
The Atomic Manifesto: a Story in Four Quarks

Cliff Jones, David Lomet, Alexander Romanovsky, Gerhard Weikum
Dagstuhl Seminar Organizer Authors

Alan Fekete, Marie-Claude Gaudel, Henry F. Korth, Rogerio de Lemos,
Eliot Moss, Ravi Rajwar, Krithi Ramamritham, Brian Randell, Luis Rodrigues

Dagstuhl Seminar Participant Authors.

1. INTRODUCTION
This paper is based on a five-day ~or l i shop on "At,omicity

in System Design and Execution" that t,oolt place in Schloss
Dagstuhl in Germany (5) in April 2004 alicl was attended
by 32 people from different scientific c~mmuni t ies .~ The
participants included researchers from the four areas of

database and transaction processing systems,
0 fault tolerance and dependable systems,

formal methods for sys tem design and correctness rea-
soning, and

8 to a smaller extent, hardware orchi1,ecture and pra-
gramming languages.

The interpretations and roles of the at,ornicity concept(s)
vary substantially across these conimrl~~il.ies. For example,
the emphasis in database systems is on nlgorit.lms and im-
plementation techniques for at,omic tra~~sact~ions, whereas in
dependable systems and formal methods atomicity is viewed
a.s an intentionally imposed (or sometimes postulated) prop-
erty of system components to simplify designs and increase
dependability. On the other hand, all communities agree
on the importance of gaining a deeper understanding of
composite and relaxed notions of atomicity. Moreover, the
hope is that it will eventually be possible to unify the dif-
ferent scientific viewpoints into more coherelit foundations,
system-development principles, design n~ethodologies, and
usage guidelines. Quarks can be viewed as different aspects
of (sub-)atomic, seemingly indivisible, piut.icles (e.g. pro-
tons) and thus the notion of ahso1ut.e nton~icity could be
abandoned. Similarly, this report offers a many-faceted dis-
cussion of atomicity with emphasis on colnposability and
relaxed or relative interpretations.'

Atomicity is, of course, an old concept; in particular,
transaction technology is considered as very mature. So
why would there be a need for reconsidering it, and why
now? There are several compelling reasons for reviving and
intensifying the topic at this point:

The world of network-centric computing is changing.
Web services, long-running worltflows across organi-
zational boundaries, large scale pcer-1.0-pear publish-
subscribe and col1aborat.ioli pIal.l'c)~.ii~i; ir~lcl a~nbient-
intelligence envir0nment.s with liuge ~ilnnbers of mo-
bile and embedded sensor/actor devices critically need

'The full list of participants is given at [5].
"here are six types of quarks in particle physics: Up, Down,
Charm, Strange, Top aka Truth, and Bottom aka Beauty.
We leave it to the reader to map the four communities to
appropriate quarks.

support for handling or even masking concurrency and
component failures, but cannot use traditional atom-
icity concepts.
There is a proliferation of open systems where ap-
plications are constructed from pre-existing compo-
nents. The components and their configurations are
not known in advance and they can change on the fly.
Thus, it is crucial that atomicity properties of com-
ponents are composable and that we can predict and
reason about the behavior of the composite system.
Even if we can successfully develop adequate notions
of relaxed atomicity, it is unlikely that one particular
solution can handle all cases across the wide spectrum
of application needs. So, application designers and
programmers will be faced with several options and
critical choices. Since humans are the bottleneck in
terms of cost, time, and errors, it would be optimal
to have an autonomic approach (31 that automatically
chooses the most appropriate option and reconfigures
the svstem as the environment changes. -
Modern applications and languages like Java lead mil-
lions of developers into concurrent programming (ILsyn-
chronized classes"). This is a drastic change from the
classical situation where only a few hundred "five-star
wizard" system programmers and a few thousand pro-
grammers working in scientific computing on paral-
lel supercomputers would have to cope with the in-
herently complex issues of concurrency (and advanced
failure handling as well).
On an even broader scale, the drastically increasing
complexity of the new and anticipated applications is
likely to lead t o a general "dependability crisis" in the
not-too-distant future. The multi-technology nature
of these applications strongly suggests that a multi-
disciplinary approach is essential if researchers are t o
find ways to avert such a crisis.

2. THE VIEWS OF FOUR COMMUNITIES

2.1 Database and TP Perspective

2.1.1 Position
Database transaction concepts have been driven by tra-

ditional business applications and a style of software called
OLTP (On-Line Transaction Processing) where fast-execut-
ing, independently coded application programs run against
data stored in some general purpose DBMSs (Data Base
Management Systems), which provide a mechanism called

SIGMOD Record, Vol. 34, No. 1, March 2005

ACID transactions to support correct operation of the com-
bined system [4, 231. ACID stands for "aton~icity, consis-
tency, isolation and durability". In the OLTP approach,
the application programmer delegates to the DBMS soft-
ware responsibility for preventing damage to the data from
threats such as concurrent execution, partial execution or
system crashes, while each application progranuner retains
the obligation to think about the impact 011 data consis-
tency of the code they are writing, wheu executcd alone and
without failures.

