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Abstract

Visual applications need to represent, ma-
nipulate, store, and retrieve both raw and pro-
cessed visual data. Existing relational and
object-oriented database systems fail to offer
satisfactory visual data management support
because they lack the kinds of representations,
storage structures, indices, access methods,
and query mechanisms needed for visual data.
We argue that extensible visual object stores
offer feasible and effective means to address
the data management needs of visual applica-
tions. ISR4 is such a visual object store under
development at the University of Massachusetts
for the management of persistent visual infor-
mation. ISR4 is designed to offer extensive
storage and retrieval support for complex and
large visual data, customizable buffering and
clustering, and spatial and temporal indexing,
along with a variety of multi-dimensional ac-
cess methods and query languages.

Index Terms: visual information management,
persistent object store, extensible visual object
store�This work was supported in part by the Advanced
Research Projects Agency (via U.S. Army TEC) under
contract number DACA76-92-C-0041, (via TACOM) un-
der contract number DAAE07-91-C-R035, and by the
National Science Foundation under grant number CDA-
8922572.

1 Introduction

A visual application is an application that ma-
nipulates visual data as part of its processing.
With advances in image analysis, visualiza-
tion, and video technologies, increasingly large
amounts of digital visual data are being gener-
ated by visual applications in a tremendously
diverse range of domains, such as geographic,
astronomical, and environmental information
management, engineering and scientific visu-
alization, military intelligence, computer aided
design and manufacturing (CAD/CAM), and
medical imaging.

Visual data consumed in applications con-
sist not only of raw sensory data such as images,
but also processed data, such as the knowledge
structures used in visual interpretation systems,
and associated model data (such as CAD/CAM
models). As the scale of visual applications
grows, the need to efficiently process, store,
and access the raw and processed data becomes
more acute.

Typically, a large amount of the data gener-
ated in a visual application is needed for tempo-
rary use only. A line extraction algorithm, for
example, may produce hundreds (or thousands)
of line segments from an image. Although not
permanent, such data may be accessed repeat-
edly by other modules (e.g., line grouping or
model matching algorithms), so the efficiency
of in-memory data representation and retrieval



is critical.
On the other hand, a priori knowledge such

as maps and models make up a permanent
data base of information that visual algorithms
access repeatedly and alter only occasionally.
Similarly, generated long-term data, such as the
set of extracted line segments that make up a
site model, have to be stored for future access.
Although less voluminous per image than the
temporary data mentioned above, this data is
persistent and grows to larger total amounts
over time. It therefore must be managed by
efficient storage and access mechanisms which
are geared to the nature (e.g., spatial, temporal,
3D) of the data.

We addressed the management of tempo-
rary data in an earlier visual data management
and process integration tool, called ISR3 [3].
In this paper, we first discuss the issues related
to the management of persistent data in visual
applications, and the shortcomings of current
relational and object-oriented systems in deal-
ing with these issues. We then argue that ex-
tensible visual object stores offer a feasible and
efficient means to address the data management
needs of visual applications, and present ISR4,
a visual object store under development at the
University of Massachusetts.

2 Current Technology

As described below, the efficient storage and
retrieval of large volumes of permanent vi-
sual data, such as aerial images, site models,
and MRI scans, imposes requirements that are
vastly different from those found in conven-
tional data processing. As a result, existing
relational and object-oriented database systems
fail to offer the kinds of storage structures, in-
dexing and access methods, and query mecha-
nisms needed for visual data.

2.1 Efficient Storage Structures

Large, Multi-dimensional Objects. One is-
sue is how to manage the storage and retrieval

of large, multi-dimensional objects such as im-
ages. Space- and time-efficient storage and ac-
cess of large visual objects is critical in projects
such as The National Digital Library program at
the Library of Congress, which involves provid-
ing access to a major subset of approximately
105 million items, among which are large num-
bers of digitized pictures.

Most applications store images in files, and
leave the management of memory (page swaps,
etc.) to the operating system. This approach can
result in a large number of page swaps, espe-
cially when the physical clustering of the image
on disk does not match the access pattern of the
application [18]. Traditional database systems
do not provide appropriate data types or built-in
support for images or similar 2D objects (e.g.
maps). Adaptive clustering techniques used for
clustering multi-dimensional data according to
patterns of access are not mature, and the ones
suggested depend on complex access pattern
statistics [4, 18].

