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1. INTRODUCTION 
This paper is based on a five-day ~or l i shop on "At,omicity 

in System Design and Execution" that t,oolt place in Schloss 
Dagstuhl in Germany (5) in April 2004 alicl was attended 
by 32 people from different scientific c~mmuni t ies .~  The 
participants included researchers from the four areas of 

database and transaction processing systems, 
0 fault tolerance and dependable systems, 

formal methods for sys tem design and correctness rea- 
soning, and 

8 to  a smaller extent, hardware orchi1,ecture and pra-  
gramming languages. 

The interpretations and roles of the at,ornicity concept(s) 
vary substantially across these conimrl~~il.ies. For example, 
the emphasis in database systems is on nlgorit.lms and im- 
plementation techniques for at,omic tra~~sact~ions, whereas in 
dependable systems and formal methods atomicity is viewed 
a.s an intentionally imposed (or sometimes postulated) prop- 
erty of system components to simplify designs and increase 
dependability. On the other hand, all communities agree 
on the importance of gaining a deeper understanding of 
composite and relaxed notions of atomicity. Moreover, the 
hope is that it will eventually be possible to unify the dif- 
ferent scientific viewpoints into more coherelit foundations, 
system-development principles, design n~ethodologies, and 
usage guidelines. Quarks can be viewed as different aspects 
of (sub-)atomic, seemingly indivisible, piut.icles (e.g. pro- 
tons) and thus the notion of ahso1ut.e nton~icity could be 
abandoned. Similarly, this report offers a many-faceted dis- 
cussion of atomicity with emphasis on colnposability and 
relaxed or relative interpretations.' 

Atomicity is, of course, an old concept; in particular, 
transaction technology is considered as very mature. So 
why would there be a need for reconsidering it, and why 
now? There are several compelling reasons for reviving and 
intensifying the topic at  this point: 

The world of network-centric computing is changing. 
Web services, long-running worltflows across organi- 
zational boundaries, large scale pcer-1.0-pear publish- 
subscribe and col1aborat.ioli pIal.l'c)~.ii~i; ir~lcl a~nbient- 
intelligence envir0nment.s with liuge ~ilnnbers of mo- 
bile and embedded sensor/actor devices critically need 

'The full list of participants is given at  [5]. 
"here are six types of quarks in particle physics: Up, Down, 
Charm, Strange, Top aka Truth, and Bottom aka Beauty. 
We leave it to  the reader to  map the four communities to  
appropriate quarks. 

support for handling or even masking concurrency and 
component failures, but cannot use traditional atom- 
icity concepts. 
There is a proliferation of open systems where ap- 
plications are constructed from pre-existing compo- 
nents. The components and their configurations are 
not known in advance and they can change on the fly. 
Thus, it is crucial that atomicity properties of com- 
ponents are composable and that we can predict and 
reason about the behavior of the composite system. 
Even if we can successfully develop adequate notions 
of relaxed atomicity, it is unlikely that one particular 
solution can handle all cases across the wide spectrum 
of application needs. So, application designers and 
programmers will be faced with several options and 
critical choices. Since humans are the bottleneck in 
terms of cost, time, and errors, it would be optimal 
to  have an autonomic approach (31 that automatically 
chooses the most appropriate option and reconfigures 
the svstem as the environment changes. - 
Modern applications and languages like Java lead mil- 
lions of developers into concurrent programming (ILsyn- 
chronized classes"). This is a drastic change from the 
classical situation where only a few hundred "five-star 
wizard" system programmers and a few thousand pro- 
grammers working in scientific computing on paral- 
lel supercomputers would have to  cope with the in- 
herently complex issues of concurrency (and advanced 
failure handling as well). 
On an even broader scale, the drastically increasing 
complexity of the new and anticipated applications is 
likely to  lead t o  a general "dependability crisis" in the 
not-too-distant future. The multi-technology nature 
of these applications strongly suggests that a multi- 
disciplinary approach is essential if researchers are t o  
find ways to  avert such a crisis. 

