Exploiting Reflection to Add Persistence and Query
Optimization to a Statically Typed Object-Oriented Language

Gokhan Kutlu J. Eliot B. Moss

Department of Computer Science
University of Massachusetts
Ambherst, MA 01003, USA
{kutlu,mosg @cs.umass.edu

Abstract

It is popular and appealing to design and construct a pensigirogramming language by extending the
semantics of a non-persistent language appropriatelyrardrhodifying its compiler and run-time system

to implement the extended semantics. We describe here hashieve this, and furthermore, how to sup-

port query optimization, which is typically neglected irrgistent programming language implementations,
through judicious exploitation of reflection. Significantive avoid modifying the structure of the source

language or its compiler in any way, and minimize and loeatlze modifications to the run-time system.

We work in the context of the Java programming language, andlade that the key features required in

our approach are: a typed intermediate representationr@aslpd by Java class files), reflection supporting
code inspection (an extension to the standard Java virtaahime), and dynamic loading of code generated
at run-time. We also require virtual machine extensionsippert read and write barriers and to trigger our
reflective optimization and code generation. Further, vgei@ithat optimization at the reflective level can

remove much of the overhead of the read and write barriers.

1 Introduction

We are interested in building database programming languagBBPL) by minimal extension of an ex-
isting (statically typed, object—oriented) language. AMBis apersistent programming languagePL)
that also provides one or mopsllection types and supports the processing (optimization) of gsi@ie
collections. A PPL is a programming language in which cratiejects are persistent—they continue to
exist and retain their values between runs of a program. ake ate kept in @ersistent storewhich the
programmer views as an extension of volatile memory. Thguage implementation and run-time system
work together to make persistent data memory-resident oradd, and to propagate the program’s modifi-
cations of persistent data into the persistent store. Ashio Figure 1, one appealing way to achieve the
transition from programming language to database progtiamianguage is to extend the language with
persistence and query processing.

DBPL

4

query processing
(bulk data)

PL _ - PPL
persistence
(fine-grained)

Figure 1: Transition from programming language to datalpasgramming language.

Supporting a PPL (persistence) demands implementationl@ést the following:

Movement/translation of objects to/from the persistent sbre. Objects need to be converted into the
persistent store format before they are written. Simijdhgy need to be translated into the language’s
heap object format as they are read in from the store. We ledlet transformationgacking and
unpacking (see Figure 2). Since our persistent store (Mneme [Mos€]188es OIDs to reference
objects, these OIDs may need to $sizzled—converted into direct memory pointers—as part of
unpacking. Pointer references ameswizzleduring packing.

Read barrier. Not all objects referenced within a program will be residanall times. Aread
barrier detects uses of references to non-resident objects (dbjdts) and triggers actions to make
these objects resident.

Write barrier . A write barrier records which objects have been modified since the last epgat
checkpoint, only modified objects need to be packed andenritack to the store.
Transaction/checkpoint model A transaction/checkpoint model dictates the way in whioth when
modifications to persistent objects are made permanentnfitbaedl) in the persistent store. We do not
consider such models in detail.

% unpacking Mneme buffer
St S s I Lo I—
! | %
| | ak
read Soiter swizzle b ___1 form
! OID |
Program .. unswizzle Relation row
unf,
ma [[|
\
j formag N 2 0
[I | |
write barrier

m packing
Figure 2: Read and write barriers trigger packing and uripgck

Supporting query optimization, on the other hand, requaresnderstanding of the following:

The operation to be performed. Because the query is defined imperatively, its intentionaimrey)
has to be inferred from an analysis of the program, whichireguwaccess to (seeing) the query code.
The data operated upon.We need to know the (static/dynamic) type of the data in oralétentify
possible optimizations, and the objects being queried,(edllections) so as to know the specific
associated operations and tools available for use in gqaiioin, such as indices.

The language, its compiler, or both can be extended to peabid kinds of support listed above. Unfortu-
nately, modifying the language and its compiler this waytisdious and painful process. Besides, the code
written in the extended language is not readily portable.

