Managing Stack Frames in Smalltalk

J. Bliot B. Moss

Department of Computer and Information Science

University of Massachusetts
Ambherst, Massachusetts 01003

Abstract.
guage allows conteats (stack frames) to be ac-
cessed and manipulated in very general ways,

The Smalltalk programming lan-

This sometimes requires that contexts be re-
tained even after they have terminated execut-
ing, and that they be reclaimed other than by
LIFO stack discipline. The authoritative defini-
tion of Smalltalk [Goldberg and Robson 83] uses
reference counting garbage collection to manage
contexts, an approach found to be inadequate in
practice [Krasner, et al. 83]. Deutsch and Schiff-
man have described a technique thal uses an ac-
tual stack as much as possible [Deutsch and Schiff-
man 84]. Here we offer a less complex technique
that we expect will have lower total overhead and
reclaim many frames sooner and more easily. We
are implementing our technique as part of a state
of the art Smalltalk interpreter. The approach
may apply to other languages that allow indefi-
nite lifetimes for execution contexts, be they in-
terpreted or compiled.

1 The Problem

The Smalltalk language presents many implemen-
tation challenges, with efficient call and return
heading the list. The reason call and return are
hard to implement efficiently is that contexts (the
Smalltalk terminology for stack frames) are not
used in a strictly stack-like way. They can be
treated as general objects, stored, and perhaps
modified, by user code. Contexts must be re-
tained until they are no longer accessible. Yet,

Permission to copy without fee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage,
the ACM copyright notice and the title of the publication and its date appear,
and notice is given that copying is by permission of the Association for
Camputing Machinery. To copy otherwise, or to republish, requires a fee and/
or specific permission.

©1987 ACM 0-89791-235-7/87/0006/022975¢

229

for performance we need to be able to allocate
contexts very rapidly (it would be best to be com-
petitive with stack based languages such as Pas-
cal) and reclaim them efficiently, too. In this sec-

tion we provide background on relevant features
of Smalltalk.

1.1 Smalltalk Method Contexts

In Smalltalk a procedure is called a method.
Method invocation takes place by sending a mes-
sage to an object, called the receiver of the mes-
sage. The message consists of a selector and zero
or more arguments. The selector indicates the
name of the desired operation; based on the class
of the receiver (i.e., its type), the operation name
is looked up and an appropriate piece of code
is found, namely a method. Neglecting the dy-
namic binding that results from the lookup of the
method based on its name, a send is very simi-
lar to a traditional procedure call. The receiver
and arguments play the role of parameters to the
procedure, and the method is the procedure itself.

When a send occurs, a method context is cre-
ated. The context contains the parameters of the
call, space for local variables (called temporaries)
and working stack, and a reference to the previous
context (called the sender). When execution in a
context is suspended (e.g., when it does a send),
its stack pointer and instruction pointer for re-
sumption are stored in the context. Thus a con-
text itsell contains all state necessary for its own
resumption. In that sense, a context is similar to
a continuation.

Unlike Pascal, where procedures may have pro-
cedures defined within their scope, resulting in
many lexical levels and requiring some means of
accessing them, Smalltalk methods are essentially
all global, and thus need no access to enclosing
scopes. There are global variable of several kinds,

but they introduce no difficulties.

1.2 Smalltalk Blocks and Block Contexts

If Smalltalk had only method contexts, and did
only sends and returns, then it would obey stack
discipline and context management would be easy.
However, inside a method one may define nested
pieces of code called blocks. Typical examples are
the then or else arm of a conditional, and the body
of a loop. However, when a block is evaluated,
the code is not evaluated immediately, Rather,
an object called a block context is constructed.
When the block context is sent the particular mes-
sage value, it runs the code, and returns what-
ever value is produced by that code. An example
should make this more clear:

b ifFalse: [y « 0] ifTrue: [y < 1]

Here the (object bound to the) variable b is
sent the selector ifFalse:ifTrue:, with the two
block contexts as arguments. The objects true
and false react to ifFalse:ifTrue: in different
ways: true sends value to its second argument
(the ifTrue: block), and false sends value to
the other. If b is not a boolean, a run time error
will result.!