There are many threats to the overall tlcpet~tlability of
the combined system formed from the tlali~b~ases and the
application programs. The focus of database transactions is
on dealing with threats from concurrent execution, from in-
complete execution (e.g., due to client crash or user-initiated
cancellation) and from system crashes that lose up-to-date
information from volatile buffers. The traditional DBMS
solution is to provide "ACID transactions". There are two
ways a transaction can finish: it can commit, or it can abort.
If it commits, all its changes to the database are installed,
and they will remain in the database u ~ ~ t i l some other ap-
plication makes further changes. Furt.hermore, the changes
will seem to other programs to take place t,oget,her. If the
transaction aborts, none of its changes will t.&e ell'ect, and
the DBMS will "rollback" by restoring prc:vio~~s values to all
the data that was updated by the applicatio~~ program.

From a programmer's perspective, t,he po~ver of the t.rans-
action paradigm is that it reduces t~he t,aslt of concurrent
failure-aware programming of the whole system to that of
correct sequential programming of each application program
separately. I t is worth pointing out that while other fields
describe the concept of apparently indivisible, point-like be-
havior as "atomicity", in the database corn~nu~~ity. "aton~ic"
means that all the changes happen, or Iloire do. The appear-
ance of happening at a point is refered t,o ix "isolated" (or
serialisable) behavior.

Internally, the DBMS uses a variety of ~necl~;wisms includ-
ing locking, logging, and two-phase co tn~~~ i t , . 1.0 ensure that
the application programs get the ACID transactional behav-
ior they expect. The basic algorithms are fairly straightfor-
ward, but they interact in subtle ways, and have serious
performance impacts, so the actual implementation of these
fxilities is very complicated 181.

2.1.2 Challenges Ahead
One major theme that came up during the workshop is the

need to provide support for application c lo~nai~~s that need
different design points than the very short, con~pletely inde-
pendent, programs typical of OLTP, but where there is still
the goal to help avoid problems from i~~l.erleavillg, system
crashes etc. For example, design applicnt,ions were studied
extensively in the 1980s; in the late 1990s worltflows (or busi-
ness processes) became important, and t,l~e latest domain
of this type is composite web services where several busi-
ness processes interact across organizational trust bound-
aries. Key features in these domains include the expectation
for cooperation between programs rather than complete in-
dependence; the long duration (hours or even weeks) of an
activity; and the desire to move forward even when some-
thing goes wrong, rather than throwi~~g away all the work
and returning to a previous state (so, we really want "ex-
actly once" or "run then compensate" r.xt,l~cs tlinn "all or
nothing"). Another very different class o l tlo111ni11 occurs in

security work, e.g., identifying attacks, where immediate re-
sults are more important than precise ones, and where the
activity taking place against the database is itself data of
importance (and should be recorded and preserved even if
the activity fails).

In all these domains, it seems impossible t o have each ap-
plication program written in complete ignorance of the other
applications, and to have the infrastructure work no matter
what the application programs do; however, one would wish
to limit the cross-component dependencies in some way, so
that it is possible to reason about the combined effect of ap-
plications in the presence of concurrency, partial execution,
and system crashes. The database community has already
proposed a range of extended transaction models [12] (of-
ten based on some form of nesting of scopes). There have
even been designs for a broad framework within which one
can describe multiple extended transaction models. How-
ever few of the extended transaction models have seen wide
use by application programmers so far, and there remain two
open questions: what transaction-like (unbundled, relaxed,
or extended) features the infrastructure should provide and
how to reason about application programs that use these
features.

Two other important workshop themes connect the data-
base community with others. One needs close cooperation
with both formal methods and hardware people; this con-
cerns the implementation of transactional mechanisms in-
side the DBMS. As noted above, the internals are very com-
plex, and their design is sometimes based on principles such
as internal support for atomicity through layered notions
of transactions. Indeed many of the early proposals for
richer models of transactions which did not get taken up
by application programmers can today be found in DBMS
implementations, where small groups of sophisticated pro-
grammers can work with them. It is still unclear how to best
reason about the full complexity of a DBMS implementation
of transactions in ways that take account of the interactions
between aspects like buffer management, fancy synchroni-
sation properties of the hardware disk controller and OS,
and multiple threads running in the DBMS code. These
low-level internals are likely to be the cause of occasional
(albeit very infrequent) "Heisenbugs" [8], and recovery code
is the last resort to avoid damage by such software failures.
So it would be highly desirable to verify mathematically the
correctness of this transactional core of the mission-critical
DBMS software.