Associative clustering. As discussed above,
many visual applications need to store not only
raw images, but also symbolic data extracted
from (or associated with) images. In content-
based image retrieval, for example, commonly
stored data include color histograms, invariants
of shape moments, and texture features. More-
over, symbolic data often need to be associated
with the image region they came from so that
they can be retrieved with the sub-image. In the
RADIUS [16] program, for example, site mod-
els reconstructed from sets of aerial images need
to be grouped, stored, and retrieved according
to their functional areas.

Most database systems provide little control
over clustering of information in external stor-
age so that a sub-image and the related analysis
results can be stored on the same disk page, and
retrieved together efficiently.
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2.2 Multi-dimensional and Temporal
Indexing

Visual data that are spatial in nature, such as
geometric image structures, often need to be
accessed according to their spatial properties in
an image and/or 3D world positions. There-
fore, spatial indices need to be maintained for
efficient access to such data. Also needed, espe-
cially in military intelligence and medical imag-
ing applications, are temporal indices defined
over a time-sequence of image data. A typical
medical query example is to find the first sign
of a tumor in a history of MRI data.

Unfortunately, there is a lack of effective
support for multi-dimensional and temporal in-
dexing techniques in existing database systems.
Moreover, simply adding one or two popular in-
dexing methods, such as n-dimensional R-trees,
is only a limited solution awaiting situations
where a completely different index is needed.
Instead, the ability to incorporate one’s own in-
dexing mechanism into the data management
system is called for.

2.3 Query Mechanisms and Optimiza-
tion

Spatial, temporal, and geometric represen-
tations. Current relational and object-oriented
query languages do not express the necessary
spatial, temporal, and geometric concepts and
operators effectively. For example, one must
usually build specific concrete representations
of n-dimensional points, lines, curves, regions,
etc., and most systems provide no appropri-
ate treatment of geometric anomalies that arise
from, for example, numerical roundoff errors.
Although one can represent concepts such as
points and lines, attempting to express notions
such as “distance” and “collinearity” leads to
very inefficient query processing in traditional
database systems. Moreover, explicit coding
of such data types sacrifices representational
independence. Likewise, one typically does
not have the most efficient algorithms available,
e.g., from computational geometry.

Approximate, ranked retrieval. A deeper
problem with existing query languages is that
they are boolean. A fact or record either def-
initely lies in the query result set or it does
not. Many queries in visual applications are
more likely to be concerned with approximate
matches and/or ranked retrieval, where the goal
is to find the best answers to a query and to
rank them according to their degree of qual-
ity. A simple example would be finding objects
“near” another object: we might return a list of
objects ranked according to their distance from
the query object, up to some maximum distance
and/or maximum number of objects.

Query Optimization. In addition to query
languages being limited in concepts and op-
erators, existing query optimizers are not pre-
pared to take into account geometric algorithms,
spatial/temporal indexing, and ranked retrieval.
This may become a critical issue when scal-
ing to large systems, since query optimization
frequently has orders of magnitude impact on
performance.

3 Extensible Visual Object
Stores

A visual object store is an object store and its as-
sociated tools and facilities provided to support
the representation, manipulation, storage and
retrieval of visual data. An extensible visual ob-
ject store will have a number of unique features,
which help overcome the problems discussed in
Section 2:� It will provide a powerful core of func-

tionalities to answer the basic data man-
agement needs of an application, includ-
ing efficient built-in data types, basic
storage and retrieval ability, and efficient
storage structures, access methods, and
query mechanisms for complex visual
objects.� Application programmers will be pro-
vided the flexibility to add new features
as needed, at all levels of the system.
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� Multiple policies and implementations
will be available for the database imple-
mentor to choose from.� Buffer management and data clustering
policies will be accessible for customiza-
tion and fine tuning.� Applications will be lighter-weight since
the features of the visual object store will
be well integrated, and only those fea-
tures needed will be part of the applica-
tion; unnecessary features will be turned
off.