1.1 Reflection

The termreflectionrefers to the ability of a program to observe or change asp#dts own behavior and
execution environment at run time. A programming languagsaid to beeflectivewhen it provides its
programs with reflection. The ability of a program to generaw program fragments and integrate these
into its own execution is known dsguistic reflection[Stempleet al,, 1992]. Incompile-timelinguistic

1The metaphor is that of an object being packed (arrangethsat) into a case or box upon write, and unpacked on read:; it
does not imply compression.

reflection, reflective constructs are compiled and execdtethg compilation. When generation of new
code takes place at run-time, the process is temmedimelinguistic reflection. A good example of run-time
linguistic reflection is the use of a run-time callable col@piogether with the ability to bind and execute
newly compiled program fragments within the running progrgstempleet al,, 1993]. With behavioral
reflection a program alters its own meaning by changing the behaviits ofterpreter.

Reificationis the process by which aspects of a program, which were @ihplithe translated program
and the run-time system, are brought to the fore using a septation (data structures, procedures, etc.)
expressed in the language itself and made available to dgggmn, which can inspect and modify them as
ordinary data [Malenfantt al., 1996]. Linguistic reflection is concerned with the abiladf/the language
to reify both the program (code) currently executing as wasllits data types. Behavioral reflection, on
the other hand, is concerned with the ability of the programetfy its own execution state and that of the
(abstract) interpreter on which the program is running.

1.2 Java

Javé is a class-based, statically typed, object-oriented pirogning language [Lindholm & Yellin, 1997].
The Java compiler generategtecods for the Javairtual maching(JVM) [Goslinget al., 1996]. Bytecodes
are typed abstract machine code executed by the Java #ttar@ind run-time system that implement the
JVM. The Java compiler compiles each Java class definiticttewviin the Java programming language into
aclass file which contains a symbol table of type definitions and methytdcodes. The class file contains
adequate information for strong type checking upon loadirfge JVM can preload the class file, or load it
dynamically on demand. The Java heap is managed autorhatinah garbage collector.

Each class has a set of associated literals and constantsasuhe names of classes instantiated in
the methods of the class and constant values used. Thedardsrare kept in aonstant poal The class
constants have to be resolved to the objects that they mrbefore they can be used. A class name, for
example has to be converted to a reference to the class .ofijbist process of binding constants to their
corresponding objects is calleglsolution

Java is statically type-checked (i.e., at compile- and Hirae, in advance of execution), but allows
dynamic loading of classes. This nice tension betweercstati dynamic behavior allows interesting fea-
tures to be realized in Java. In particular, it is possiblsupport reflection in the language using dynamic
class (method) generation and loading. Reflection, in tlemds itself to interesting implementation of
functionalities such as persistence and query optimizatio

1.3 Overview

In this paper, we describe our planned implementation cfigience and query optimization using reflection
without modifying Java, its compiler, or its class file formdava currently does not support reflection (in
the sense in which we use the word). Extending Java with teftewill imply changing the virtual machine
to some extent, but we will keep these changes minimal. Alsowill add new bytecodes to the original
bytecode set, and, with the help of reflection, insert thepr@riately into Java code to help implement
read and write barriers.

Reflection supports more transparent and general implextiemtof persistence, because it allows au-
tomatic generation of code that carries out the transfoomdietween memory and disk data formats, and
incorporation of that code into the run-time system. Neitheompiler nor a pre-processor needs to be
involved.

Reflection can provide support for query optimization arsbaliminate the need to extend the base
language with incompatible (query language) features.eRidin does not require new language constructs.
We can build reflection in the virtual machine over Java'stxg reflective package, and use it to provide

2Java is a trademark of Sun Microsystems, Inc.

query optimization. Furthermore, with run-time reflectitime optimizer can take advantage of the run-time
specifics of the data store, such as the existence of indfe@s|ustering of data on disk, the distribution of
data among the sets in the data store, or values of parameteesquery.

This paper is structured as follows. Section 2 reviews edlavork. In Section 3, we describe our
extensions to the Java VM. Sections 4 and 5 discuss objdtintaand object updates. Section 6 describes
our query optimization model. Extending Java with poweréilective capabilities raises several issues. We
discuss these issues in Section 7 and conclude in Section 8.

2 Related work

The work presented in this paper relates to work on impleimegmtersistent programming languages, for
example, E [Richardsoet al,, 1993], Persistent Smalltalk [Hosking, 1995], PJama [Adkinet al.,, 1996],
etc. Our work differs from all the above in that it applies artechnique to implement persistence, namely
reflection. None of the persistent programming languageseabupport query optimization.