The third theme that came up consistently at Dagstuhl
connects the database community to formal methods work.
It was the need to reason about applications that do not use
ACID transactions. In commercial reality, the performance
impact of the ACID mechanisms is so high, that most ap-
plication programs actually do not use the full functionality.
While the applications do want "all or nothing" and "com-
mitted state persists despite crashes", they are usually will-
ing to give up on "the activity appears like a point", by us-
ing weaker isolation levels than serializability. Indeed, some
vendors do not implement serializability exactly, but rather
use a "snapshot isolation" approach which avoids many but
not all cases of data interference in concurrent execution.
Since weak isolation is widely used, researchers need to offer
help for the application developer to use it correctly.

2.2 Dependable Systems Perspective

SIGMOD Record, Vol. 34, No. 1, March 2005

2.2.1 Position
The dependability of a computing system is its ability

to deliver service that can justifiably be trusted [2]. The
major activities associated with the means of achieving de-
pendability are fault tolerance, prevention, removal, and
forecasting. Atomicity plays an important role in design-
ing and analysing dependable systems. As t,he fundamental
approach assisting abstraction and syste~n st,ructuring, it. is
crucial in attempts to prevent the occurrence a ~ ~ d introduc-
tion of faults since it allows the complexity of a design to
be reduced. Use of abstraction and structuring in system
development facilitates fault tolerance (by confining error)
and fault removal (by allowing component validation and
verification). Atomicity often makes fault forecasting sim-
pler as it makes it easier to reason about likely consequences
of faults.

Fault tolerance is a means for achieving dependability de-
spite the likelihood that a system still co~~tains faults and
aiming to provide the required services in spite of them.
Fault tolerance is achieved either by fanll. mnsliing, or by er.-
ror processing, which is aimed at re~noving crrors from t,he
system state before failures happen, a d fault t.reatment,
which is aimed at preventing faults fro111 Iheirg activated
again 121. Atomic actions can be used as the basis of er-
ror confinement strategies - these play a central role in
the design and justification of both error masking and error
recovery policies.

The development of atomic action techniques supporting
the structured design of fault tolerant distributed and con-
current applications is an important strand of dependability
research. The work effectively started with the paper [20]
where the concept of a conversation was introduced. An
a.tomic action (conversation) consists of a number of con-
current cooperating participants entering and leaving it. at
the same time (i.e. concurrently). Here the word atomic
a.lso refers to the property that the changes made by an op-
eration are only visible when it completes. When an error
is detected in a conversation all participants are involved
in cooperative recovery. Backward error recovery (rollback,
retry, etc.) and forward error recovery (exception handling)
a.re allowed. Actions can be nested and when recovery is not
possible the responsibility for recovery is passed to the con-
taining action. Action isolation makes the actions into error
confinement areas and allows recovery to be localised, at the
same time making reasoning about the syst,ern simpler.

2.2.2 Challenges Ahead
Atomic actions, initially i~~t,roducetl for systems consist-

ing of cooperating activities, were lat,er exl.onded to allow
actions to compete for shared resources (e.g. data, object.^,
devices). By this means the work was brought together with
that on database transactions, which concerned systems of
independent processes that simply competed for shared re-
sources, i.e. the database. Coordinated atomic actions [24]
thus can be used to structure distributed and concurrent sys-
tems in which participants both cooperate and compete, and
allow a wide range of faults to be tolerated by using back-
ward and forward recovery. These actions can have multiple
outcomes, extending the traditional all-or-not,liing semantics
to make it possible to deal with those e~~v i ro~~ment s that do
not roll back or for which backward recovery is too expen-
sive (web services, external devices, human beiugs, external
orgauisations, etc.). The challenge here is to work closely

with the formal method group on developing rigorous de-
sign methods and tools supporting atomic actions and error
recovery. More effort needs to be invested into developing
advanced atomic actions techniques for emerging application
domains and architectures, such as mobile and pervasive sys-
tems, ambient intelligence applications, and service-oriented
architecture.

As seen above, cooperation and coordination are essential
for the kind of atomicity required for the structured design of
distributed fault-tolerant systems. When building such sys-
tems, one is often faced with the necessity of ensuring that
different processes obtain a consistent view of the system
evolution. This requirement may be expressed in different
ways, for instance:

A set of processes involved in a distributed transaction
may need to agree on its outcome: if a transaction is
aborted a t some process it should not be committed at
some other processes. This is known as the distributed
atomic commitment problem.
R.eplicas of a component, when applying non-commu-
tative updates, must agree not only on the set of up-
dates to apply but also on the order in which these
updates are applied. This is known as the atomic mul-
ticast problem.