It should be easy to see how this notion of
blocks of code allows one to build a variety of
control structures directly in the language. How-
ever, block contexts present some implementation
problems. First, they are lexically contained in a
method, and hence they refer to the method con-
text in which they were created, so as to allow
access to the method’s arguments, temporaries,
etc. Since blocks are objects, they can be stored
at will into other objects, and the references can
persist indefinitely. The implication is that not
only the block context, but also the method con-
text to which it refers (called the block context’s
home context), may need to be retained.

A block context can be sent the value mes-
sage many times; this is used to implement loops.
One can readily achieve, and exceed, the power of

! Actually, the Smalltalk compiler optimizes a number of
these blocks away, turning them into the usual conditional
and looping code; but the user is still allowed to manipulate
blocks with the full power described, so the system must
support it.

iterators as offered by CLU [Liskov, et al. 1977,
Liskov, et al. 1981] and Trellis/Owl [O’Brien 85,
Schaffert et al. 85].

Blocks correspond closely to lexically nested
procedures in Pascal, and to nested lambda ex-
pressions in Lisp. In fact, the implementation
problems posed by blocks are not unlike the so-
called funarg problem in Lisp. However, there are
some minor differences that are slightly helpful.
First, a block’s local variables are actually stored
in the home context. This means that although
blocks may be nested within blocks, no display or
static chain is required (beyond a reference to the
home context) since all local variables are in the
home context.? Second, once a method context
has returned, unlike a block context, it cannot be
re-entered. While we might debate whether this
is the best language design, the fact remains that
it 18 how Smalltalk is currently defined.

1.3 Other Features

A few other features of Smalltalk are of rele-
vance. First, not only can blocks be created,
passed around, and stored, but an executing con-
text can actually obtain a pointer to itself. In fact,
block contexts are created by sending blockcopy
to the current context. Second, any field of a
context can be examined and modified by send-
ing a message to the context. This ability is
used to write the Smalltalk debugger in Smalltalk,
but is available for general use as well. Finally,
Smalltalk supports multiple threads of control.
The threads are lightweight processes running in
the same Smalltalk universe. However, only one
runs at a time (multiprogramming, not multipro-
cessing). Still, we must be able to handle process
swaps, and since processes are used to respond
to interrupts, swaps must be reasonably fast and
efficient.

2 Our Solution

We now describe our context management

scheme. In brief, we use a doubly linked list in

*This aspect of the language may change. However, it
does not strongly affect the allocation/deallocation iasues
we are addressing here.

230

stack-like fashion most of the time. When frames
need to he retained, we unlink them and change
various fields. The details will be presented in
stages. Finally, we discuss some techniques that
might be employed to reclaim some frames sooner
than the garbage collector will find them.

2.1 The Basic Idea

In the beginning, we pre-allocate some number
of frames (analogous to initial allocation of stack
space for a stack based language), and build them
into a doubly linked list. We will call the links
prev and next. A frame’s prev link normally
points to its sender (i.e., the frame to which it
should return when done) and its next link points
to a currently unused frame. Thus, when a send
occurs, we use the next frame for the new method
context. When we return, we simply follow prev
back to our caller and resume executing it. Thisis
illustrated in Figure 1. Obviously our linked list
is not infinite, and we must somehow deal with
its two ends. This is indicated in the figure; the
details will be explained later.

Since frames are pre-allocated, they each have
the same fixed size. This is possible in Smalltalk
because the language limits the size of a context.
Even if this were not the case, one could prob-
ably dynamically allocate part of frames large
than some threshold, and use the scheme we are
proposing except in the rare case of unusually
large frames. It is important to understand that
the storage part of variable in a frame is always
in a heap (they are full-fledged, separate objects),
so the size of frame is proportional only to the
number of variables, not to the amount of data to
which those variables refer.

