
Managing Stack Frames in Smalltalk

J . Eliot 13 . Moss

Department of Computer and Information Scienc e

University of Massachusett s
Amherst, Massachusetts 0100 3

Abstract . The Smalltalk programming lan-

guage allows contexts (stack frames) to be ac-
cessed and manipulated in very general ways .
This sometimes requires that contexts be re-

tained even after they have terminated execut-
ing, and that they be reclaimed other than by

LIFO stack discipline . The authoritative defini-

tion of Smalltalk [Goldberg and Robson 831 use s

reference counting garbage collection to manage

contexts, an approach found to be inadequate i n

practice [Krasner, et al . 831 . Deutsch and Schiff-
man have described a technique that uses an ac-
tual stack as much as possible [Deutsch and Schiff -
man 84] . Here we offer a less complex techniqu e

that we expect will have lower total overhead an d

reclaim many frames sooner and more easily . We
are implementing our technique as part of a stat e
of the art Smalltalk interpreter . The approach

may apply to other languages that allow indefi-
nite lifetimes for execution contexts, be they in-

terpreted or compiled .

1 The Proble m

The Smalltalk language presents many implemen-
tation challenges, with efficient call and retur n

heading the list . The reason call and return ar e

hard to implement efficiently is that contexts (th e

Smalltalk terminology for stack frames) are not

used in a strictly stack-like way . They can be

treated as general objects, stored, and perhaps

modified, by user code . Contexts must be re-
tained until they are no longer accessible . Yet ,

Permission to copy without lee all or part of this material is granted provided
that the copies are not made or distributed for direct commercial advantage ,
the ACM copyright notice and the title of the publication and its date appear ,
and notice is given that copying is by permission of the Association fo r

Computing Machinery . To copy otherwise, or to republish, requires a fee and/
or specific permission .

©1987 ACM 0-89791-235-7/87/0006/0229 75t

for performance we need to be able to allocate
contexts very rapidly (it would be best to be com-
petitive with stack based languages such as Pas -

cal) and reclaim them efficiently, too . In this sec-
tion we provide background on relevant feature s

of Smalltalk .

1 .1 Smalltalk Method Contexts

In Smalltalk a procedure is called a method .
Method invocation takes place by sending a mes-

sage to an object, called the receiver of the mes-
sage . The message consists of a selector and zero
or more arguments . The selector indicates th e

name of the desired operation ; based on the class
of the receiver (i .e ., its type), the operation nam e

is looked up and an appropriate piece of cod e
is found, namely a method . Neglecting the dy-
namic binding that results from the lookup of th e

method based on its name, a send is very simi-
lar to a traditional procedure call . The receive r

and arguments play the role of parameters to th e

procedure, and the method is the procedure itself .
When a send occurs, a method context is cre-

ated . The context contains the parameters of the

call, space for local variables (called temporaries)
and working stack, and a reference to the previou s

context (called the sender) . When execution in a
context is suspended (e .g ., when it does a send) ,

its stack pointer and instruction pointer for re-
sumption are stored in the context . Thus a con-

text itself contains all state necessary for its ow n

resumption . In that sense, a context is similar t o

a continuation .

Unlike Pascal, where procedures may have pro-
cedures defined within their scope, resulting i n

many lexical levels and requiring some means o f
accessing them, Smalltalk methods are essentiall y

all global, and thus need no access to enclosin g

scopes . There are global variable of several kinds ,

99a229

but they introduce no difficulties .

1 .2 Smalltalk Blocks and Block Contexts

If Smalltalk had only method contexts, and di d
only sends and returns, then it would obey stac k
discipline and context management would be easy .
However, inside a method one may define nested
pieces of code called blocks . Typical examples ar e
the then or else arm of a conditional, and the body
of a loop . However, when a block is evaluated ,
the code is not evaluated immediately . Rather ,
an object called a block context is constructed .
When the block context is sent the particular mes -
sage value, it runs the code, and returns what -
ever value is produced by that code . An exampl e
should make this more clear :

b ifFalse : [y 4— 0] if True : [y i— 1]

Here the (object bound to the) variable b i s
sent the selector ifFalse : if True : , with the two
block contexts as arguments . The objects true
and false react to ifFalse : if True : in different
ways : true sends value to its second argumen t
(the if True : block), and false sends value to
the other . If b is not a boolean, a run time error
will result . '

It should be easy to see how this notion o f
blocks of code allows one to build a variety o f
control structures directly in the language . How -
ever, block contexts present some implementatio n
problems . First, they are lexically contained in a
method, and hence they refer to the method con -

text in which they were created, so as to allo w
access to the method's arguments, temporaries ,
etc . Since blocks are objects, they can be store d
at will into other objects, and the references ca n
persist indefinitely. The implication is that no t
only the block context, but also the method con -
text to which it refers (called the block context' s
home context), may need to be retained .