Many of the challenges that are involved in solving these
agreement problems in fault-tolerant distributed systems are
captured by the consensus problem, defined in the following
way: each process proposes an initial value to the others,
and, despite failures, all correct processes have to agree on a
common value (called a decision value), which has to be one
of the proposed values. Unfortunately, this apparently sim-
ple problem has no deterministic solution in asynchronous
distributed systems that are subject to even a single process
crash failure: this is the so-called Fischer-Lynch-Paterson's
impossibility result [7]. This impossibility result does not
apply to synchronous systems but, on the other hand, fully
synchronous systems are hard to build in practice.

A significant amount of research has been devoted to defin-
ing models that have practical relevance (because they cap-
ture properties of existing systems) and allow for consen-
sus to be solvable in a deterministic way. Such models
include partial synchronous, quasi-synchronous, and asyn-
chronous models augmented with failure detectors, among
others [22]. At the workshop, there was some confusion
among the participants from the database community as to
how these various models relate to each other, what (realis-
tic as well as unrealistic) assumptions they make, and what
properties and limitations they have. A unifying framework
would be highly desirable, and this should include also the
database-style (2PC-based) distributed commitment.

In component-based development, atomicity, seen as guar-
anteeing hermetic interfaces of components, is a key element
of the so-called orthogonality property of system designs.
The aim of an orthogonal design is to ensure that a com-
ponent of the system does not create side effects on other
components. The global properties of a system consisting of
components can then be stated strictly from the definition
of the components and the way they are composed.

Some extended notions of atomicity and orthogonality
could be used as a mechanism for composing services by
incorporating the interactions between components. This
would be feasible if it was possible to abstract the actual

SIGMOD Record, Vol. 34, No. 1, March 2005

component behaviour from the well-defined interfaces that
allow expression of the different roles which a component
might play. However, for this to happen it is necessary to
replace the traditional notion of atomicity wit,h a more re-
laxed one where, for example, the compo~~ents taking part in
a transaction are not fully tied up for the wl~ole length of the
transaction. Although different applicnf,ions might require
different forms of such quasi-atomicity, i l . might. be possible
to identify useful design patt.erns specicic 1'01. t,lle applica-
tion domain. Even assuming that a useI'~11 elax axed notion
of atomicity could be defined and implement,ed, the task
of incorporating this concept into a development process is
still not a straightforward one. For example, the transfor-
mation of a business dataflow into an implementation based
on the synchronization of components cannot be captured
by a simple top-down process consisting of refinement rules,
if system decomposition leads to the identification of new
behaviours (including new failure behaviours). Instead, this
essentially top-down process should be modified by allowing
bottom-up revisions.

2.3 Hardware and Language Perspective

2.3.1 Position
Explicit hardware support for multithreaded software, ei-

ther in the form of shared-memory-chip multiprocessors or
hardware multithreaded architectures, is becoming increas-
ingly common. As such support becomes available, applica-
tion developers are expected to exploit these developments
by employing multithreaded progranlming. But although
threads simplify the program's conceptual design, they also
increase programming complexity. In writing shared mem-
ory multithreaded applications, progralnmers nlust ensure
that threads interact correctly, arid this requires care and
expertise. Errors in accessing shared tlnt a 01)ject.s can cause
incorrect program execution and can bc esl mllely subt,le.
This is expected to become an even greater problem as we go
towards heavily threaded systems where their programma-
bility, debuggability, reliability, and performance become
major issues.

Explicitly using atomicity for reasoning about and writing
multithreaded programs becomes attractive since stronger
invariants may be assumed and guaranteed. For example,
consider a linked list data structure and two operations upon
the list: insertion and deletion. Today, the programmer
would have to ensure the appropriate lock is acquired by
any thread operating upon the linked list. I-Iowever, an at-
tractive approach would be to declare all olmntions upon
the linked list as "atomic". How the al.omiciLy is provided
is abstracted away for the programmer slid the underlying
system (hardware or software) guarantees the contract of
atomicity.

The hardware notion of atomicity involves performing a
sequence of memory operations atomically. The identifica-
tion of the sequence is, of course, best left to the program-
mer. However, the provision and guarantee of atomicity
comes from the hardware. The core alnorithnl of atomically -
performing a sequence of memory operat,ions involves ob-
taining the ownership of appropriate locations in hardware,
performing temporary updates to the locat,ioils, and then re-
leasing these locations and making t,he ~~ptlnl;es permanent
instantaneously. In the event of failures. any t.omporary up-
dates are discarded, thus leaving all crit,ical sl.nl,e consistent.