2. THE VIEWS OF FOUR COMMUNITIES 

2.1 Database and TP Perspective 

2.1.1 Position 
Database transaction concepts have been driven by tra- 

ditional business applications and a style of software called 
OLTP (On-Line Transaction Processing) where fast-execut- 
ing, independently coded application programs run against 
data stored in some general purpose DBMSs (Data Base 
Management Systems), which provide a mechanism called 
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ACID transactions to support correct operation of the com- 
bined system [4, 231. ACID stands for "aton~icity, consis- 
tency, isolation and durability". In the OLTP approach, 
the application programmer delegates to the DBMS soft- 
ware responsibility for preventing damage to the data from 
threats such as concurrent execution, partial execution or 
system crashes, while each application progranuner retains 
the obligation to  think about the impact 011 data consis- 
tency of the code they are writing, wheu executcd alone and 
without failures. 

There are many threats to the overall tlcpet~tlability of 
the combined system formed from the tlali~b~ases and the 
application programs. The focus of database transactions is 
on dealing with threats from concurrent execution, from in- 
complete execution (e.g., due to  client crash or user-initiated 
cancellation) and from system crashes that lose up-to-date 
information from volatile buffers. The traditional DBMS 
solution is to  provide "ACID transactions". There are two 
ways a transaction can finish: it can commit, or it can abort. 
If it commits, all its changes to the database are installed, 
and they will remain in the database u ~ ~ t i l  some other ap- 
plication makes further changes. Furt.hermore, the changes 
will seem to  other programs to take place t,oget,her. If the 
transaction aborts, none of its changes will t.&e ell'ect, and 
the DBMS will "rollback" by restoring prc:vio~~s values to  all 
the data that was updated by the applicatio~~ program. 

From a programmer's perspective, t,he po~ver of the t.rans- 
action paradigm is that it reduces t~he t,aslt of concurrent 
failure-aware programming of the whole system to that of 
correct sequential programming of each application program 
separately. I t  is worth pointing out that while other fields 
describe the concept of apparently indivisible, point-like be- 
havior as "atomicity", in the database corn~nu~~ity.  "aton~ic" 
means that all the changes happen, or Iloire do. The appear- 
ance of happening at  a point is refered t,o ix "isolated" (or 
serialisable) behavior. 

Internally, the DBMS uses a variety of ~necl~;wisms includ- 
ing locking, logging, and two-phase co tn~~~ i t , .  1.0 ensure that 
the application programs get the ACID transactional behav- 
ior they expect. The basic algorithms are fairly straightfor- 
ward, but they interact in subtle ways, and have serious 
performance impacts, so the actual implementation of these 
fxilities is very complicated 181. 

2.1.2 Challenges Ahead 
One major theme that  came up during the workshop is the 

need to  provide support for application c lo~nai~~s  that need 
different design points than the very short, con~pletely inde- 
pendent, programs typical of OLTP, but where there is still 
the goal to  help avoid problems from i~~l.erleavillg, system 
crashes etc. For example, design applicnt,ions were studied 
extensively in the 1980s; in the late 1990s worltflows (or busi- 
ness processes) became important, and t,l~e latest domain 
of this type is composite web services where several busi- 
ness processes interact across organizational trust bound- 
aries. Key features in these domains include the expectation 
for cooperation between programs rather than complete in- 
dependence; the long duration (hours or even weeks) of an 
activity; and the desire to  move forward even when some- 
thing goes wrong, rather than throwi~~g away all the work 
and returning to  a previous state (so, we really want "ex- 
actly once" or "run then compensate" r.xt,l~cs tlinn "all or 
nothing"). Another very different class o l  tlo111ni11 occurs in 

security work, e.g., identifying attacks, where immediate re- 
sults are more important than precise ones, and where the 
activity taking place against the database is itself data of 
importance (and should be recorded and preserved even if 
the activity fails). 

In all these domains, it seems impossible t o  have each ap- 
plication program written in complete ignorance of the other 
applications, and to  have the infrastructure work no matter 
what the application programs do; however, one would wish 
to  limit the cross-component dependencies in some way, so 
that it is possible to  reason about the combined effect of ap- 
plications in the presence of concurrency, partial execution, 
and system crashes. The database community has already 
proposed a range of extended transaction models [12] (of- 
ten based on some form of nesting of scopes). There have 
even been designs for a broad framework within which one 
can describe multiple extended transaction models. How- 
ever few of the extended transaction models have seen wide 
use by application programmers so far, and there remain two 
open questions: what transaction-like (unbundled, relaxed, 
or extended) features the infrastructure should provide and 
how to reason about application programs that use these 
features. 