Visual Information Management Systems. A
similar research effort has focused on the de-
velopment of Visual Information Management
Systems (VIMS) [10]. However, there is so
much variety in the application domains and
the types of visual data they employ (e.g. con-
tinuous vs. discrete, temporal vs. spatial) that
there is a need for a spectrum of VIMSs, rather
than a single, all-encompassing VIMS. On the
other hand, VIMS applications share a basic set
of common needs; they all need to represent,
manipulate, and effectively store and retrieve
visual data. Addressing these mutual needs in-
dependently for each application would result
in a duplication of effort. An extensible visual
object store offers exactly what is needed for
building application-specific VIMSs: support
for their shared basic data management needs.

4 ISR4

ISR4 is an extensible visual object store un-
der development at the University of Mas-
sachusetts. As shown in Figure 1, ISR4 is the
integration of an earlier visual data management
and process integration tool called ISR31 [3],
with Mneme [14], a persistent object store (also
developed at the University of Massachusetts).1ISR (Intermediate Symbolic Representation; [Brolio,
1989]) is the name of a series of symbolic databases for
visual information developed at the University of Mas-
sachusetts; ISR4 is the most recent version.
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Figure 1: ISR4 is the integration of ISR3 and
Mneme.

4.1 Overview of ISR4

Spatial and geometric representations. Em-
bedded in its host language C++, ISR4 al-
lows arbitrarily complex objects to be de-
fined and processed, and provides an initial
set of standard visual representations, includ-
ing single-band and multi-spectral images, 2D
points, lines, edges, and regions, and 3D points,
lines, surfaces, and volumes. Moreover, as
the (object-oriented) data model is uniform
throughout ISR4, complex representations such
as spatially-indexed sets of line segments or
histograms of image features can transparently
move between ISR3 and Mneme.

Customizable data clustering. ISR4 offers
more than storage support; it provides meth-
ods for customizing Mneme’s buffer manage-
ment and clustering policies according to an
application’s needs. For example, the database
implementor can use Mneme’s basic capabil-
ities to introduce data clustering policies that
reduce data access delays for specific applica-
tions, such as storing an image region and its
computed features in the same physical seg-
ment. Similarly, features which are multi-
dimensional in nature, such as geometric image
structures, can be clustered on disk according
to user-specified access patterns for efficient ac-
cess.

An example of customizing storage and ac-
cess for visual applications is the ISR4 tile-
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image format, where an image is clustered on
disk, and sub-images are brought into memory
only as needed (on-demand). This ability sig-
nificantly reduces the number of page swaps
during common image processing operations.

Concurrent, Distributed Database Opera-
tions. Mneme supports concurrent database op-
erations on arbitrarily complex objects within a
distributed setting. It also provides customiz-
able transaction and concurrency support, as
well as extensible caching for use in client-
server modes of operation.

Spatial and temporal indexing and query
methods. ISR3 is equipped with a hierarchy
of C++ classes that provide representations and
methods for associatively and spatially orga-
nizing and accessing sets of memory-resident
objects [3]. In particular, 2D geometric ob-
jects in images can be spatially stored into two-
dimensional grids [1] and retrieved according
to spatial position in the image.

We are currently developing persistent ver-
sions of these access methods. When manipu-
lating persistent data, these techniques can sig-
nificantly reduce data access times because only
the index data structures need to be kept in-
memory when indexing persistent objects. Vi-
sual data reside on disk and are brought into
memory only when accessed, on-demand. The
access data structures are stored on disk at pro-
gram termination for later use.

Mneme already provides one such standard
indexing mechanism: the B+ tree. Moreover,
Mneme provides the database programmer with
a flexible and powerful interface for building
different types of indices, including spatial in-
dices, such as quad-trees and R-trees, and other
multi-dimensional indices. A more general ac-
cess structure similar to the Generalized Search
Tree (GiST) [8] is also under construction for
Mneme, which will be extensible in both the
data types it can index and in the queries it can
support.

We are also adding 3-D access mechanisms,
and spatial and temporal query languages and
techniques to this framework. A temporal in-

dex based on the Time Index [5], and optional
versioning will also be provided to support his-
torical queries. Once indices are built, query
languages and techniques will also be imple-
mented within this framework.