Hardware has become exceedingly proficient in optimisti-
cally executing operations, performing updates temporarily,
and then making them permanent instantaneously if neces-
sary.

Transactional Memory [lo] was an initial proposal for em-
ploying hardware support for developing lock-free programs
where applications did not suffer from the drawbacks of lock-
ing. It advocated a new programming model replacing locks.
Rmently, Transactional Lock-Free Execution [18, 191 has
been proposed, where the hardware can dynamically iden-
tify and elide synchronization operations, and transparently
execute lock-based critical sections as lock-free optimistic
transactions while still providing the correct semantics. The
hardware identifies, at run time, lock-protected critical sec-
tions in the program and executes these sections without
acquiring the lock. The hardware mechanism maintains cor-
rect semantics of the program in the absence of locks by
executing and committing all operations in the now lock-
free critical section "atomically". Any updates performed
during the critical section execution are locally buffered in
processor caches. They are made visible to other threads
instantaneously at the end of the critical section. By not
acquiring locks, the hardware can extract inherent paral-
lelism in the program independent of locking granularity.

While the mechanism sounds complex, much of the hard-
ware required to implement it is already present in systems
today. The ability to recover to an earlier point in an execu-
tion and re-execute is used in modern processors and can be
performed very quickly. Caches retain local copies of mem-
ory blocks for fast access and thus can be used to buffer local
updates. Cache coherence protocols allow threads t o obtain
cache blocks containing data in either shared state for read-
ing or exclusive state for writing. They also have the ability
to upgrade the cache block from a shared state to an exclu-
sive state if the thread intends to write into the block. The
protocol also ensures all shared copies of a block are kept
consistent. A write on a block by any processor is broadcast
to other processors with cached copies of the block. Sim-
ilarly, a processor with an exclusive copy of the block re-
sponds to any future requests from other processors for the
block. The coherence protocols serve as a distributed con-
flict detection and resolution mechanism and can be viewed
as a giant distributed conflict manager. Coherence proto-
cols also provide the ability for processors to retain exclusive
ownership of cache blocks for some time until the critical sec-
tion completes. A deadlock avoidance protocol in hardware
prevents various threads from deadlocking while accessing
these various cache blocks.

2.3.2 Challenges Ahead
Crucial work remains both in hardware and software sys-

tems. The classic chicken-and-egg problem persists. On
one hand, existing software-only implementations of atom-
icity and transactions for general use suffer from poor per-
formance, and on the other hand, no hardware systems
today provides the notion of generalized atomic transac-
tions. A major hurdle for hardware transactions remains
in their specification. Importantly, what hardware transac-
tion abstraction should be provided to the software? How
is the limitation of finite hardware resources for temporar-
ily buffering transactions handled? A tension will always
exist between power users who would like all the flexibility
available from the hardware and the users who would prefer

SIGMOD Record, Vol. 34, No. 1, March 2005

a hardware abstraction where they do not worry about un-
derlying implementations. These are some of the questions
that must be addressed even though many of the core mech-
anisms in hardware required for atomic transactions, such as
speculatively updating memory and sulxeql~ent,ly commit-
ting updates, are well underst,ood and 11avc bee11 proposed
for other reasons, including speculativoly pnrallelizing se-
quential programs [21].

The software area requires significal~t work. The first
question remains the language support. Harris and Fraser [9]
provided a simple yet powerful language construct employ-
ing conditional critical regions. In simple form, it is as fol-
lows:

a tomic (p) { S]

Semantically this means Sexecutes if p is true. If p is false, it
needs to wait for some other process to change some variable
on which p depends.

However, more rigorous constructions are required for spec-
ification of such language constructs. A t least. from the for-
nral methods community perspective, specifying a concise
formal description of the above constructs as a semantic
inference rule in the operational semantics style would be
necessary.

A first pass at such a declaration would be as follows:

s[p(sl, tme) A s'[SIs1' t atomic (p) { S)Is"

In English: If we start in state s and the guard predicate p
evaluates to true, then we make the atomic state transition
that evaluates p and then S. No other othev process will be
able to observe or affect the intermediate sf.at,e s' or any
other intermediate state.

