection ’96(San Fransisco, CA, April
1996), pp. 1–20.

[Moss, 1990] J. Eliot B. Moss. Design of the Mneme Persistent ObjectStore. ACM Transactions on Information
Systems 8, 2 (April 1990), 103–139.

[Nystrom & Hosking, 1998] N. J. Nystrom and T. Hosking. BLOAT:Bytecode Level Optimization and Analysis
Tool. Department of Computer Sciences, Purdue University, 1998.

[Richardsonet al., 1993] Joel E. Richardson, Michael J. Carey, and David T. Schuh. The Design of the E program-
ming Language.ACM Transactions on Programming Languages and Systems 15, 3 (July 1993), 494–534.

[Sobalvarro, 1988] P. Sobalvarro. A Lifetime-Based Garbage Collector for Lisp Systems on General-Purpose Com-
puters. Technical Report AITR-1417, MIT, AI Lab, February 1988.

[Stempleet al., 1993] D. Stemple, R. Morrison, G. N. C. Kirby, and R. C. H. Connor. Integrating Reflection, Strong
Typing and Static Checking. InProceedings of the 16th Australian Computer Science Conference(Brisbane,
Australia, 1993), pp. 83–92.

[Stempleet al., 1992] D. Stemple, R. B. Stanton, T. Sheard, P. Philbrow, R. Morrison, G. N. C. Kirby, L. Fegaras,
R. L. Cooper, R. C. H. Connor, M. P. Atkinson, and S. Alagic. Type-Safe Linguistic Reflection: A Generator
Technology. Technical Report FIDE/92/49, ESPRIT BRA Project 3070 FIDE, 1992.

[Stroud & Wu, 1995] R. J. Stroud and Z. Wu. Using Metaobject Protocols to Implement Atomic Data Types. In
Proceedings of the European Conference on Object-Oriented Programming(1995), pp. 168–189.

[Ungar, 1984] D. M. Ungar. Generation Scavenging: A Non-disruptiveHigh Performance Storage Reclamation Al-
gorithm.ACM SIGPLAN Notices 19, 5 (April 1984), 157–167.

[Ungar & Hözle, 1987] D. M. Ungar and U. Hözle. Self: The Power of Simplicity. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applications (OOPSLA)(1987), pp. 227–241.

[Zigman & Blackburn, 1998] J. N. Zigman and S. M. Blackburn. Java Finalize Method, Orthogonal Persistence and
Transactions. To appear in3rd International Workshop on Persistence and Java (PJW3), Tiburon, CA, September
1998.