Extensibility. ISR4 offers generic solutions
that lend themselves to immediate use by the
visual database implementor, such as concur-
rent and distributed storage and retrieval ability
for arbitrarily complex objects. However, a
single generic solution is not suitable for more
specific needs, such as application-dependent
data structures, query methods, and indexing
mechanisms. In such cases, ISR4 provides
an initial set of powerful tools, and leaves it
to the database implementor to generate repre-
sentations, operators, indices, and query facil-
ities tailored to the application. As an exam-
ple, ISR4 allows—and encourages—the user
to extend its initial set of representations by
adding new ones. Visual data types can be eas-
ily defined and integrated with the system us-
ing ISR4’s data definition language (DDL) (see
Section 4.3.5). Likewise, Mneme is fully acces-
sible for building multi-dimensional indices, or
for tuning the buffer management and data clus-
tering policies to the application-specific data
requirements.

4.2 The Architecture of ISR4

ISR4 has two major components: a Database
Programming Interface (DPI) based on ISR3,
and a Storage Manager (SM) based on Mneme.
The DPI provides a data definition language for
defining visual objects, a hierarchy of visual
representations, I/O support for visual data in
a variety of common file formats, and graphics
tools for displaying visual data. It also provides
an initial set of indexing techniques for storing
and retrieving (primarily 2D) data. The Storage
Manager, on the other hand, provides concur-
rent and distributed storage, and customizable
indexing, buffer management, and disk cluster-
ing support for persistent visual objects.
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Figure 2: ISR4’s Object Class Hierar-
chy includes representations for single-band
and multi-spectral images, 2D points, lines,
edges, and regions, and 3D points, lines, sur-
faces, and volumes.

4.3 The Database Programming Inter-
face

4.3.1 ISR4 Object Class Hierarchy

The DPI first answers the representational needs
of a VIMS with a hierarchy of representations
for visual objects. It is essential for a VIMS to
be equipped with a rich set of visual representa-
tions, especially if it is aimed to support a wide
range of applications. As shown in Figure 2,
the root of the ISR4 object hierarchy is the to-
ken—a basic abstraction for a visual object. A
token2 defines a visual object via its attributes,
and input, output, and display methods. ISR4
provides an initial set of commonly used token
classes, including (several types of) images, 2D
and 3D points, lines, regions and edges. Al-
though rich, the initial set of tokens may not be
appropriate for all applications. Likewise, an
originally appropriate representation may have
to adapt to an evolving set of data requirements.
The DPI addresses these issues by allowing the
modification or extension of its data types. A2A token is really an instance of a C++ class derived
from Token, although we will refer to both the instance,
and the type as a token whenever the difference is clear
by the context.

Data Definition Language (DDL) is provided
for defining new tokens, or modifying the ex-
isting ones, and which also ensures that a new
token is transparently integrated with the rest of
the system (see Section 4.3.5).

A similar object hierarchy is given as
part of the Image Understanding Environment
(IUE;[15]). IUE is an object-oriented environ-
ment that aims to facilitate exchange of research
results within the Image Understanding (IU)
community by providing the basic data struc-
tures and operations needed to implement IU
algorithms.

ISR4 differs from IUE in that it emphasizes
flexibility, simplicity, and extensibility, while
IUE’s focus is on completeness. ISR4’s flexible
object hierarchy allows researchers to add new
objects, and define their own object relationship
constraints. IUE’s hierarchy, on the other hand,
aims to provide a standard, complete class hi-
erarchy, which specifies where any visual data
type and process falls in the taxonomy. ISR4’s
hierarchy is kept simple to mainly focus on vi-
sual objects, in an attempt to offer uniform treat-
ment of all its data types. All ISR4 objects, in-
cluding complex objects (such as a set of image
curves and spatially organized image features)
are guaranteed input, output, persistent storage,
and “display” support. Such uniform treatment
is not possible in the complex IUE object hi-
erarchy, which includes abstract mathematical
objects, such as transforms and camera models,
and procedural objects, such as tasks.