Stemple, et al. [Stemplet al., 1992] are the first to mention the use of reflection as a vitdadenique
for query optimization. Recently, Kirby, et al. [Kirlst al., 1998a] describe how linguistic reflection may be
provided in Java and used to implement natural join [Kiebyl., 1998b]. Similarly, reflection has been used
to implement new functionalities in programming languagagh as atomic types [Stroud & Wu, 1995],
and fault tolerance [Fabet al., 1995].

We take advantage of compiler optimization techniques tldl lBuguery optimizer. In particular, we use
loop optimizations to transform join loops in a query. Lieem{Lieuwen, 1992] has used similar techniques
to transform loops in an object-oriented database progiamtanguage.

The use of Java’s dynamic, late binding nature as an opptyrtian improving program performance is
similar to the approach taken in Self [Ungar & Hozle, 198n] Self, methods that are used frequently are
dynamically re-compiled to optimize their execution.

3 Reflection Extensions

Java supports limited reflecticrallowing access to the class meta-information via@hass class.Cl ass
objects provide access to (public) field and method defimstioia theFi el d andMet hod classes. The

Fi el d class provides access to the name, type, and modifiers ofladiad allows reading or modifying
the corresponding field in an instance of the class. Singjlddva provides means to access the definition
of a class method through tidet hod class. AMet hod object provides access to the name, parameter
types, and return types of a method. It also allows invokirgrhethod, but it does not allow access to its
bytecodes.

We are extending Java with true linguistic reflection, tisatthe ability to change the definition of a
class and its methods at run-time (or load-time). Furtheemoe provide behavioral reflection by allowing
changes to the virtual machine execution state.

As shown in Figure 3, the reflective loop consists of clascegion, editing, and reflection. The rei-
fied representation for a class, field, and method is an iostahthe extended reflection support classes
Xd ass,* XFi el d, andXMet hod, respectively. Unlike the ones provided by Java, thesesetasalong
with their corresponding editorX(l assEdi t or, XFi el dEdi t or , andXMet hodEdi t or), allow the
program to add, remove, or modify fields and methods via edigg. The program commits these changes
to the class run-time definition via reflection.

Below, we describe in more detail the various phases a megbed through during the reflective pro-
cess.

3This is in fact a misnomer for Java’s package, because Javirps mostly reification and only limited reflection.
4The prefixX stands for ¥tended.

Class File Java Program Virtual Machine

load internalize

\ |

Jreify .

edit Reflection Loop

vy

Lrite S

Figure 3: Run-time and load-time reflection.

3.1 Reification: Code Inspection

In order to work on a Java method at the program level, we nesgba to a representation of the method. As
mentioned above, we allow an extended reification of metlytetlbdes via th&Met hod class.XMet hod
provides essentially all of the information found in thesddile. In particular, it includes method bytecodes
and a handle to the class constant pool. Xkt hodEdi t or object puts the method bytecodes in a form
that supports the inspection, analysis and optimizatiod/a transformation of a method, and production
of a new class (file) with the new method.

3.2 Editing: Code Generation

The XMet hodEdi t or class supports creation and editingXet hod objects. Among the operations
supported are local variable creation, and bytecode insedeletion, and replacement. The editor commits
the generated or modified method back intoX@k assEdi t or , which, in turn, commits the updated class
via reflection.

3.3 Linguistic Reflection: Code Insertion

Once a new method is generated dynamically, it needs to etedl back into the run-time environment.
One way to implement reflection in Java is to clone (at run}itine original class, extend it with the method,
and load it via the usual loading mechanism to overwrite tlewipus definition. The Java VM supports
dynamic loading of classes, provided as a sequence of typésally (but not necessarily) originating from
a class file, so the new class definition may be written to a filuéfer before being loaded.

Itis also possible, though more difficult, to extend the ioidgclass incrementally with the new method.
Java does not allow incremental extension of class defigtiblowever, it may be more efficient to add a
new method into a class rather than generate a new classauhit la its entirety. This requires adding to
Java support for incremental class extension via codetioser

We support code insertion via thé&] assEdi t or class. An instance of this class acts as an editor for
a particular class at run-time. As described above, theranogises thXMet hodEdi t or to create a new
XMet hod instance from its bytecodes and constant pool handle. it ¢benmits the edits by passing the
XMet hod to the class editor, which internalizes the method.