Another point we should make now is that al-
though Smalltalk defines the format of context
objects in detall, our frames have a different for-
mat, for reasons of efficiency. To get away with
this, we must provide Smalltalk programmers the
illusion of the context objects they expect. We
do so by special handling in the interpreter of ref-
erences to and modifications of the fields of con-
text objects. This requires writing a little bit of
Smalltalk code, and is not strictly standard, but
results in only a minor change to the Smalltalk

system. The difference in format is why we refer
to the objects in our design as frames rather than
contexts.

2.2 Kinds of Frames

The frames mentioned above are called volatile (if
in use), and free (if not in use). Suppose frame a
has frame b as its next, and we are executing in
frame a. Frame a (and its prev, etc.) is volatile,
while frame b (and its next, etc.) are free. When
we do a send, b becomes volatile; when b returns it
is made free again. We will always attach the list
of free frames to the currently executing frame.

It is quite important to realize that the nor-
mal case does not involve any special manipu-
lations to achieve the allocation and freeing: it
is following the pointers back and forth that ac-
complishes the implicit allocation and reclama-
tion of volatile frames. The normal case for send
and return is very cfficient: one instruction on a
typical computer. This compares favorably with
frame pointer save/restore overhead for contigu-
ous stacks. The full instruction sequences for
send and return can also be designed to come
out within an instruction or two of what would
be required in a contiguously allocated stack.
Since there are issues other than frame alloca-
tion/deallocation involved when designing calling
sequences, we defer detailed examination of this
issue to a later section.

When a frame may need to be retained, it is
converted from volatile to stable form. The exact
manipulation will be described later. However, it
is useful to know that there is a flag or condition
in a frame that allows us to distinguish stable and
volatile frames upon inspection. A typical imple-
mentation would just use a flag bit.

Stable frames have their prev link broken,
which enables us to avoid reclaiming them when
they return. The old prev link information is
stored in the caller field, a field initially set to
null in volatile frames. The prev link is broken in
a very particular way — it points back to the sta-
ble frame itself, is detectably different, but recov-
erable. The linking of stable frames is illustrated
in Figure 2.

The base frame of a stack also has its prev link

231

®

frame pointer

(R

Ay prev e prev < e prev ...<~_; prev
next ere oo next e o next e B next ew—-»---% next e
bottom caller's current free end of
frame frame frame frames free list

Figure 1: Basic Technique for Chaining Frames Together.

X

(— frame pointer

cvigte prev e prev < o PTrev le- e
next e > next e > next e
< ecaller
volatile stable volatile
caller's current free
frame frame frames
Figure 2: Chaining for stable frames.
% %
(fl prev [:}prev « e Prev le .o
next e > next e > next Rt
_ﬁj"ﬁcaller <+ <+ caller
stable volatile volatile
bottom
frame

Figure 3: The base of a process stack.

232

broken, but its caller will be null, since it has
no place to which to return. The system can de-
tect this as part of its special handling of bro-
ken prev links. While a base frame theoretically
might be volatile, the way processes are created
pretty much dictates that base frames will be sta-
ble, since the initial process state object has a
pointer to the base frame. This can be seen in
Figure 3.

The specific trick we have used to indicate bro-
ken pointers is to negate the original pointer. This
trick allows us to do the send or return action on
any frame, detect the broken link, and handle the
broken link case specially, and do all of it very
efficiently. Assuming the pointer to the current
frame is in £pReg, the following C code illustrates
the trick:

define broken(x) (x) < 0
define recover(x) x =- x

if (broken(fpReg = fpReg->prev)) {
/% prev was broken */
recover (fpReg) ;
. special case code
}
On the VAX?, this results in something like the
following code:

movl 8(fpReg), fpReg
bgeq ok
mnegl fpReg, fpReg
special case code
ok: ... rejoin normal code

The point is that the normal case has been
slowed down only by the check for less than zero.
We will use the same technique when we intro-
duce broken next links later. Clearly there are
variety of other ways to accomplish the same end;
this particular trick simply works out nicely on

the VAX.