4.3.2 Associative and spatial access meth-
ods

The second DPI contribution comes in the form
of representations and methods for associa-
tively and spatially organizing and accessing
sets of memory-resident objects. Visual ob-
jects, especially features computed in an im-
age, are often loosely structured into sets or
groups [1]. For example, in content-based
query operations, related or multiply-occurring
features frequently need to be treated as single
entities, so that operations can be performed on
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the group as a whole, as when an image-analyst
executes a polygon-finder on the set of lines
(the group of features) extracted from an aerial
image in order to form building hypotheses.

At the other extreme are operations that re-
quire isolating elements in a group that satisfy
certain desired properties, such as finding the
image lines whose orientation lies within some
specified range. As shown in Figure 3, the DPI
serves both purposes with a hierarchy of C++
classes derived from token, called tokensets.
Set operations and range queries are defined on
tokensets, as well as associative access meth-
ods. In particular, geometric objects can be
spatially stored into two-dimensional grids and
retrieved according to spatial position in the im-
age [1]. As before, ISR4 is extensible, so that
other grouping techniques, such as oct-trees for
3D data can easily be implemented.

4.3.3 Flexible I/O for visual objects.

As a third form of assistance, the DPI provides
input and output support for visual data pro-
duced in operations. In the DPI, any recog-
nized token or set of tokens can be output to

a file and read back. The I/O methods allow
storing tokens in both ASCII and binary format
files. The ASCII format file, isra, allows the
inspection of tokens stored in it, while the bi-
nary format, isrb, is more compact and faster
to read. In addition to ISR4’s own formats, the
I/O routines support reading and writing image
files in many commonly used external formats.

4.3.4 Common image formats and
graphics.

A set of common image formats comprise an-
other form of support. Of all the visual data
types that need to be managed in applications,
images are the largest and most prevalent. Con-
sequently, images need special attention in a
VIMS. To address the needs of a wide variety
of applications, the DPI supports most com-
mercially available image formats, including
gif, tiff, (Khoros [17]) viff, (KBVision [19]) im,
and (soon) JPEG. This allows image processing
and image understanding operators from such
widely-distributed systems as Khoros and KB-
Vision to be applied to ISR4 data. To support
the smooth integration of any new operators
with the system, the DPI provides facilities to
convert any image format to another. External
to the DPI, ISR4 supplies interactive graphics
for displaying and inspecting most system data
objects stored in files, with an executable called
xisrdisplay.

4.3.5 ISR4 Data Definition Language
(DDL)

One way to define data types (not provided in
ISR4) is to introduce an external language for
defining the characteristics of objects, and con-
vert the descriptions with a preprocessing step
to C++ class definitions recognized by ISR4.
A second approach, which is favored here, is
to directly define objects using C++ syntax.
This eliminates the preprocessing step and the
need to learn a separate language for object
definition. While it is true that a DDL can
be more powerful in expressing object-oriented
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concepts than a programming language, the ab-
stractions provided by C++ for object defini-
tion and manipulation are sufficient to satisfy
the needs of typical VIMSs.

As mentioned earlier, a visual object is
mapped to an instance of a C++ class called
Token in ISR4. The Token type defines the
global properties of objects and the available
operations on them. All ISR4 objects derive
from Token to inherit these properties. The
definition of an ISR4 object type takes the fol-
lowing form:

class ClassName : public Token3 {
public :

– Presentation support methods:
name(); trace(); draw();
input(); output();

– Storage Manager support methods:
size(); traverse();
pack(); unpack();

– The object’s own public field and signa-
ture definitions

protected :

– Definitions visible only to subclasses of
ClassName

private :

– Private field and signature definitions.
};

Objects of arbitrary complexity can be de-
fined using this definition rule, as there is no
restriction on the object attributes. A token
must be introduced to the system via a set
of support methods, however, so that it can
properly be manipulated in the system. As
listed above, the support methods that need
to be supplied are name, input, output,
trace, draw, size, traverse, pack, and
unpack. These methods are very easy to gen-
erate; they require at most one line of code for
each attribute of the token. The traverse
method, for example, which visits the objects
referenced by a token, consists of calls to a sys-
tem function for every object reference it has:

class TrihedralJnct : public Token {
public:
Line2D *Segment1;
Line2D *Segment2;
Line2D *Segment3;

Point2D *Center;

// Segments
// forming the
// junction

// Junction point
};

TrihedralJnct::traverse(TravTable& tt)
{

tt.add (Segment1);
tt.add (Segment2);
tt.add (Segment3);
tt.add (Center);

// Add the object
// to the list
// of objects
// traversed.