Interpreter (VM) Alternate-Interpreter Tables

trigger probe Optimized Method Cache
I LProbe
(myset) Name | Flow Graph, Parameters
i cache miss .
cache hit
- [mQuey CFG' | (myse)
transform:
optimize
Data Characteristics
CFG’
Class | Field | Index; Clustering
generate
code — ;
(info) Thing | age v X
internalize
<R
3 internalize
: v
ke e
: Yy ‘ ry myquery
invoke

Y
return
result A REEEEEEEEE result

Figure 4: Alternate interpreter and optimization example.

The incorporation of a new method into the definition of a €l&ssimilar to loading a method from
the class file. In particular, the VM verifies the method anosgibly later) resolves its constants. During
verification, the method is type checked to make sure thargement and return types are valid, any
returned object matches the return type, and so on. Onceethenethod passes all checks, it is ready for
execution using the existing invocation mechanisms.

3.4 Behavioral Reflection: Alternate Interpreter

We extend Java with behavioral reflection via #fernate interpretemechanism. In our run-time model,
each method has an associated interpreter. For most metiieds the base (built-in) interpreter and
nothing unusual happens when the method is invoked. Howerercan associate a (suitably typed) Java
method as aalternateinterpreter. When the original method is invoked, the akiés interpreter code is run,
passing the original method’s code (asXvket hod) and the original arguments. The alternate interpreter
can proceed in an arbitrary fashion, and whatever it retisrnsturned as the result of the original method
invocation.

As shown in Figure 4, the optimizing alternate interpretgeives arXMet hod object (the method
code) and arguments, transforms the code, and incorpdhetes®w method into the run-time environment
of the already running program through the reflective meishasmdescribed above. The alternate interpreter
then executes the method and returns the result as the ot original. It also caches information about
the optimization, to reduce effort on optimizing the samsimilar calls in the future.

The only requirement is that the return type and argumerdstygre the same as those of the original
method. ldeally, the alternate interpreter executes codeis semantically equivalent to the original, al-
though, one can think of degrees of permission that can beagtdy the programmer, to give the interpreter
more flexibility.

Annotations provided with the class file can be used to assignpreters to methods. Alternatively,
interpreters can be assigned through an analysis stepe buitry optimization example, any of the triggers

mentioned in Section 6 will result in the optimizing intesfer being assigned the method.

3.5 Code Transformation Using Alternate Interpreter

A special form of editing is code transformation. We assigmeghod we want transformed to a transforming
interpreter for execution. In this paper, we focus prinyaoih an interpreter that optimizes queries, but this
idea is easily extended to, for example, code optimizatibasexploit the target machine architecture (e.g.,
just in time(JIT) compilation). In the extended model, one can thinkhefpprogram running on a number of
such specialized optimizing interpreters and being pafsad one interpreter to another according to the
type of optimization or transformation that gets triggered

3.6 Reflection Issues

Internalization of transformed methods at run-time rasesimber of issues. First, active invocations of
the original method being transformed need to be completed i the new one is in effect. This requires
keeping the environments in use by these invocations aatitiethey all finish executing. This means that
multiple versions of a method may be available and may nebd thanaged. Once completed, all versions
of the method except the most recent one would be reclaimed.

Second, we have to deal with type (class) evolution withirbject-oriented programming language.
This is an interesting context in which one can explore eaisg. We need a mechanism to trap uses of old
objects and an object substitution operator to convert tteenew formats. Similarly, one must be careful
with the subclasses of a modified class, since they are baucttbhges in the superclass.

Third, the optimized method cache manager needs to be abléctcan entry associated with a method
that is no longer valid.

4 Object Faulting

The Java run-time system loads persistent data on demaingd, the program’s attempts to access non-
resident data as triggers for retrieval. In order to accgssrsistent data item, the program needs to deref-
erence gointer. Traversing a pointer to a non-resident object causes lfeiagad barrier) aobject faulf
which triggers the retrieval of the object. As describedbethe methods that carry out object packing and
unpacking during retrieval are generated automaticabytive reflection mechanism.