2.3 Tossible Link States

Normally, a volatile frame’s next and prev con-
nect it to other volatile frames, allowing eflicient

3VAX is a registered trademark of Digital Equipment
Corporation

allocation and reclamation. However, if a volatile
frame’s sender is {or becomes) stable, and the sta-
ble frame is re-entered other than by a return
(e.g., re-entry is forced by the debugger), then the
stable frame’s next and the volatile frame’s prev
must be broken. This is to insure that the volatile
frame is not clobbered if we call out of the sta-
ble frame, and also to allow us to attach the free
list to the stable frame. In this case the volatile
frame’s caller will point to the stable frame, just
as caller in a stable frame does. This is shown in
Figure 4. For similar reasons, if a volatile frame is
at the end of the free list, its next link i1s broken.
This has already been illustrated in Figure 1,

A stable frame always has a broken prev link.
Its caller link contains the caller information,
until the stable frame returns. In Smalltallk, when
a frame finishes, it stores nil in its caller and in-
struction pointer fields. In our design, volatile
frames are always reclaimable (and reclaimed)
when we return from them, and the storing of nil
i1s not necessary. However, when a stable frame
returns, we destroy the caller field and store a
special value there, indicating that the frame has
returned.

2.4 Return Actions

Figure 5 describes the frame manipulations per-
formed to effect a return. The special case code is
the interesting part. It is executed when return-
ing from a stable frame, or from a volatile frame
whose caller was forcibly re-entered. We cannot
perform the return if there is no caller (this han-
dles frames at the base of the stack, etc.)
the caller has already returned (such a frame is

, or if
probably a relic of a frame that was forcibly re-
entered). If we can return, there are two cases:
(1) the current frame is stable, in which case we
cannot free it, and must mark it as returned-from;
and (2) the current frame is volatile, in which case
we need to clear out its caller slot, since it will now
be free. In either case we need to attach the free
list to the frame to which we are returning. The
situation after a stable frame has return is shown
in Figure 6.

233

k3 b3

. wte Dprev prev [;}Mprev IPERR le Dprev. la ...
oo next e B next et next egpcee next efe e
-+ ¢caller <+—ecaller
volatile stable volatile volatile
caller’'s current free
frame frame frames

Figure 4: Situation after stable frame is forcibly re-entered.

if (broken(fipReg = fpReg->prev)) {
/* return from stable frame, or volatile with re-entered caller */
recover (fpReg) ;

/* check that caller exists, and that it has not returned =/
if (nocaller(fpReg) || returned(fpReg->caller)) {
cause '"cannot return" error

}

/* determine free list and do fix up actions */
target = fpReg->caller;

free = fpReg;
if (stable(fpReg)) {
free = fpReg->next;

/% mark frame as terminated */
makereturned(fpReg)
}

else
/* restore free frame to volatile format */
setnocaller(free);

/* attach free list and set fpReg */
target->next = free;

fpReg = free->prev = target;

}

restore stack pointer, instruction pointer, etc.

Figure 5: C code for returning.

234

* *
O prev q re prev b~ s oo
'—

< tto prev
ser next e next next et
_Ttcaller
volatile stable volatile
resumed returned free
caller from frames

Figure 6: After a stable frame has returned.

2.5 Send Actions

Sending is straightforward: we need only detect
that we are out of frames:

if (broken(fpReg = fpReg->next)) {
/* end of free list x/
recover(fpReg);
. get more frames or give up ...
}
save old frame info
set up new frame, etc.

2.6 When to Stabilize

There are three ways in which externally visi-
ble pointers to frames arise. The first is via the
pushThisContext instruction, which is how the
user obtains a reference to the running context. It
is also used in the creation of block contexts. In ei-
ther case, the frame executing pushThisContext
should be stabilized. Here is the code to do it:

if (unbroken(fpReg->prev)) {
/* has proper prev link */
fpReg->caller = fpReg->prev;

fpReg->prev = -fpReg;
}
/% mark as stable frame =/
markstable (fpReg) ;

The second way in which pointers arise is when
block contexts are created. When that happens,
we are always in a stable frame (we may have just

stabilized it). We simply grab a frame from the
free list and make it stable. This is illustrated in
Figure 7. Here is the code for doing it:

/% get a frame */
if (broken(new = fpReg->next)) {
... out of frames
}
/* unchain it */
fpReg->next = new->next;
if (unbroken(fpReg->next = new->next))
fpReg->next->prev = fpReg;
/* make it stable */
markstable(new) ;
new=>prev = -new;
setnocaller(new) ;
new->home = fpReg;
continue initializing frame

The situation that results when the block is
later invoked is shown in Figure 8 (see also the
code below). Note that by tracing back the caller
chain (through caller of stable frames and prev
of volatile ones), we should eventually get back to
the home context.? If in executing the block, the
code returns from the method (a “non-local” re-
turn), then the volatile frames up the caller chain
are reclaimable. This is discussed further later.