}

Once recognized by the system, an object
can be: 1) Included in a tokenset, and accessed
associatively or spatially; 2) Stored in and re-
trieved from the persistent object store; 3) Out-
put to, and read back from a file; and 4) Dis-
played and inspected using xisrdisplay.

4.4 The Storage Manager

The Storage Manager, based on the Mneme per-
sistent object store, provides storage support for
complex visual objects. As described below
(Section 4.4.2), the Storage Manager mainly
acts as an interface that maps Database Pro-
gramming Interface requests and objects to cor-
responding Mneme requests and objects. The
actual storage and retrieval of objects, and the
associated buffer and disk management is car-
ried out by Mneme.

4.4.1 Mneme

The Mneme object store aims to provide the
illusion of a large heap of objects, directly ac-
cessible from the Storage Manager. The main
abstractions provided by Mneme to the Storage
Manager are objects, object pointers, files, ob-
ject pools, and buffer pools [13]. Mneme views
an object to be a collection of bytes and refer-
ences to other objects. Each object is uniquely
referenced by an object identifier. In Mneme,
objects are grouped together into units called
files. Each file has a special object called the
root object, which can be used to store refer-
ences to and information about the objects that
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are stored in that file. Within files, objects are
logically grouped in object pools according to
the policy under which they are managed. The
policies governing the management of objects
in a pool are dictated by a set of routines called
strategies. Mneme defines a few pool strate-
gies, although the users can supply their own
specialized strategies. Each Mneme object is a
member of exactly one pool, and each pool a
member of exactly one file.

As mentioned above, Mneme currently sup-
ports the B+ tree index for indexing visual ob-
jects on disk, and a more general customizable
access structure is under construction, which
will support different types of application-
specific indexing and queries in one structure.

4.4.2 Object Storage and Retrieval

As mentioned above, a token is defined in
the Database Programming Interface using the
ISR4 DDL. Typically, a token is born transient
when created in the space of the DPI. When it
needs to be made persistent, the DPI passes
the token and its name (to be given) to the
Storage Manager with a request to store it in
a specific file. The storage request may in-
clude clustering parameters, such as “near ob-
ject X.” Alternatively, this can be done auto-
matically by inserting the object into an index
structure which will store the object in a way
to access it rapidly. When multiple indices that
have conflicting clustering requirements need
to be kept on an object, multiple copies of the
object can optionally be made when the object
is immutable (known not to be modified after
creation).

To save storage space and reduce database
access time, ISR4 tokens are stored in Mneme
in a compact format. Before an ISR4 token
is stored, the Storage Manager maps it into
a compressed Mneme object. Similarly, the
Storage Manager retrieves a compressed object
in Mneme, and uncompresses it before pass-
ing it to the DPI. As the pack, unpack, and
traverse methods used during compression
and decompression are required as part of a to-
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Figure 4: The Storage Manager provides
interface functions between the DPI and
Mneme.

ken’s definition (see Section 4.3.5), storage and
retrieval support is guaranteed for any ISR4 to-
ken, including complex objects such as a spatial
grid of line segments or a histogram of image
features.

The Storage Manager then acquires a
pointer to a corresponding empty Mneme object
in the desired file, and maps the token into the
Mneme object, compressing it in the process.
Mneme also assigns a unique id to the object.
The Storage Manager accesses the object using
its id or pointer.

In the DPI, on the other hand, access to
the token is through its given name. Since
names are not stored as part of an object in
Mneme, the Storage Manager keeps a transla-
tion table (for each Mneme file) to convert the
name to an id, and uses the id to access the
object. When the identifier of a desired object
is presented, Mneme returns a pointer to the
memory-resident object. If the object was not
previously memory resident, it is brought into
memory from the file that contains the object.
The Storage Manager then uncompresses the
object into an ISR4 token, and passes the token
to the DPI.

Storage and retrieval is more complicated
when the object to be stored or retrieved has
references to other objects (see ‘composite ob-
ject’ in Figure 4). The object references are
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converted to ids during storage, and back to di-
rect pointers during retrieval. The performance
analysis of this scheme called copy swizzling4
has been thoroughly investigated in [12], and is
beyond the scope of this paper.