Although it incurs a time penalty, the translation can camy conversions between foreign and native
formats. This is especially valuable when the object mayrdm@ fa remote source, or a different data model
(e.g., relational). A further generalization of this idsata allow the user to choose the source and target
databases for their program data. The programmer couldxBimple, replace the Mneme client with a
client of a different database, or access multiple database

4.1 Residency check bytecode

Supporting object faulting requires implementing the readier, i.e., detecting references followed to non-
resident objects. We currently implement a read barrieavisidency checkn each pointer followed to
see if it points to a valid object. We introduceéRasi dencyCheck bytecode, which ensures an object is
resident, faulting if necessary. This simple barrier isembdhline at load time into the method code using
method editing,

TheResi dencyCheck is inserted after every bytecode that pushes an objecereferonto the stack.
If the reference is an OID, the bytecode triggers faultirg avicallback to the (Javget Gbj ect method

SWe currently use editor classes provided by the BLOAT [Nyst& Hosking, 1998] package. We will use the
XMet hodEdi t or class instead once it is implemented.

of the Per si st enceManager class.get Obj ect interacts with Mneme to retrieve the object with the
specified OID, and uses its type information to create an ydgpta object. The (Java) object constructs
itself by unpacking the Mneme object. The memory pointeh&Java object is swizzled (pushed back into
the stack).

4.2 Object Reading

In order to unpack and swizzle an object, the run-time systerst know the object’s type structuteOne
way to provide this information to the run-time system is &wéthe object reveal its structure via a method
that is generated by the compiler or a preprocessor, or baded by the programmer. This technique does
not require any changes to the run-time system, but has taried out for every persistent class. Moreover,
the methods have to be re-generated every time the typetigfiohanges.

Alternatively, the information Java provides via reflent@an be used to iterate over the type information
of an object, translating or swizzling its fields one by ondisTinterpretive technique, based on run-time
type reflection, is inefficient, however, because it requéeamining the type definition of an instance every
time, and it makes many Java method invocations.

Instead, we generate (transparently) a method for each ttasis called to carry out unpacking. We
support two ways of doing this. In the approach we kmd-time reflectionwe extend each class with un-
packing methods generated automatically at load-timersettied into the class definition via the reflective
mechanism described in Section 3.3.

In our just-in-time reflectiorapproach, we further eliminate the cost of generating nusttior classes
having no persistent instances. We do this by delaying thergdon of unpacking methods until such a
method is invoked. In this scheme, a class does not have atking method when first loaded, but inherits
one fromQbj ect . The job of theObj ect unpacking method is to generate and insert the unpacking
methods into the class definition of the object originatihg tall. The first call to an unpacking method
invokes the one in thébj ect class, thereby triggering the generation of the methodsambject’s actual
class. Subsequent calls to the unpacking methods will ek generated methods.

4.2.1 Overriding the standard translation

The programmer can override the standard mappings tharmolgect packing/unpacking. In particu-
lar, one can imagine this as an opportunity for support of-standard mappings, such as the compres-
sion/decompression (one-to-one) of an object, the corgrddecompaction of a set object (many-to-one),
or the linearization of the subcomponents of a larger olfmoe-to-many).

A subclass method can use the generated packing and ungawkihods for its superclasses and pro-
vide code only for its own fields:

classSubclasg

public void unpack (){
super.unpack();
... unpack self ...

6Type information is needed for locating pointers, possiehgth and format conversions, type-checking, etc.

4.2.2 Multiple object stores

We intend to support bindings to more than one object stonelsaneously. For this, we need to be able
to determine which store an object originated from just kgkiog at its OID. Currently, the two most
significant bits in an OID are available and can be used tindisish up to four data sources/targets. We
could use more general OID mappings to make this more flekitlee future.

5 Object Updating and Flushing

At certain points in its execution, a program may invoke akpeint operation to make permanent all mod-
ifications it has made to persistent objects. Updating mextlifbjects at a checkpoint involves unswizzling
and packing (copying) modified (subranges of) objects amdyrereated objects back to the store (see Fig-
ure 2). The transformation on write back is carried out bykparmethods automatically generated for the
object’s class. As in the read case (see Section 4.2), itsisilple to delay generation of these methods until
their first use.