Two other important workshop themes connect the data- 
base community with others. One needs close cooperation 
with both formal methods and hardware people; this con- 
cerns the implementation of transactional mechanisms in- 
side the DBMS. As noted above, the internals are very com- 
plex, and their design is sometimes based on principles such 
as internal support for atomicity through layered notions 
of transactions. Indeed many of the early proposals for 
richer models of transactions which did not get taken up 
by application programmers can today be found in DBMS 
implementations, where small groups of sophisticated pro- 
grammers can work with them. It is still unclear how to  best 
reason about the full complexity of a DBMS implementation 
of transactions in ways that  take account of the interactions 
between aspects like buffer management, fancy synchroni- 
sation properties of the hardware disk controller and OS, 
and multiple threads running in the DBMS code. These 
low-level internals are likely to  be the cause of occasional 
(albeit very infrequent) "Heisenbugs" [8], and recovery code 
is the last resort to  avoid damage by such software failures. 
So it would be highly desirable to  verify mathematically the 
correctness of this transactional core of the mission-critical 
DBMS software. 

The third theme that came up consistently at  Dagstuhl 
connects the database community to  formal methods work. 
It was the need to  reason about applications that do not use 
ACID transactions. In commercial reality, the performance 
impact of the ACID mechanisms is so high, that most ap- 
plication programs actually do not use the full functionality. 
While the applications do want "all or nothing" and "com- 
mitted state persists despite crashes", they are usually will- 
ing to  give up on "the activity appears like a point", by us- 
ing weaker isolation levels than serializability. Indeed, some 
vendors do not implement serializability exactly, but rather 
use a "snapshot isolation" approach which avoids many but 
not all cases of data interference in concurrent execution. 
Since weak isolation is widely used, researchers need to  offer 
help for the application developer to use it correctly. 

2.2 Dependable Systems Perspective 
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2.2.1 Position 
The dependability of a computing system is its ability 

to deliver service that can justifiably be trusted [2]. The 
major activities associated with the means of achieving de- 
pendability are fault tolerance, prevention, removal, and 
forecasting. Atomicity plays an important role in design- 
ing and analysing dependable systems. As t,he fundamental 
approach assisting abstraction and syste~n st,ructuring, it. is 
crucial in attempts to prevent the occurrence a ~ ~ d  introduc- 
tion of faults since it allows the complexity of a design to 
be reduced. Use of abstraction and structuring in system 
development facilitates fault tolerance (by confining error) 
and fault removal (by allowing component validation and 
verification). Atomicity often makes fault forecasting sim- 
pler as it makes it easier to reason about likely consequences 
of faults. 

Fault tolerance is a means for achieving dependability de- 
spite the likelihood that a system still co~~tains  faults and 
aiming to provide the required services in spite of them. 
Fault tolerance is achieved either by fanll. mnsliing, or by er.- 
ror processing, which is aimed at  re~noving crrors from t,he 
system state before failures happen, a d  fault t.reatment, 
which is aimed at  preventing faults fro111 Iheirg activated 
again 121. Atomic actions can be used as the basis of er- 
ror confinement strategies - these play a central role in 
the design and justification of both error masking and error 
recovery policies. 

The development of atomic action techniques supporting 
the structured design of fault tolerant distributed and con- 
current applications is an  important strand of dependability 
research. The work effectively started with the paper [20] 
where the concept of a conversation was introduced. An 
a.tomic action (conversation) consists of a number of con- 
current cooperating participants entering and leaving it. at  
the same time (i.e. concurrently). Here the word atomic 
a.lso refers to the property that the changes made by an op- 
eration are only visible when it completes. When an error 
is detected in a conversation all participants are involved 
in cooperative recovery. Backward error recovery (rollback, 
retry, etc.) and forward error recovery (exception handling) 
a.re allowed. Actions can be nested and when recovery is not 
possible the responsibility for recovery is passed to the con- 
taining action. Action isolation makes the actions into error 
confinement areas and allows recovery to be localised, at the 
same time making reasoning about the syst,ern simpler. 