A block context can be sent the value mes-
sage many times ; this is used to implement loops .
One can readily achieve, and exceed, the power o f

` Actually, the Smalltalk compiler optimizes a number of
these blocks away, turning them into the usual conditiona l
and looping code ; but the user is still allowed to manipulat e
blocks with the full power described, so the system mus t
support it .

iterators as offered by CLU [Liskov, et al . 1977 ,
Liskov, et al . 1981] and Trellis/Owl [O'Brien 85 ,

Schaffert et al . 85] .

Blocks correspond closely to lexically neste d
procedures in Pascal, and to nested lambda ex-

pressions in Lisp . In fact, the implementation
problems posed by blocks are not unlike the so -
called funarg problem in Lisp . However, there ar e
some minor differences that are slightly helpful .
First, a block's local variables are actually store d
in the home context . This means that althoug h
blocks may be nested within blocks, no display o r

static chain is required (beyond a reference to th e
home context) since all local variables are in th e

home context . 2 Second, once a method contex t
has returned, unlike a block context, it cannot b e

re-entered . While we might debate whether thi s
is the best language design, the fact remains tha t
it is how Smalltalk is currently defined .

1 .3 Other Feature s

A few other features of Smalltalk are of rele-

vance . First, not only can blocks be created ,

passed around, and stored, but an executing con -
text can actually obtain a pointer to itself . In fact ,
block contexts are created by sending blockcop y
to the current context . Second, any field of a
context can be examined and modified by send-
ing a message to the context . This ability i s

used to write the Smalltalk debugger in Smalltalk ,
but is available for general use as well . Finally ,

Smalltalk supports multiple threads of control .

The threads are lightweight processes running i n
the same Smalltalk universe . However, only on e

runs at a time (multiprogramming, not multipro-
cessing) . Still, we must be able to handle proces s
swaps, and since processes are used to respond
to interrupts, swaps must be reasonably fast an d
efficient .

2 Our Solutio n

We now describe our context management

scheme. In brief, we use a doubly linked list i n

''This aspect of the language may change . However, i t
does not strongly affect the allocation/deallocation issue s
we are addressing here .

2Rn230

stack-like fashion most of the time . When frames

need to he retained, we unlink them and chang e

various fields . The details will be presented i n
stages . Finally, we discuss some techniques tha t

might be employed to reclaim some frames sooner

than the garbage collector will find them .

2 .1 The Basic Idea

In the beginning, we pre-allocate some number

of frames (analogous to initial allocation of stack
space for a stack based language), and build the m

into a doubly linked list . We will call the link s
prev and next . A frame 's prev link normall y

points to its sender (i .e ., the frame to which i t
should return when done) and its next link point s

to a currently unused frame. Thus, when a send

occurs, we use the next frame for the new metho d

context . When we return, we simply follow pre v

back to our caller and resume executing it . This i s
illustrated in Figure 1 . Obviously our linked lis t
is not infinite, and we must somehow deal wit h

its two ends . This is indicated in the figure ; the
details will be explained later .

Since frames are pre-allocated, they each hav e

the same fixed size . This is possible in Smalltal k
because the language limits the size of a context .
Even if this were not the case, one could prob-

ably dynamically allocate part of frames larg e

than some threshold, and use the scheme we ar e
proposing except in the rare case of unusuall y

large frames . It is important to understand tha t
the storage part of variable in a frame is alway s

in a heap (they are full-fledged, separate objects) ,
so the size of frame is proportional only to th e
number of variables, not to the amount of data t o
which those variables refer .

Another point we should make now is that al -
though Smalltalk defines the format of contex t

objects in detail, our frames have a different for -

mat, for reasons of efficiency . To get away with
this, we must provide Smalltalk programmers th e

illusion of the context objects they expect . We
do so by special handling in the interpreter of ref-

erences to and modifications of the fields of con -

text objects. This requires writing a little bit o f
Smalltalk code, and is not strictly standard, bu t

results in only a minor change to the Smalltalk

system . The difference in format is why we refe r

to the objects in our design as frames rather than
contexts .

2 .2 Kinds of Frames

The frames mentioned above are called volatile (i f

in use), and free (if not in use) . Suppose frame a

has frame b as its next, and we are executing i n
frame a . Frame a (and its prev, etc .) is volatile ,

while frame b (and its next, etc .) are free . When
we do a send, b becomes volatile ; when b returns i t
is made free again . We will always attach the lis t
of free frames to the currently executing frame .