In order to minimize the number of objects examined (comsidlefor packing, we use a simple write
barrier. We extend the Java bytecode set witoa eUpdat e bytecode. Upon a write into one of the
fields of a persistent object, thdot eUpdat e bytecode enters the modified objeaito a remembered
set[Ungar, 1984F We insert aNot eUpdat e bytecode before each object field write or array store byte-
code. For object-based remembering schemes, a block afswatthe same object results in the insertion
of unnecessary bytecodes. It is possible to collapse destech Not eUpdat e bytecodes into one. At
checkpoint time, we need to scan only remembered set etdridentify all the modified objects.

After checkpointing makes the memory and store copies @& dansistentflushingmay be used to
reclaim persistent objects or release object locks. Rhgshmvolves tracing the stack and transient (heap)
objects and unswizzling references to persistent obj&ttshing can be full or partial. We can unswizzle
all persistent space, or, e.g., limit our attention to thipatgraph rooted at a given object. Once we have
unswizzled all references to a set of resident persistgattsh ordinary heap garbage collection will reclaim
the space they consumed.

Although we will not go into detail here, we should mentioatttve may also need features to support
multi-user access, such atack bytecode to acquire read or write privileges to persistéejgats.

6 Query Optimization

Note that our goal is to demonstrate that query optimizatian be supported in a PPL with the help of
reflection. Therefore, our optimizations provide primagloof of concept.

Optimization starts with an alternate interpreter invamat A number of ways are possible for setting
up the triggers. For example, class file annotations can e wsset triggers on (certain) methods. The
method code and arguments are passed to the optimizingrieter (see Figure 4). The interpreter analyzes
the query code, and its operands and their properties, ntifeossible improvements. It extracts the query
into an abstract query plan representation and appliesftiamations to the plan to yield a semantically
equivalent but improved plan in terms of performance. Ihthenverts the optimized query plan into an
executable sequence of bytecodes.

The interpreter creates a new method with the transformdd ase its body and inserts (reflects) it into
the class definition of the object. The method is also cacimelbxed by the values of various database
parameters and operands used in the optimization (sinaileat¢hing optimized queries in database man-

7Although we remember objects, one can also remember sktsidcord the modified slot of an object in the remembered se

8Card marking [Sobalvarro, 1988] or other representatidnisepset of modified (portions of) objects are also valid iempén-
tations of theNot eUpdat e bytecode.

agement systems). The cached method can be used next tieeéfialues have not changed to render the
optimization invalid.

6.1 Kinds of analyses

We focus on queries expressed as a (possibly nested) laagidte over one or more collections. We
analyze bytecodes of a method to identify the query loogcatra and build an abstract query representation
amenable to transformations. We identify loops in thisespntation and analyze it for loop-invariant code
elimination, index identification, loop tiling, etc. In giEular, we reorder nested loops in order to take
advantage of relational join optimization algorithms &ialie. This is possible, it turns out, when the loop
statement(s) satisfy self-commutativity constraintse[biven, 1992]. Consider the following simple group-
by loop (expressed in pseudo-code):

for (x; of Set) suchthat (Py(x1))

for (xm of Sety) suchthat (Pm(Xq, - - ., Xm))
Stmt;

The statement Stmt is defined togedf-commutativeelative to %, x», ..., Xm if the code segment above
and the code segment below reach an identical, deterngisitstte from any starting state and under any
order of binding of variables:

for (x, of Set; ... ; Xm of Sety) suchthat (P1(X1) && ... && P m(Xq, - .-, Xm))
Stmt;

If Stmt is self-commutative, Lieuwen writes the above staat as a join followed by a sort. Self-commutativity
can be identified easily. A statement is self-commutatianif two adjacent instantiations of it can be per-
muted without changing the final computation of the program.

6.1.1 Bytecode versus Source Code

While finding loop patterns in general may be quite hard, figdhem from code written in a somewhat
stylized or idiomatic way should be much easier. On the dtlhed, there is little or no difference between
finding these patterns in source code versus bytecodes.cddldge are a nearly complete representation
of the source code form, differing only in minor aspects sastthe availability of variable names, line
numbers, etc. All the typing and control flow structure igéhe

6.2 Example

Figure 5 shows a sample query written in Java, and its opéiehizersion, which uses an index. The
Enuner at i on e is initialized to the first set item at the beginning of thedaand thenext El enent
operator allows iteration through the set elements. In¢hise, the optimizer identifies an index on the
query attributeThi ng. age and uses it to speed up the query. Using the index, the ofifyitacan of a
possibly large set of objects is reduced to an iteration avealected subset of the original set.