2.2.2 Challenges Ahead 
Atomic actions, initially i~~t,roducetl for systems consist- 

ing of cooperating activities, were lat,er exl.onded to allow 
actions to compete for shared resources (e.g. data,  object.^, 
devices). By this means the work was brought together with 
that on database transactions, which concerned systems of 
independent processes that simply competed for shared re- 
sources, i.e. the database. Coordinated atomic actions [24] 
thus can be used to structure distributed and concurrent sys- 
tems in which participants both cooperate and compete, and 
allow a wide range of faults to be tolerated by using back- 
ward and forward recovery. These actions can have multiple 
outcomes, extending the traditional all-or-not,liing semantics 
to make it possible to deal with those e~~v i ro~~ment s  that do 
not roll back or for which backward recovery is too expen- 
sive (web services, external devices, human beiugs, external 
orgauisations, etc.). The challenge here is to work closely 

with the formal method group on developing rigorous de- 
sign methods and tools supporting atomic actions and error 
recovery. More effort needs to be invested into developing 
advanced atomic actions techniques for emerging application 
domains and architectures, such as mobile and pervasive sys- 
tems, ambient intelligence applications, and service-oriented 
architecture. 

As seen above, cooperation and coordination are essential 
for the kind of atomicity required for the structured design of 
distributed fault-tolerant systems. When building such sys- 
tems, one is often faced with the necessity of ensuring that 
different processes obtain a consistent view of the system 
evolution. This requirement may be expressed in different 
ways, for instance: 

A set of processes involved in a distributed transaction 
may need to agree on its outcome: if a transaction is 
aborted a t  some process it should not be committed at 
some other processes. This is known as the distributed 
atomic commitment problem. 
R.eplicas of a component, when applying non-commu- 
tative updates, must agree not only on the set of up- 
dates to apply but also on the order in which these 
updates are applied. This is known as the atomic mul- 
ticast problem. 

Many of the challenges that are involved in solving these 
agreement problems in fault-tolerant distributed systems are 
captured by the consensus problem, defined in the following 
way: each process proposes an initial value to the others, 
and, despite failures, all correct processes have to agree on a 
common value (called a decision value), which has to be one 
of the proposed values. Unfortunately, this apparently sim- 
ple problem has no deterministic solution in asynchronous 
distributed systems that are subject to even a single process 
crash failure: this is the so-called Fischer-Lynch-Paterson's 
impossibility result [7]. This impossibility result does not 
apply to synchronous systems but, on the other hand, fully 
synchronous systems are hard to build in practice. 

A significant amount of research has been devoted to defin- 
ing models that have practical relevance (because they cap- 
ture properties of existing systems) and allow for consen- 
sus to be solvable in a deterministic way. Such models 
include partial synchronous, quasi-synchronous, and asyn- 
chronous models augmented with failure detectors, among 
others [22]. At the workshop, there was some confusion 
among the participants from the database community as to 
how these various models relate to each other, what (realis- 
tic as well as unrealistic) assumptions they make, and what 
properties and limitations they have. A unifying framework 
would be highly desirable, and this should include also the 
database-style (2PC-based) distributed commitment. 

In component-based development, atomicity, seen as guar- 
anteeing hermetic interfaces of components, is a key element 
of the so-called orthogonality property of system designs. 
The aim of an orthogonal design is to ensure that a com- 
ponent of the system does not create side effects on other 
components. The global properties of a system consisting of 
components can then be stated strictly from the definition 
of the components and the way they are composed. 

Some extended notions of atomicity and orthogonality 
could be used as a mechanism for composing services by 
incorporating the interactions between components. This 
would be feasible if it was possible to abstract the actual 
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component behaviour from the well-defined interfaces that 
allow expression of the different roles which a component 
might play. However, for this to happen it is necessary to 
replace the traditional notion of atomicity wit,h a more re- 
laxed one where, for example, the compo~~ents taking part in 
a transaction are not fully tied up for the wl~ole length of the 
transaction. Although different applicnf,ions might require 
different forms of such quasi-atomicity, i l .  might. be possible 
to identify useful design patt.erns specicic 1'01. t,lle applica- 
tion domain. Even assuming that a useI'~11  elax axed notion 
of atomicity could be defined and implement,ed, the task 
of incorporating this concept into a development process is 
still not a straightforward one. For example, the transfor- 
mation of a business dataflow into an implementation based 
on the synchronization of components cannot be captured 
by a simple top-down process consisting of refinement rules, 
if system decomposition leads to  the identification of new 
behaviours (including new failure behaviours). Instead, this 
essentially top-down process should be modified by allowing 
bottom-up revisions. 