The Storage Manager also provides meth-
ods to lock and release objects in Mneme
buffers. Mneme guarantees to keep an object
resident between the time when a pointer to
the object is first obtained and the time when
a release operation is performed on the object.
Mneme can force a released object to disk to
make space for another object. All memory-
resident objects are transferred to secondary
storage at program termination. To ensure that
the name-to-id correspondences are valid dur-
ing different executions of a program, the trans-
lation table is automatically stored in the cor-
responding Mneme file when a program termi-
nates, and restored when the file is opened.

4.5 The Tile-Image Format

ISR4’s tile-image storage and access model
achieves improved storage and access perfor-
mance by tuning the interaction between the
storage manager’s buffers and disk segments.
The idea is to divide an image into (possibly
overlapping) tiles, and represent the image by
the collection of all the tiles. The tiles are stored
as separate objects, and are brought into mem-
ory only when the image subregion covered by
the tile is being accessed. Image tiling strate-
gies are among the most straightforward, but
there are many others. One example is map-
ping multiple dimensions (eg. 2D, temporal,
function type of site models, etc.) into one di-
mension of disk clustering. Figure 5 shows a
tile-image with overlap between tiles.

The tile-image model is based on the obser-
vation that only part of an image is accessed at
a time in typical applications. In the RADIUS
project, for example, it is common to divide4Swizzling refers to the replacement of id references
between memory-resident persistent objects with direct
pointers. Copy swizzling is making a separate copy of
the object being swizzled, versus carrying the swizzling
in-place, in the object manager’s buffers.

tile-y-overlap

tile-x-size tile-x-overlap

moveto

cursor

tile-y-size

Figure 5: Tile-image with tile-overlap and
Cursor.

an image and access its sub-images according
to functional area in a site model. The tile-
image model makes it possible to work on an
image even though only parts of it are memory-
resident. This is desirable especially when the
whole image does not fit into physical mem-
ory, and only a sub-image can be read at a
time. RADIUS images, for example, are typi-
cally 10K�10K and larger. On the other hand,
even when the memory is large enough to ac-
commodate the entire image, we may want to
limit the amount of buffer space we use for it,
so that there is room left for other objects, such
as the building models extracted. Typical ap-
plications that work with large images maintain
a window into the image and keep in memory
only the sub-image that falls in the window.

The model also aims to take advantage of
the fact that images are rarely modified, except
at creation time. This allows focusing on read-
only operations when optimizing buffer man-
agement for image data. For example, the parts
of the image read into memory can be accessed
directly in Mneme’s buffers (rather than creat-
ing a copy as with other tokens)—also called
in-place swizzling—and a buffer page holding
image data can be recycled without having to
worry about writing its contents back to disk.

Once created, a tile-image can be accessed
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either in a random-access mode, or a scan
mode. The two access modes represent the
two most typical access patterns found in vi-
sual applications. The random-access mode is
for cases when pixels from distant image loca-
tions are accessed consecutively, resulting in a
‘jump’ from one location to the other. Such a
pattern would arise, for example, when examin-
ing pixel values from different visual objects in
the image. The scan mode, on the other hand,
is for convolution-like image processing oper-
ations, where every pixel is visited one by one,
and some value is computed based on the pixel
and its neighbor pixels.

These access modes are provided via a cur-
sor, which is a window into the image that al-
lows access to the pixels located in the window.
In the random-access mode, the cursor can be
moved to any location in the image, whereas
in the scan mode, it is allowed to move only
locally (left, right, up, and down).

An issue related to images that still needs to
be addressed is the storage and retrieval of com-
pressed images. It is common practice to store
large images in a compressed form. It is there-
fore desirable to support transparent access to
images, where the user does not know whether
the image is compressed in the database or not.
The same problem arises when dealing with
continuous media, such as video data. Video
sequences are stored on disk in compressed
form (e.g. MPEG;[7]), but have to be transpar-
ently uncompressed during playback. This can
be achieved by presenting an image (or video
frame) to the application program only after un-
compressing it—uncompressing an image that
is not compressed being a null operation. We
may want to copy-swizzle compressed images,
in this scheme, however, since uncompressing
creates a (larger) copy of the object in any case.