*If the block was invoked through a stored reference,
this might not be the case, though it would be unusual.
Our design would not break, but such possibilities are not
shown in Figure 8.

235

E3

D prev(

B3 ¥

(s

Figure 8: Block during execution.

236

o0 pPrev - s prev b~ o0
v next e > next e > next e next e-
¢caller Ttcaller
—t¢ home
volatile stable volatile stable
caller’s current free block
frame frame frames context
Figure 7: Current frame creates a block context.
.. w-{e prev Q prev < o PreV le...wte prev
*=» next e > next e -+ next ef®c+—» next e
scaller |«— (r>
volatile stable volatile volatile
method’s caller’'s
frame frame
(:} prev e prev
next e g next e1p- e
“—tecaller
N @ home
stable volatile
block free
context frames

The final way in which pointers arise is when
they are fetched out of frames. This can be de-
tected by a combination of code in the inter-
preter and the previously mentioned changes to
the Smalltalk code. The frame whose pointer is
obtained must be stabilized. The code is like that
for stabilizing the current frame, so we do not
present it.

The only other case we must handle is entering
a stable frame other than by returning into it;
this includes sending value to a block context.
Assume a pointer to the frame to be resumed is
in new,; here 1s the necessary code:

if (unbroken(oldnext = new->next) &&
volatile(oldnext)) {
/* note forcible re-entry =/
oldnext->caller = oldnext->prev;
oldnext->prev = -oldnext;
}

/% attach free list =/

if (unbroken(new->next = fpReg->next))
new->next->prev = new;

2.7 Reclaiming Some Frames Quickly

The scheme just described works, and reclaims
perhaps 90% of frames allocated, but stable
frames are reclaimed only via some garbage col-
lection technique. Also, some volatile frames will
not be reclaimed. This comes about when a block
context does a “return from method”, as previ-
ously mentioned. What happens is that control
is transferred to the home context’s caller, and
any volatile frames back up the block context’s
caller chain are lost. In any case, it is conceiv-
able that we could do better by detecting some
of the most common cases and reclaiming frames
that we can. In this section we mention some
possible extensions to our scheme that might be
useful, but we do not present detailed code.

An obvious special case is when a block does a
“return from method”. We can tack any volatile
frames back up block’s caller chain onto the free
list and reclaim then immediately.

Another normal case we would like to han-
dle better is that of executing a method which
uses a block as a loop body or conditional arm.
The Smalltalk compiler optimizes away the blocks

237

written for if/then/else and while constructs,
which helps a great deal. Still, there are other
sorts of loops and conditionals that could benefit
from special treatment in reclamation.

A fact we can use to our advantage is that if
no pointer to a block context has been explicitly
stored or assigned to any variable, then the block
context can be freed when its home context re-
turns. Detecting stores into the heap and into
certain fields of contexts fits in with the inter-
preter as previously envisioned. However, sup-
pose a block b; receives block by as one of its ar-
guments, and then stores by into one of b;’s home
context’s temporaries. If &;’s home outlives by's,
then we cannot reclaim by, Similarly, if a block’s
home context returns the block itself as its value,
the block has escaped the dynamic scope of its
home. Thus, to reclaim blocks when their home
returns, we need to detect those blocks that might
outlive their home. The necessary checks are pos-
sible, and not very complicated. The question
is whether or not the improvement is worth the
overhead. We intend to investigate this issue.