2.3 Hardware and Language Perspective 

2.3.1 Position 
Explicit hardware support for multithreaded software, ei- 

ther in the form of shared-memory-chip multiprocessors or 
hardware multithreaded architectures, is becoming increas- 
ingly common. As such support becomes available, applica- 
tion developers are expected to  exploit these developments 
by employing multithreaded progranlming. But although 
threads simplify the program's conceptual design, they also 
increase programming complexity. In writing shared mem- 
ory multithreaded applications, progralnmers nlust ensure 
that threads interact correctly, arid this requires care and 
expertise. Errors in accessing shared tlnt a 01)ject.s can cause 
incorrect program execution and can bc esl mllely subt,le. 
This is expected to become an even greater problem as we go 
towards heavily threaded systems where their programma- 
bility, debuggability, reliability, and performance become 
major issues. 

Explicitly using atomicity for reasoning about and writing 
multithreaded programs becomes attractive since stronger 
invariants may be assumed and guaranteed. For example, 
consider a linked list data structure and two operations upon 
the list: insertion and deletion. Today, the programmer 
would have to  ensure the appropriate lock is acquired by 
any thread operating upon the linked list. I-Iowever, an at- 
tractive approach would be to declare all olmntions upon 
the linked list as "atomic". How the al.omiciLy is provided 
is abstracted away for the programmer slid the underlying 
system (hardware or software) guarantees the contract of 
atomicity. 

The hardware notion of atomicity involves performing a 
sequence of memory operations atomically. The identifica- 
tion of the sequence is, of course, best left to the program- 
mer. However, the provision and guarantee of atomicity 
comes from the hardware. The core alnorithnl of atomically - 
performing a sequence of memory operat,ions involves ob- 
taining the ownership of appropriate locations in hardware, 
performing temporary updates to  the locat,ioils, and then re- 
leasing these locations and making t,he ~~ptlnl;es permanent 
instantaneously. In the event of failures. any t.omporary up- 
dates are discarded, thus leaving all crit,ical sl.nl,e consistent. 

Hardware has become exceedingly proficient in optimisti- 
cally executing operations, performing updates temporarily, 
and then making them permanent instantaneously if neces- 
sary. 

Transactional Memory [lo] was an initial proposal for em- 
ploying hardware support for developing lock-free programs 
where applications did not suffer from the drawbacks of lock- 
ing. It advocated a new programming model replacing locks. 
Rmently, Transactional Lock-Free Execution [18, 191 has 
been proposed, where the hardware can dynamically iden- 
tify and elide synchronization operations, and transparently 
execute lock-based critical sections as lock-free optimistic 
transactions while still providing the correct semantics. The 
hardware identifies, at  run time, lock-protected critical sec- 
tions in the program and executes these sections without 
acquiring the lock. The hardware mechanism maintains cor- 
rect semantics of the program in the absence of locks by 
executing and committing all operations in the now lock- 
free critical section "atomically". Any updates performed 
during the critical section execution are locally buffered in 
processor caches. They are made visible to  other threads 
instantaneously at  the end of the critical section. By not 
acquiring locks, the hardware can extract inherent paral- 
lelism in the program independent of locking granularity. 

While the mechanism sounds complex, much of the hard- 
ware required to  implement it is already present in systems 
today. The ability to  recover to  an earlier point in an execu- 
tion and re-execute is used in modern processors and can be 
performed very quickly. Caches retain local copies of mem- 
ory blocks for fast access and thus can be used to  buffer local 
updates. Cache coherence protocols allow threads t o  obtain 
cache blocks containing data in either shared state for read- 
ing or exclusive state for writing. They also have the ability 
to  upgrade the cache block from a shared state to  an exclu- 
sive state if the thread intends to  write into the block. The 
protocol also ensures all shared copies of a block are kept 
consistent. A write on a block by any processor is broadcast 
to other processors with cached copies of the block. Sim- 
ilarly, a processor with an exclusive copy of the block re- 
sponds to  any future requests from other processors for the 
block. The coherence protocols serve as a distributed con- 
flict detection and resolution mechanism and can be viewed 
as a giant distributed conflict manager. Coherence proto- 
cols also provide the ability for processors to retain exclusive 
ownership of cache blocks for some time until the critical sec- 
tion completes. A deadlock avoidance protocol in hardware 
prevents various threads from deadlocking while accessing 
these various cache blocks. 