7 Additional Directions

7.1 Optimizing read/write barriers

We plan to analyze residency checks to eliminate redundee. d-or example, if an object remains resident
once it is faulted, then many residency checks will be rednhdSuitable data flow analysis should help
remove many such checks. The exact rules depend on the cobétaveen the optimizer and the VM

Before:

Enumeration e= myset.elements();
while (e.hasMoreElements(})
Thing elt= (Thing) e.nextElement();
if (elt.age>= 13 && elt.age<= 19)
do stuff with elt

}
After:

Enumeration e= myset.indexEnumeratelntegerRange ("age”, 13, 19);
while (e.hasMoreElements(})

Thing elt= (Thing) e.nextElement();

do stuff with elt

}

Figure 5: A set iteration loop in Java before it is transfodnaed after.

regulating when the VM can flush resident objects. Hoskingl.e[Hoskinget al,, 1998] have explored
possible contracts and measured their performance impact.

7.2 What about JIT compilers?

Query optimization as described above is a form of just iretwptimization. It is possible to conceive of
JIT compilation performed by yet another interpreter. Toroepts are essentially the same, although the
JIT compiler outputs native code, while the interpreteystaith Java bytecodes. It is always possible to
combine the optimization phase with native code generatiomprove performance further.

Code generated at load-time is seen as ordinary code to apdipiler. JIT compilers do not cause a
problem for persistence if the residency checks are imphadevia special bytecodes. These bytecodes
would be translated as part of compilation. The alternaerpmeter concept limits the optimizations a JIT
compiler can do with respect to method dispatch, since tinepder cannot inline a call if the binding
between methods and their interpreters can be changed aalgmThe JIT compiler can be informed if
the binding is static and supported more directly by compile

7.3 Interactions With the Garbage Collector

The garbage collector must understand OIDs and not foll@mths references. We currently use the least
significant bit as a flag to indicate that a reference is an Ql3.very easy to incorporate a filter into the
collector that ignores OlBencountered while tracing roots and heap objects.

The garbage collector can help provide support for the Wateier, object write back, and swizzling and
unswizzling. At the end of a checkpoint, all inter-objecedp) references and stack references need to be
unswizzled. This requires a stack and heap scan, a procesasad in garbage collection. The checkpoint
operation can be optimized if unswizzling can be combinatl (werformed during) the heap and stack scan
phases of garbage collection. Similarly, during a heap taekscan, the garbage collector can help swizzle
references to objects that are made resident. Finally, dbector can guarantee that inaccessible objects
are written back to disk by calling their pack methods beftgallocating them. One might also extend or
exploit Java finalization mechanisms to help with writinglo@naccessible resident persistent objects.

The reflective mechanisms described above can also be ugede¢oate helper methods for the garbage
collection at load time. For example, a method that iteréttesugh the references of its class instances
would be helpful in heap scans.

We need to research further the interactions of our mectmsngth Java finalization in main memory
and the store. Zigman and Blackburn [Zigman & Blackburn,8]9&ve considered this issue in more detail.
We hope that a store collector can be written in Java exptpitur reflective mechanisms.

8 Summary and Conclusions

We described reflection as an approach for implementinggpense and query optimization in a program-
ming language without modifying the compiler and with mimaodifications to the run-time system. We

suggested approaches to extending Java with more powefiiettive capabilities such as class, field, and
method creation, modification, and removal. We argued tiditious use of linguistic reflection can also

help support implementation of read and write barriers, @®lof behavioral reflection can allow support
for transparent query optimization.

References

[Atkinsonet al, 1996] M.P. Atkinson, L. Daynes, M.J. Jordan, T. Printezis, anfifgnce. An Orthogonally Persis-
tent JavaACM Sigmod Record 28 (December 1996), 68—75.

[Fabreet al, 1995] J. Fabre, V. Nicomette, T. Perennou, R. J. Stroud, and Z. Wu letngmting Fault Tolerant
Applications using Reflective Object-Oriented Programming.Ptaceedings of the 26 IEEE Symposium on
Fault Tolerant Computin§1995).