Another case that may deserve special treat-
ment is the heap refercnces to contexts that arise
from process swapping. In this case, a Process
object refers to the context on the top of the pro-
cess’ stack, so that the process can be later re-
sumed. These references to contexts typically are
not referred to in any other way. Hence, distin-
guishing heap references in Process objects from
other heap references may be worthwhile.

Finally, although many frames are not imme-
diately reclaimable, few have heap references to
them. Therefore, if we put contexts in a separate
area, and we do recursive tracing on that area us-
ing as roots those contexts that have been referred
to from the heap at some time, then we will likely
reclaim many contexts without garbage collecting
the main heap.

3 Previous Work

We now briefly compare our scheme with some
other published techniques.

3.1 Bobrow and Wegbreit

A stack frame management scheme was described
in [Bobrow and Wegbreit 73] some time ago;
the method has sometimes gone by the name
“spaghetti stacks”. Spaghetti stacks use reference
counts for reclamation, but achieve contiguous
stack frame allocation in the normal cases. Our
scheme should perform better in terms of normal
case allocation and reclamation, since we avoid
reference count overhead, and our normal case
code is at most a few instructions. The amount
and contiguity of memory for stack frames would
not seem to be an issue in modern workstations,
since the total amount of memory involved is but
a small fraction of that used by the Smalltalk sys-
tem as a whole.

3.2 Deutsch and Schiffinan

The PS implementation of Smalltalk, described
in [Deutsch and Schiffman 84], uses a true con-
tiguous stack. It uses the normal procedure call
and stack frame allocation /reclamation technique
offered by the 68000 series microprocessor instruc-
tion set. Comparison is difficult, since what mat-
ters is the entire cost of the send/return mecha-
nism. In particular, we must consider how argu-
ments are accessed, etc. A simplified analysis (we
are assuming the all other costs are equivalent)
can be seen in Figure 9 and Figure 10. The con-
tiguous allocation code sequences are as for the
VAX; the 68000 has 1ink and unlink instructions
that reduce the number of instructions necessary
(but not the extra memory references). The VAX
call instructions are much heavier weight and
would be a poor choice for this application. Both
systems must check for running off the end of the
stack, etc. — the costs are comparable.

To obtain the efficiency offered in Figure 10,
we must “push” (i.e., store) arguments for the
next call in the next frame. This prevents our
having to move them there later. An alternative
we considered was leaving the arguments in the
caller’s frame. This works {until the frame is sta-
bilized), but requires an extra pointer to be main-
tained, at a cost of two instructions, and possible
two memory references, per send/return pair. Tt

1s also more complex. The scheme in which ar-
gnment are built in the new frame has a minor
drawback: intermediate results cannot be stored
on the stack, but must be saved in local variables,
and then moved back to the “stack” right before
use. The added overhead is at most a store/fetch
pair of references, which is what it would have cost
to maintain the separate pointer to the caller’s
frame. If that store/fetch pair is though of as be-
ing charged to the call that created the intermedi-
ate result, then, since not all results need be saved
that way, we come out ahead. Implementing this
scheme will necessitate changing the compiler.

The main difficulty with the PS scheme is that
it is quite complex, maintaining frames in three
formats: volatile, hybrid, and stable.® The con-
versions and correspondences between these for-
mats are not trivial. Further, stacks must be
allocated with some kind of limit, and PS must
do a limit check (similar to our check for no
more free frames), and chain multiple stack seg-
ments together when one overflows. Dealing with
stack segment chaining adds considerable addi-
tional complexity.

In sum, our scheme appears to be considerably
simpler, and of comparable or even lower cost in
the normal case, as well as being less costly in
the special cases (we never need to move frame
contents to stabilize, etc.).

3.3 McDermott

In {McDermott 80| there is a design of a frame
management system for Scheme. That design uses
contiguous stacks, moving things to a heap only
when necessary. Some of McDermott’s analysis
of the various cases, especially ways to reclaim
frames that our design stabilizes, should be ex-
tended to our system. However, a number of
the arguments made about PS also apply here
~ we do not have to move things around, our
cost is comparable to contiguous allocation, etc.
One interesting aspect is that we assume fixed
size frames are adequate (they are in Smalltalk
as it currently exists), which may not be reason-
able for LISP. Still, fixed size frames can probably
be made to work even if there are no limits on

®We took our volatile/stable terminology from PS.