2.3.2 Challenges Ahead 
Crucial work remains both in hardware and software sys- 

tems. The classic chicken-and-egg problem persists. On 
one hand, existing software-only implementations of atom- 
icity and transactions for general use suffer from poor per- 
formance, and on the other hand, no hardware systems 
today provides the notion of generalized atomic transac- 
tions. A major hurdle for hardware transactions remains 
in their specification. Importantly, what hardware transac- 
tion abstraction should be provided to  the software? How 
is the limitation of finite hardware resources for temporar- 
ily buffering transactions handled? A tension will always 
exist between power users who would like all the flexibility 
available from the hardware and the users who would prefer 
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a hardware abstraction where they do not worry about un- 
derlying implementations. These are some of the questions 
that must be addressed even though many of the core mech- 
anisms in hardware required for atomic transactions, such as 
speculatively updating memory and sulxeql~ent,ly commit- 
ting updates, are well underst,ood and 11avc bee11 proposed 
for other reasons, including speculativoly pnrallelizing se- 
quential programs [21]. 

The software area requires significal~t work. The first 
question remains the language support. Harris and Fraser [9] 
provided a simple yet powerful language construct employ- 
ing conditional critical regions. In simple form, it is as fol- 
lows: 

a tomic  (p) { S ] 

Semantically this means Sexecutes if p is true. If p is false, it 
needs to  wait for some other process to  change some variable 
on which p depends. 

However, more rigorous constructions are required for spec- 
ification of such language constructs. A t  least. from the for- 
nral methods community perspective, specifying a concise 
formal description of the above constructs as a semantic 
inference rule in the operational semantics style would be 
necessary. 

A first pass at  such a declaration would be as follows: 

s[p(sl, tme) A s'[SIs1' t  atomic (p) { S )Is" 

In English: If we start in state s and the guard predicate p 
evaluates to  true, then we make the atomic state transition 
that evaluates p and then S. No other othev process will be 
able to observe or affect the intermediate sf.at,e s' or any 
other intermediate state. 

Looking forward, we suggest language designs will need 
to go beyond such simple constructs. Some of the issues de- 
signs might want to handle include: connecting with dura- 
bility somehow, perhaps through providing special durable 
memory regions; expressing relative ordering constraints (or 
lack thereof) for transactions issued conceptually concur- 
rently (e.g. iterations of counted loops, as typical of scien- 
tific programs operating on numerical arrays); supporting 
closed nesting [16] and the bounded rollback that it implies 
on failure; supporting open nesting where commitment of a 
nested transaction releases basic resources (e.g. cache lines) 
but implies retention of semantic locks and Imilcling a list of 
undo routines t o  invoke if the higher level t.t.u~~saction fails; 
providing for lists of actions to perfor111 only if the top-level 
enclosing transaction commits; supporting the leap-frogging 
style of locking along a path one is accessi~ig in data struc- 
tures like linked lists and trees. 

2.4 Formal Methods Perspective 

2.4.1 Position 
Formal methods [13] offer rigorous and tractsable ways of 

describing systems. This is nowhere more necessary than 
with subtle aspects of concurrency: being precise about 
atomicity, granularity and observability is crucial. 

The concept of atomicity -which is centr;~l to t,llis manifesto- 
'an easily be described using "operatio~iid se~~mutics". Mc- 
Carthy's seminal contribution on opevat,ional semantics [15] 
presented an "abstract interpreter" as a recursive function 
exec : Program x C + C where C is the domain of pos- 
sible states of a running program. As an interpreter, exec 

computes the final state (if any) which results from running 
a program from a given starting state; such descriptions are 
abstract in the sense that  they use sets, maps, sequences, 
etc. rather than the actual representations on a real com- 
puter. 

The obvious generalisation of McCarthy's idea to  cope 
with concurrency turns out not to  provide perspicuous de- 
scriptions because functions which yield sets of possible fi- 
nal states have to compound each other's non-determinism. 
In 1981 Ploktin [17] proposed presenting "structural opera- 
tional semantics" (SOS) descriptions as inference rules. Es- 
sentially, rather than the function above, a relation can be 
defined ?((Program x C) x C) where, if ((p, u),  cr') is in 
that relation, a' is a possible final state of executing p in a 
starting state u.  