Looking forward, we suggest language designs will need
to go beyond such simple constructs. Some of the issues de-
signs might want to handle include: connecting with dura-
bility somehow, perhaps through providing special durable
memory regions; expressing relative ordering constraints (or
lack thereof) for transactions issued conceptually concur-
rently (e.g. iterations of counted loops, as typical of scien-
tific programs operating on numerical arrays); supporting
closed nesting [16] and the bounded rollback that it implies
on failure; supporting open nesting where commitment of a
nested transaction releases basic resources (e.g. cache lines)
but implies retention of semantic locks and Imilcling a list of
undo routines t o invoke if the higher level t.t.u~~saction fails;
providing for lists of actions to perfor111 only if the top-level
enclosing transaction commits; supporting the leap-frogging
style of locking along a path one is accessi~ig in data struc-
tures like linked lists and trees.

2.4 Formal Methods Perspective

2.4.1 Position
Formal methods [13] offer rigorous and tractsable ways of

describing systems. This is nowhere more necessary than
with subtle aspects of concurrency: being precise about
atomicity, granularity and observability is crucial.

The concept of atomicity -which is centr;~l to t,llis manifesto-
'an easily be described using "operatio~iid se~~mutics". Mc-
Carthy's seminal contribution on opevat,ional semantics [15]
presented an "abstract interpreter" as a recursive function
exec : Program x C + C where C is the domain of pos-
sible states of a running program. As an interpreter, exec

computes the final state (if any) which results from running
a program from a given starting state; such descriptions are
abstract in the sense that they use sets, maps, sequences,
etc. rather than the actual representations on a real com-
puter.

The obvious generalisation of McCarthy's idea to cope
with concurrency turns out not to provide perspicuous de-
scriptions because functions which yield sets of possible fi-
nal states have to compound each other's non-determinism.
In 1981 Ploktin [17] proposed presenting "structural opera-
tional semantics" (SOS) descriptions as inference rules. Es-
sentially, rather than the function above, a relation can be
defined ?((Program x C) x C) where, if ((p, u), cr') is in
that relation, a' is a possible final state of executing p in a
starting state u.

Since the origin of these ideas is with programming lan-
guage semantics, the description begins there; but the rele-
vance to the fields above is easily demonstrated. Consider a
simple language with two threads each containing sequences
of assignment statements. It is assumed initially that assign-
ment statements execute atomically. Two simple symmetric
rules show that a statement from the head of either sequence
can execute atomically

hd(s1) = x t e
(e, 0) L v

(sllls2,u)-B,(tl(sl)lls2,u t {x + v))

hd(s2) = x t e
(e, cr) L v
(s l ~ ~ s 2 , u) ~ (s l l l t l (s 2) , o t {x -+ v))

In these rules: hd and tl stand for the head and tail of a list;
x +- e denotes the assignment of expression e to variable
x ; (e, o) A v denotes that in program state u expression e
can evaluate to value v; 1 1 denotes parallel execution of two
statements; u t {x - v) is the state that is identical to u
except for the fact that variable x is now mapped to value v;
and (1 , cr) 5 (l', 0') means that the exeuction of statement
list 1 in state u leads to state u' with the statement list 1' left
to be executed (the overall relation P((Program x C) x C)
is derived when the statement list I' is empty).

From the above rules, it is easy to show that

will, if the initial value of x is 1, set the final value of x to
factorial 5. Whereas, when x starts a t 1

can leave x as 1 or a range of other values.
This second example begins to form the bridge to trans-

actions but, before taking that step, it is worth thinking a
little more about atomicity. It would be trivial to extend the
programming language to fix the second example so that it
always left x at 1. One way to do this would be to add
some sort of atomic brackets so that s l ; < sz; s3 >; se ex-
ecutes as three (rather than four) atomic transitions. The
changes to the SOS rules are simple. Moving atomicity in
the other direction, it would actually be extremely expen-
sive in terms of dynamic locking to implement assignments
atomically. Showing all of the places where another thread

SICiMOD Record, Vol. 34, No. 1, March 2005

can intervene is also possible ill the SOS rules. Programming
language designers have spent a lot of en'ort on developing
features to control concurrency; see [Ill for a discussion of
"(conditional) critical sections", "modules" etc.

SOS rules can be read in different ways and each provides
insight. As indicated above, they call be viewed as induc-
tively defining a relation between initial and final states.
They can also be viewed as defining a logical frame for rea-
soning about constructs in a language. Implications of this
point are explored in 1141.

As might be guessed by now, it is easy to define the basic
notion of database "serializability" by fixing the meaning of
a collection of transactions as non-determi~list~ically selecting
them one at a time for atomic execut,iol~. Of course, this
overall specification gives no clues to the invention of the
clever implementation algorithms studied in the database
community. As with programming language descriptions,
the relation defined by the SOS rules should be thought of
as a specification of allowed behaviour.