It is quite important to realize that the nor-

mal case does not involve any special manipu-
lations to achieve the allocation and freeing : i t

is following the pointers back and forth that ac-
complishes the implicit allocation and reclama-

tion of volatile frames . The normal case for send
and return is very efficient : one instruction on a
typical computer . This compares favorably wit h

frame pointer save/restore overhead for contigu-
ous stacks . The full instruction sequences fo r
send and return can also be designed to com e

out within an instruction or two of what would
be required in a contiguously allocated stack .
Since there are issues other than frame alloca-

tion/deallocation involved when designing callin g

sequences, we defer detailed examination of thi s
issue to a later section .

When a frame may need to be retained, it i s
converted from volatile to stable form. The exact

manipulation will be described later . However, i t
is useful to know that there is a Hag or conditio n
in a frame that allows us to distinguish stable an d
volatile frames upon inspection . A typical imple-

mentation would just use a flag bit .
Stable frames have their prev link broken ,

which enables us to avoid reclaiming them whe n

they return . The old prev link information i s
stored in the caller field, a field initially set t o

null in volatile frames . The prev link is broken i n
a very particular way — it points back to the sta-

ble frame itself, is detectably different, but recov -

erable . The linking of stable frames is illustrate d
in Figure 2 .

The base frame of a stack also has its prev lin k

OQ1231

frame pointer

prev

next

pre v

next •

. prev -e-

next

f

bottom
frame

caller' s
frame

current
frame

fre e
frames

end of
free list

Figure 1 : Basic Technique for Chaining Frames Together .

caller' s
frame

current
frame

free
frame s

Figure 2 : Chaining for stable frames .

•X,

prev

	

prev -e prev

	

—

next

• caller

stabl e

bottom
frame

next

caller

volatile

next •- ~► •• •

volatile

Figure 3 : The base of a process stack .

232

broken, but its caller will be null, since it has

no place to which to return . The system can de-
tect this as part of its special handling of bro-
ken prev links . While a base frame theoretically
might be volatile, the way processes are create d
pretty much dictates that base frames will be sta-
ble, since the initial process state object has a
pointer to the base frame . This can be seen i n

Figure 3 .

The specific trick we have used to indicate bro -
ken pointers is to negate the original pointer . This

trick allows us to do the send or return action o n
any frame, detect the broken link, and handle th e
broken link case specially, and do all of it very

efficiently . Assuming the pointer to the curren t
frame is in fpReg, the following C code illustrate s
the trick :

define broken(x) (x) < 0
define recover(x) x =- x

if (broken(fpReg = fpReg->prev)) {
prev was broken /

recover(fpReg) ;
. . special case code

}

On the VA X 3 , this results in something like th e
following code :

movl 8(fpReg), fpRe g

bgeq ok
mnegl fpReg, fpRe g

special case code

ok : .

	

rejoin normal code

The point is that the normal case has bee n

slowed down only by the check for less than zero .
We will use the same technique when we intro -
duce broken next links later . Clearly there are
variety of other ways to accomplish the same end ;
this particular trick simply works out nicely o n

the VAX .

2 .3 Possible Link States

Normally, a volatile frame's next and prev con-
nect it to other volatile frames, allowing efficien t

3 VAX is a registered trademark of Digital Equipmen t
Corporation

allocation and reclamation . However, if a volatil e
frame's sender is (or becomes) stable, and the sta -
ble frame is re-entered other than by a retur n
(e .g ., re-entry is forced by the debugger), then th e
stable frame's next and the volatile frame's pre v
must be broken . This is to insure that the volatil e

frame is not clobbered if we call out of the sta-
ble frame, and also to allow us to attach the fre e
list to the stable frame . In this case the volatil e

frame ' s caller will point to the stable frame, jus t
as caller in a stable frame does . This is shown i n
Figure 4 . For similar reasons, if a volatile frame i s
at the end of the free list, its next link is broken .

This has already been illustrated in Figure 1 .
A stable frame always has a broken prev link .

Its caller link contains the caller information ,
until the stable frame returns . In Smalltalk, whe n
a frame finishes, it stores nil in its caller and in-

struction pointer fields . In our design, volatile
frames are always reclaimable (and reclaimed)

when we return from them, and the storing of ni l
is not necessary. However, when a stable fram e

returns, we destroy the caller field and store a
special value there, indicating that the frame has
returned .

2 .4 Return Actions

Figure 5 describes the frame manipulations per -

formed to effect a return . The special case code i s
the interesting part . IL is executed when return-

ing from a stable frame, or from a volatile fram e
whose caller was forcibly re-entered . We canno t

perform the return if there is no caller (this han-
dles frames at the base of the stack, etc .), or i f

the caller has already returned (such a frame i s
probably a relic of a frame that was forcibly re -
entered) . If we can return, there are two cases :

(1) the current frame is stable, in which case w e
cannot free it . and must mark it as returned-from ;
and (2) the current frame is volatile, in which cas e
we need to clear out its caller slot, since it will no w

be free . In either case we need to attach the fre e

list to the frame to which we are returning . The

situation after a stable frame has return is show n
in Figure 6 .