[Goslinget al,, 1996] J. Gosling, B. Joy, and G. Ste€lde Java Language Specificatiohddison-Wesley, 1996.

[Hoskinget al,, 1998] A. Hosking, N. Nystrom, Q. Cutts, and K. Brahnmath. Opting the Read and Write Barrier
for Orthogonal Persistence. To appea8ihinternational Workshop on Persistent Object Systems (PO®8&)ron,
CA, August 1998.

[Hosking, 1995] A. L. HoskingLightweight Support for Fine-Grained Persistence on Stock HardwhD thesis,
Computer Science Department, University of Massachusetts at Amherst, 1995

[Kirby et al, 1998a] G. N. C. Kirby, R. Morrison, and D. W. Stemple. LinguidReflection in Java.Software —
Practice & Experience 2810 (1998), 1045-1077.

[Kirby et al, 1998b] G. N. C. Kirby, R. Morrison, and D. W. Stemple. Linguidieflection in Java: A Quantitative
Assessment. IRroceedings of the'SInternational IDEA Workshop, Fremantle, Western Austréli698).

[Lieuwen, 1992] D. F. Lieuwen.Optimizing and Parallelizing Loops in Object-Oriented Datab&egramming
LanguagesPhD thesis, University of Wisconsin — Madison, 1992.

[Lindholm & Yellin, 1997] T. Lindholm and F. Yellin. The Java Virtual Machine SpecificatiorAddison-Wesley,
1997.

[Malenfantet al, 1996] J. Malenfant, M. Jacques, and F.-N. Demers. A Tutorial on Bel#JRaflection and its
Implementation. IrProceedings of the First International Conference Reflection(S&n Fransisco, CA, April
1996), pp. 1-20.

[Moss, 1990] J. Eliot B. Moss. Design of the Mneme Persistent Olgemte. ACM Transactions on Information
Systems & (April 1990), 103-139.

[Nystrom & Hosking, 1998] N. J. Nystrom and T. Hosking. BLOABytecode Level Optimization and Analysis
Tool. Department of Computer Sciences, Purdue University, 1998.

[Richardsoret al,, 1993] Joel E. Richardson, Michael J. Carey, and David T. Schuh. Thgmekthe E program-
ming LanguageACM Transactions on Programming Languages and Systent (U&ly 1993), 494-534.

[Sobalvarro, 1988] P. Sobalvarro. A Lifetime-Based Garbage Collectdri$p Systems on General-Purpose Com-
puters. Technical Report AITR-1417, MIT, Al Lab, February 1988.

[Stempleet al,, 1993] D. Stemple, R. Morrison, G. N. C. Kirby, and R. C. H. Conrntegrating Reflection, Strong
Typing and Static Checking. IRroceedings of the 16th Australian Computer Science Confer@Brigbane,
Australia, 1993), pp. 83-92.

[Stempleet al,, 1992] D. Stemple, R. B. Stanton, T. Sheard, P. Philbrow, R. Mamti&. N. C. Kirby, L. Fegaras,
R. L. Cooper, R. C. H. Connor, M. P. Atkinson, and S. Alagic. TypeeSahguistic Reflection: A Generator
Technology. Technical Report FIDE/92/49, ESPRIT BRA Project 307 1992.

[Stroud & Wu, 1995] R. J. Stroud and Z. Wu. Using Metaobject Promtomlimplement Atomic Data Types. In
Proceedings of the European Conference on Object-Oriented Progran{i®8§), pp. 168—189.

[Ungar, 1984] D. M. Ungar. Generation Scavenging: A Non-disrugtiigh Performance Storage Reclamation Al-
gorithm. ACM SIGPLAN Notices 1% (April 1984), 157-167.

[Ungar & Hozle, 1987] D. M. Ungar and U. Hozle. Self: The Power of Sicigl. In Proceedings of the Conference
on Object-Oriented Programming Systems, Languages, and Applisgft@OPSLAJ1987), pp. 227-241.

[Zigman & Blackburn, 1998] J. N. Zigman and S. M. Blackburn. Java kiedlethod, Orthogonal Persistence and

Transactions. To appear 8% International Workshop on Persistence and Java (PJWikuron, CA, September
1998.