2.4.2 Challenges Ahead
It is not only in the database world that "pretending

atomicity" is a powerful abstraction idea. It was argued
at the workshop that a systematic way of "splitting atoms
safely" could be a useful development technique with appli-
cability to a wide range of computing problems. Essentially,
given a required overall relation defined by au SOS descrip-
tion, one needs to show that an i~nplelnentnl.iol~tio in which
sub-steps can overlap in time, exhibits 110 llew behaviours
at the external level.

An interesting debate at the workshop was what one might
learn from trying to merge programming and database lan-
guages. Despite considerable research efforts in this direc-
tion 161, no convincing solution seems to have emerged yet.
The most important challenge would be to look at how the
two communities handle concurrency control.

SOS rules are certainly not the o d y branch of formal
methods which could help record, reason about, and under-
stand concurrency notions in, for example, databases. For
example, we emphasize the insight which call be derived
from process algebras and the distinct,ion between interleav-
ing and "true concurrency" as explored by t,he Petri Net
community.

Finally, the intriguing notion of refinements that are ac-
companied by rigorous correctness reasoning has been suc-
cessfully applied in the small [I], for example, to derive
highly concurrent and provably correct data structures, e.g.
priority queues, but it is unclear to what extent it can cope
with the complexity of large software pieces like the full lock
manager or recovery code of a DBMS or the dynamic replica-
tion protocol of a peer-to-peer file-sharing system. Tackling
the latter kinds of problems requires teaming up expertise
in formal methods with system-building l i n o ~ h o ~ .

3. LESSONS AND CHALLENGES
There was clear consensus across all four participating

communities that atomicity concepts, if defined and used
appropriately, can lead to simpler and better programming,
system description, reasoning, and possibly even better per-
formance. Some of the technical challenges that emerged as
common themes across all communities are the following:

A widely arising issue in complex syst,elns is how to

build strong guarantees on top of weaker ones, or global
guarantees at the system and application level on top
of local ones provided by components. Examples of
this theme are how to ensure global serializability on
top of components that use snapshot isolation or how
to efficiently implement lazy replication on top of order-
preserving messages.
There was consensus that we still lack a deep under-
standing of the many forms of relaxed atomicity, their
mutual relationships, prerequisites, applicability, im-
plications, and limitations. For example, what are the
benefits and costs of serializability vs. relaxed isola-
tion, lazy vs. eager replication, or distributed commit
in the database world vs. weaker forms of distributed
consensus in peer-to-peer systems?
Given the variety of unbundled, relaxed, and extended
atomicity concepts, there is a high demand for design
patterns and usage methodology that helps systems
designers to choose the appropriate techniques for their
applications and make judicious tradeoff decisions. For
example, when exactly is it safe to use snapshot iso-
lation so that serializability is not needed; and under
which conditions is it desirable to trade some degree
of reliability for better performance?
Along more scholarly but nevertheless practically im-
portant lines, we should aim to develop a unified cat-
alog of failure models, cost models, and formal prop-
erties of all variations of atomicity and consensus con-
cepts, as a basis for improving the transfer of results
across communities and for easier comprehension, ap-
preciation, and acceptance of the existing variety of
techniques by practitioners.
A long-term issue that deserves high attention is the
verification of critical code that handles concurrency
and failures, for example, the recovery manager of a
DBMS. Which high-level structuring ideas from the
dependability community and which formal reason-
ing and automated verification techniques from the
formal-methods world can be leveraged to this end and
how should they be used and interplay with each other
when tackling the highly sophisticated software that
we have in the kernels of DBMSs, middleware systems,
and workflow management systems?

For compelling reasons pointed out in the introduction,
now is the right time for the different research communities
to jointly tackle the technical challenges that impede the
turning of atomicity concepts into best-practice engineer-
ing for more dependable next generation software systems.
With rapidly evolving and anticipated new applications in
networked and embedded environments that comprise many
complex components, we face another quantum leap in soft-
ware systems complexity. We are likely to run into a major
dependability crisis unless research can come up with rig-
orous, well-founded, and a t the same time practically sig-
nificant and easy-to-use concepts for guaranteeing correct
system behavior in the presence of concurrency, failures,
and complex cross-component interactions. The atomicity
theme is a very promising starting point with great hopes
for clear foundations, practical impact, and synergies across
different scientific communities.