238

Access arguments via:

Access locals via: -n(fp)

+n(fp) (stack grows “downwards”)

Send action Code ' Return action Code

save fp pushl fp i restore sp movl fp, sp
new fp movl sp, fp ' restore fp movl (sp)+, fp
alloc locals subl2 #n, sp " discard args addl2 #n, sp

Cost = 3 instructions + Cost, =

1 memory reference

3 instructions -
1 memory reference

Total cost = 6 instructions + 2 memory references

Figure 9: Calling sequence for contiguous stack.

Access arguments via:

-n(fp) (stack grows “downwards”)

Access locals via: -n(£fp)

Access new args via: -n(sp) (see text)
Send action Code ~ Return action Code
get up fp movl sp, fp ' restore sp movl fp, 8p
set up sp movl next(fp), sp restore fp movl prev(ip), fp
Cost = 2 instructions + " Cost, = 2 instructions +

1 memory reference

I memory reference

‘otal cost = 2 instructions + 2 memory references

Figure 10: Calling sequence for our scheme.

the numbers of variables, etc. One just allocates
parts of large frames as separate objects, and pays
an extra penalty when large frames are used. In
sum, our techniques, when applicable, will likely
out-perform McDermott’s basic approach. But
his analysis of a number of situations should be
applied to our scheme to improve reclamation of
block contexts, etc. It is probably not urgent to
do this, since PS gets by without applying such
techniques.

4 Conclusions

We have presented a scheme for managing stack
frames in Smalltalk which should be competitive
in performance with the best known techniques,
yet which is simpler. We have also described some
extensions to reclaim some frames faster - McDer-
mott’s ideas should be applied here. The scheme
is being implemented in a Smalltalk interpreter
currently under construction, but no implemen-
tation results are available as of this writing.

239

References

[Bobrow and Wegbreit 73] Daniel G. Bobrow
and Ben Wegbreit, “A Model and Stack
Implementation of Multiple Environments”,
Communications of the ACM, Volume 16,
Number 10, October 1973, pp. 591-603.

[Deutsch and Schiffman 84] L. Peter Deutsch
and Allan M. Schiffman, “Efficient
Implementation of the Smalltalk-80
System”, Conference Record of the Eleventh
Annual ACM Symposium on Principles of
Programming Languages, January 1984,
pp. 297-302.

[Goldberg and Robson 83] Adele Goldberg and
David Robson, Smalltelk-80: The Language
and its Implementation, Addison-Wesley,
1983.

(Krasner, et al. 83] Glenn Krasner, ed.,
Smalltalk-80: Bits of History, Words of

Advice, Addison-Wesley, 1983,

[Liskov, et al. 1977] Barbara Liskov, Alan
Snyder, Russell Atkinson, and Craig
Schaffert, “Abstraction Mechanisms in
CLU”, Communications of the ACM, Volume
20, Number 8, August 1977, pp. 564-576.

[Liskov, et al. 1981] B. Liskov, R. Atkinson, T.
Bloom, E. Moss, J. C. Schaffert, R. Scheifler,
A. Snyder, CLU Reference Manual,
Springer-Verlag, 1981.

[McDermott 80] Drew McDermott, “An
Efficient Environment Allocation Scheme in
an Interpreter for a Lexically-Scoped LISP”,
Conference Record of the 1980 LISP
Conference, August 1980, pp. 1564-162.

[O’Brien 85] Patrick O’Brien, “Trellis
Object-Based Environment: Language
Tutorial”, Version 1.1, Eastern Research
Laboratory, Digital Equipment Corporation,
Technical Report 373, November 1985.

[Schaffert et al. 85] Craig Schaffert, Topher
Cooper, Carrie Wilpolt, “Trellis
Object-Based Environment: Language
Reference Manual”, Version 1.1, Eastern
Research Laboratory, Digital Equipment
Corporation, Technical Report 372,
November 1985,

240