Since the origin of these ideas is with programming lan- 
guage semantics, the description begins there; but the rele- 
vance to  the fields above is easily demonstrated. Consider a 
simple language with two threads each containing sequences 
of assignment statements. It is assumed initially that assign- 
ment statements execute atomically. Two simple symmetric 
rules show that a statement from the head of either sequence 
can execute atomically 

hd(s1) = x t e 
(e, 0) L v  

(sllls2,u)-B,(tl(sl)lls2,u t {x + v)) 

hd(s2) = x t e 
(e, cr) L v  
( s l ~ ~ s 2 , u ) ~ ( s l l l t l ( s 2 ) , o  t {x -+ v)) 

In these rules: hd and tl stand for the head and tail of a list; 
x +- e denotes the assignment of expression e to variable 
x ;  (e, o ) A v  denotes that in program state u expression e 
can evaluate to value v; 1 1  denotes parallel execution of two 
statements; u t {x - v) is the state that is identical to  u 
except for the fact that variable x is now mapped to  value v; 
and ( 1 ,  cr) 5 (l', 0') means that the exeuction of statement 
list 1 in state u leads to  state u' with the statement list 1' left 
to be executed (the overall relation P((Program x C) x C) 
is derived when the statement list I' is empty). 

From the above rules, it is easy to  show that 

will, if the initial value of x is 1, set the final value of x to  
factorial 5. Whereas, when x starts a t  1 

can leave x as 1 or a range of other values. 
This second example begins to  form the bridge to  trans- 

actions but, before taking that step, it is worth thinking a 
little more about atomicity. It would be trivial to  extend the 
programming language to  fix the second example so that it 
always left x at  1. One way to  do this would be to  add 
some sort of atomic brackets so that s l ;  < sz; s3 >; se ex- 
ecutes as three (rather than four) atomic transitions. The 
changes to  the SOS rules are simple. Moving atomicity in 
the other direction, it would actually be extremely expen- 
sive in terms of dynamic locking to  implement assignments 
atomically. Showing all of the places where another thread 
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can intervene is also possible ill the SOS rules. Programming 
language designers have spent a lot of en'ort on developing 
features to control concurrency; see [Ill for a discussion of 
"(conditional) critical sections", "modules" etc. 

SOS rules can be read in different ways and each provides 
insight. As indicated above, they call be viewed as induc- 
tively defining a relation between initial and final states. 
They can also be viewed as defining a logical frame for rea- 
soning about constructs in a language. Implications of this 
point are explored in 1141. 

As might be guessed by now, it is easy to define the basic 
notion of database "serializability" by fixing the meaning of 
a collection of transactions as non-determi~list~ically selecting 
them one at  a time for atomic execut,iol~. Of course, this 
overall specification gives no clues to the invention of the 
clever implementation algorithms studied in the database 
community. As with programming language descriptions, 
the relation defined by the SOS rules should be thought of 
as a specification of allowed behaviour. 

2.4.2 Challenges Ahead 
It is not only in the database world that "pretending 

atomicity" is a powerful abstraction idea. It was argued 
at  the workshop that a systematic way of "splitting atoms 
safely" could be a useful development technique with appli- 
cability to a wide range of computing problems. Essentially, 
given a required overall relation defined by au SOS descrip- 
tion, one needs to show that an i~nplelnentnl.iol~tio in which 
sub-steps can overlap in time, exhibits 110 llew behaviours 
at  the external level. 

An interesting debate at  the workshop was what one might 
learn from trying to merge programming and database lan- 
guages. Despite considerable research efforts in this direc- 
tion 161, no convincing solution seems to have emerged yet. 
The most important challenge would be to look at  how the 
two communities handle concurrency control. 

SOS rules are certainly not the o d y  branch of formal 
methods which could help record, reason about, and under- 
stand concurrency notions in, for example, databases. For 
example, we emphasize the insight which call be derived 
from process algebras and the distinct,ion between interleav- 
ing and "true concurrency" as explored by t,he Petri Net 
community. 

Finally, the intriguing notion of refinements that are ac- 
companied by rigorous correctness reasoning has been suc- 
cessfully applied in the small [I], for example, to derive 
highly concurrent and provably correct data structures, e.g. 
priority queues, but it is unclear to what extent it can cope 
with the complexity of large software pieces like the full lock 
manager or recovery code of a DBMS or the dynamic replica- 
tion protocol of a peer-to-peer file-sharing system. Tackling 
the latter kinds of problems requires teaming up expertise 
in formal methods with system-building l i n o ~ h o ~ .  