Observations on Sociology: It was both ambitious and in-
teresting to run a workshop with participants from four dif-
ferent communities. Many of the discussions led to misun-

SIGMOD Record, Vol. 34, No. 1, March 2005

derstandings because of different ternlinologies and implicit
assumptions in t h e underlying computatiou unodels (failure
models, cost models, etc.). A not quite serious but some-
what typical spontaneous interruption of a presentation was
the remark "What were you guys smoking?". T h e wonder-
ful atmosphere a t the Dagstuhl seminar site, the excellent
Bordeaux, and a six-mile hike on t h e only day of the week
with rain were extremely helpful in overcoming these diffi-
culties. In t h e end there were still misunderstandings, bu t
t h e curiosity about t h e applicability of the other commu-
nities' results outweighed the skepticism, and a few poten-
tially fruitful point-to-point collaborations were spawned.
We plan t o hold a second Dagstuhl ouu this t h c ~ n e , again
with participation from multiple reseal.ch c o ~ n ~ l n ~ n i t i e s , in
spring 2006.

4. REFERENCES
[I] J.-R. Abrial. The B-Book: Assigning program,^ to Meanings.

Cambridge University Press, 1996.
[:!I A Avizienis, J-C Laprie, C. Landwehr, B. Randell. Basic

Concepts and Taxonomy of Dependable and Secure
Computing. IEEE Trans. on Dependable and Secure
Computing 1(1):11-13, 2004.

[:I] 1st Int'l. Conference on Autonomic Computzng. New York,
2004. http://www.caip.rutgers.edu/~parashal/ac2004/

[.I] P. Bernstein and E. Newcomer. Principles of Tmn..~action
Processing for the Systems Professzonol. Morg;i~i Icaufmann,
1997.

[5] Dagstuhl Seminar 04181. Atomicity in System Deszgn and
Execution. Organized by C. Jones, D. Lomet, A.
Romanovsky, G. Weikum. http://www.dagstul~l.de/04181/

[6] Int'l. Workshops on Database Programming Languages,
http://www.cs.toronto.edu/ mendel/dbpl.html

[7] M. Fischer, N. Lynch, M. Paterson. Impossibility of
Distributed Consensus with One Faulty Process. Journal of
the ACM 32(2):374-382, 1985.

[8] J. Gray and A. Renter. Transaction Processing: Concepts
and Techniques. Morgan Kaufmann, 1993.

[9] T. Harris, K. Fraser. Language support for lightweight
transactions. In Proc. of the Int'l. Conference on
Object-Oriented Progamming system.^, La~cguages, and
Applications, 2003.

[lo] M. Herlihy and J.E.B. Moss. Transactional R,lemory:
Architectural support for lock-free data structures. In Proc.
of the Int'l. Symposium on Computer Archztecture, 1993.

[Ll] C.A.R. Hoare, C.B. Jones. Essays in Com,putmg Science.
Prentice Hall International, 1989.

[12] S. Jajodia and L. Kerschberg (Editors). Advanced
Transaction Models and Architectures. Kluwer, 1997.

1131 C.B. Jones. Systematic Software Development using VDM.
Prentice Hall, 1990.

[L4] C.B. Jones. Operational semantics: concepts m d t,heir
expression. Infomation Processing Letters 8327-32, 2003.

[L5] J. McCarthy. A formal description of a subset of ALGOL.
In Formal Language Description Languages for Computer
Programming. North-Hollaucl, 19GG.

[16] J.E.B. Moss. Nested Transactions: A71 Appronch to
Reliable Distributed Computzng. MIT Press, 1985.

1171 G.D. Plotkin. A structural approach to operat,ionnl
semantics. Journal of Functional and Logic Progra,m,ming,
forthcoming.

[18] R. Rajwar and J.R. Goodman. Transactional Execution:
Toward Reliable, High-Performance Multithreading. In
IEEE Micro 23(6):117-125, 2003.

[19] R. Rajwar and J.R. Goodman. Transactional lock-free
execution of lock-based programs. In Proc. of the Int'l.
Conference on Architectural Support for Programming
Languages and Operating Systems, 2002.

[20] B. Randell. System Structure for Software Fault- Tolerance.
IEEE Trans. on Software Engineering SE-1(2):220-232,
1975.

[21] G.S. Sohi, S.E. Breach, and T.N. Vijaykumar. Multiscalar
processors. In Proc. of the 22nd Int'l. Symposium on
Computer Architecture, 1995.

[22] P. Verissimo, L. Rodrigues. Distributed Systems for System
Architects. Kluwer, 2000.

[23] G. Weikum and G. Vossen. Transactional Information
Systems: Theory, Algorithms, and the Practice of
Concurrency Control and Recovery. Morgan Kaufmann,
2002.

[24] J. Xu, B. Randell, A. Romanovsky, C. Rubira, R. Stroud,
2. Wu. Fault Tolerance in Concurrent Object-Oriented
Software through Coordinated Error Recovery. In Proc. of
the 25th Int '1. Symposium on Fault-Tolerant Computing
Systems, 1995.

SICiMOD Record, Vol. 34, No. 1, March 2005