5 Motivating Examples

5.1 Content-based Image Retrieval

A number of current application areas exist that
would immediately benefit from using ISR4.

One is content-based image retrieval, for ex-
ample, the QBIC [6] project. In QBIC, color,
texture, shape and sketch features are computed
for image areas outlined by the user, and used
at query time for image retrieval. The fea-
tures, which consist of objects as complex as
histograms and reduced resolution edge maps,
are currently stored in an extensible relational
database called Starburst [11]. The images
themselves, on the other hand, are stored in
flat files.

One can achieve better data clustering and
faster data access if the images and related fea-
tures are stored using the strategies of ISR4.
First, ISR4 will directly support the storage of
QBIC objects, so there is no need for disk-to-
memory data format transformations, as in the
current transformation from tuples to objects.
Second, image features can be associated with
the image region they came from and stored and
retrieved with the sub-image. This is useful in
QBIC, especially when one wants to see which
features (if any) were selected from an image
region. Accessing the region will retrieve the
corresponding features as well, which can then
be displayed. Feature indexing capability is
also critical in QBIC. The current B+ tree index
can be used for fast object retrieval, and differ-
ent types of multi-dimensional indices can be
built and incorporated into ISR4. Along with
indices, query mechanisms can also be imple-
mented.

5.2 Site Models for Photo-interpreta-
tion

Intelligence gathering operations provide other
applications. As an example, the RADIUS
project [16] is developing Image Understand-
ing (IU) tools for image-analysts to support au-
tomated 3D cite model acquisition, model ex-
tension, and change detection. In a typical sce-
nario, analysts build up a folder of image data
and other intelligence about a site. Based on
this information, analysts form a 2D map of
the functional areas of the site, including ab-
stract features such as the typical number of
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cars found in each parking lot. Finally, 3D
models of the permanent structures in each area
are built. Once a site model has been devel-
oped, future images and intelligence reports can
be compared to it in a set of processes called
“change detection,” in which analysts search
for any temporal change in the functional areas,
features, and/or structures in a site.

Here, 3D geometric site models plus collat-
eral information, such as text, maps, and repre-
sentative imagery, need to be stored in a fashion
that allows efficient data retrieval for change
detection programs, as well as interactive query
support for photo-analysts and military plan-
ners. Currently, the RADIUS Testbed Database
(RTDB)[9] stores complex objects such as geo-
metric models, collateral data, and imagery in-
formation in a relational DBMS (Sybase), while
image pixel data are stored in flat files.

ISR4 would allow RADIUS features to be
grouped, stored, and retrieved according to their
functional areas. Images would be partitioned
according to functional areas, and the sub-
images would be clustered on disk with their
associated features. In addition to fast access
to image objects, this approach leads to better
buffer management, especially with large aerial
site images, since it restricts data movement
to only a small, relevant portion of the image.
Since RADIUS images are typically 10K�10K
pixels or larger, such efficient buffering mech-
anisms are required. As with QBIC, spatial
indices, as well as query languages, can be built
using ISR4 to answer interactive queries from
analysts and planners such as ‘In the newly-
arrived set of images, give me the ones in which
there is a new structure,’ or ‘Give me the im-
age (folder) of this site in which this building
appears for the first time.’ To support historical
(time-based) queries, the functional areas can be
linked over time to form a spatio-temporal se-
quence, over which site structures are indexed.

In a similar manner, ISR4 can support other
applications with visual representations, opera-
tors, and storage management, including astron-
omy (sky survey) databases, geographic and
environmental information management, CAD

tools, and medical imaging.

6 Conclusion

Visual applications need to efficiently repre-
sent, manipulate, store, and retrieve both raw
and processed persistent visual data. Extensi-
ble visual object stores offer effective means
to address the data management needs of visual
applications. ISR4 is an extensible visual object
object store that will offer extensive storage and
retrieval support for complex and large visual
data, customizable buffering and clustering,and
spatial and temporal indexing. In doing so, it
will provide a variety of multi-dimensional ac-
cess methods and query languages. Query opti-
mization, along with approximate, ranked query
methods, are among planned future additions.
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