3. LESSONS AND CHALLENGES 
There was clear consensus across all four participating 

communities that atomicity concepts, if defined and used 
appropriately, can lead to simpler and better programming, 
system description, reasoning, and possibly even better per- 
formance. Some of the technical challenges that emerged as 
common themes across all communities are the following: 

A widely arising issue in complex syst,elns is how to 

build strong guarantees on top of weaker ones, or global 
guarantees at  the system and application level on top 
of local ones provided by components. Examples of 
this theme are how to ensure global serializability on 
top of components that use snapshot isolation or how 
to efficiently implement lazy replication on top of order- 
preserving messages. 
There was consensus that we still lack a deep under- 
standing of the many forms of relaxed atomicity, their 
mutual relationships, prerequisites, applicability, im- 
plications, and limitations. For example, what are the 
benefits and costs of serializability vs. relaxed isola- 
tion, lazy vs. eager replication, or distributed commit 
in the database world vs. weaker forms of distributed 
consensus in peer-to-peer systems? 
Given the variety of unbundled, relaxed, and extended 
atomicity concepts, there is a high demand for design 
patterns and usage methodology that helps systems 
designers to choose the appropriate techniques for their 
applications and make judicious tradeoff decisions. For 
example, when exactly is it safe to  use snapshot iso- 
lation so that serializability is not needed; and under 
which conditions is it desirable to  trade some degree 
of reliability for better performance? 
Along more scholarly but nevertheless practically im- 
portant lines, we should aim to  develop a unified cat- 
alog of failure models, cost models, and formal prop- 
erties of all variations of atomicity and consensus con- 
cepts, as a basis for improving the transfer of results 
across communities and for easier comprehension, ap- 
preciation, and acceptance of the existing variety of 
techniques by practitioners. 
A long-term issue that deserves high attention is the 
verification of critical code that handles concurrency 
and failures, for example, the recovery manager of a 
DBMS. Which high-level structuring ideas from the 
dependability community and which formal reason- 
ing and automated verification techniques from the 
formal-methods world can be leveraged to this end and 
how should they be used and interplay with each other 
when tackling the highly sophisticated software that 
we have in the kernels of DBMSs, middleware systems, 
and workflow management systems? 

For compelling reasons pointed out in the introduction, 
now is the right time for the different research communities 
to jointly tackle the technical challenges that impede the 
turning of atomicity concepts into best-practice engineer- 
ing for more dependable next generation software systems. 
With rapidly evolving and anticipated new applications in 
networked and embedded environments that comprise many 
complex components, we face another quantum leap in soft- 
ware systems complexity. We are likely to run into a major 
dependability crisis unless research can come up with rig- 
orous, well-founded, and a t  the same time practically sig- 
nificant and easy-to-use concepts for guaranteeing correct 
system behavior in the presence of concurrency, failures, 
and complex cross-component interactions. The atomicity 
theme is a very promising starting point with great hopes 
for clear foundations, practical impact, and synergies across 
different scientific communities. 

Observations on Sociology: It was both ambitious and in- 
teresting to run a workshop with participants from four dif- 
ferent communities. Many of the discussions led to misun- 
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derstandings because of different ternlinologies and implicit 
assumptions in t h e  underlying computatiou unodels (failure 
models, cost models, etc.). A not quite serious but  some- 
what  typical spontaneous interruption of a presentation was 
the  remark "What were you guys smoking?". T h e  wonder- 
ful atmosphere a t  the  Dagstuhl seminar site, the  excellent 
Bordeaux, and  a six-mile hike on  t h e  only day of the  week 
with rain were extremely helpful in  overcoming these diffi- 
culties. In t h e  end there were still misunderstandings, bu t  
t h e  curiosity about  t h e  applicability of the other commu- 
nities' results outweighed the  skepticism, and a few poten- 
tially fruitful point-to-point collaborations were spawned. 
We plan t o  hold a second Dagstuhl ouu this t h c ~ n e ,  again 
with participation from multiple reseal.ch c o ~ n ~ l n ~ n i t i e s ,  in 
spring 2006. 
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