020233

-® prev

next •—o- . . .

prev

next next

prev prev

next

~----• caller

	

• calle r

volatile

	

stable

	

volatile

	

volatil e

caller's

	

current

	

fre e
frame

	

frame

	

frame s

Figure 4 : Situation after stable frame is forcibly re-entered .

if (broken(fpReg = fpReg->prev)) {

/* return from stable frame, or volatile with re-entered caller * /

recover(fpReg) ;

/* check that caller exists, and that it has not returned * /

if (nocaller(fpReg) II returned(fpReg->caller)) {

., . cause "cannot return" erro r

}

/* determine free list and do fix up actions * /

target = fpReg->caller ;

free

	

= fpReg ;

if (stable (fpReg)) {

free = fpReg->next ;

/* mark frame as terminated * /

makereturned(fpReg) ;

}

else

/* restore free frame to volatile format * /

setnocaller(free) ;

/* attach free list and set fpReg * /

target->next = free ;

fpReg = free->prev = target ;

}

. . . restore stack pointer, instruction pointer, etc .

Figure 5 : C code for returning .

9R el

234

resume d
caller

returned
from

fre e
frame s

Figure 6 : After a stable frame has returned .

2 .5 Send Actions

Sending is straightforward : we need only detec t

that we are out of frames :

if (broken(fpReg = fpReg->next)) {

/* end of free list * /
recover(fpReg) ;

. . . get more frames or give up . .
}

save old frame inf o

. . . set up new frame, etc .

2 .6 When to Stabiliz e

There are three ways in which externally visi-
ble pointers to frames arise . The first is via th e

pushThisContext instruction, which is how th e

user obtains a reference to the running context . I t
is also used in the creation of block contexts . In ei -

ther case, the frame executing pushThisContex t

should be stabilized . Here is the code to do it :

if (unbroken(fpReg->prev)) {
/* has proper prev link * /
fpReg->caller = fpReg->prev ;

fpReg->prev

	

= -fpReg ;
}

/* mark as stable frame */

markstable(fpReg) ;

The second way in which pointers arise is whe n

block contexts are created . When that happens ,

we are always in a stable frame (we may have just

stabilized it) . We simply grab a frame from th e

free list and make it stable . This is illustrated i n
Figure 7 . Here is the code for doing it :

/* get a frame * /
if (broken(new = fpReg->next)) {

. . . out of frame s
}

/* unchain it * /
fpReg->next = new->next ;

if (unbroken(fpReg->next = new°>next))
fpReg->next->prev = fpReg ;

/* make it stable * /
markstable(new) ;
new->prev = -new ;

setnocaller(new) ;
new->home = fpReg ;

. . . continue initializing frame

The situation that results when the block is

later invoked is shown in Figure 8 (see also th e
code below) . Note that by tracing back the calle r
chain (through caller of stable frames and pre v

of volatile ones), we should eventually get back t o

the home context .` If in executing the block, th e

code returns from the method (a "non-local" re -

turn), then the volatile frames up the caller chai n
are reclaimable . This is discussed further later .

4 1f the block was invoked through a stored reference ,
this might not be the case, though it would be unusual .
Our design would not break, but such possibilities are no t
shown in Figure 8 .

oo•
235

volatile

S pre v

next

• caller

home

stable

u

• prev

► next ®--•---►

• caller

stable volatil e

pre v

next

prev

next

caller's

	

current

	

free

	

bloc k
frame

	

frame

	

frames

	

context

Figure 7 : Current frame creates a block context .

prev

next •

volatile

next

*caller

stable

method' s
frame

pre v

next

volatile

— . .4__e prev

next

volatile

caller' s
frame

prev e prev

	

a-- . . .

next •--o-•• •

e

volatil e

block

	

fre e

aTh

context

Figure 8 : Block during execution .

frame s

9Q'

236

The final way in which pointers arise is when
they are fetched out of frames . This can be de-

tected by a combination of code in the inter-
preter and the previously mentioned changes t o

the Smalltalk code . The frame whose pointer i s

obtained must be stabilized . The code is like that

for stabilizing the current frame, so we do no t

present it .
The only other case we must handle is enterin g

a stable frame other than by returning into it ;

this includes sending value to a block context .

Assume a pointer to the frame to be resumed i s

in new ; here is the necessary code :

if (unbroken(oldnext = new->next) & &

volatile(oldnext)) {

/* note forcible re-entry */

oldnext->caller = oldnext->prev ;
oldnext->prev

	

= -oldnext ;
}

attach free lis t
(unbroken(new->next = fpReg->next))

new->next->prev = new ;

2 .7 Reclaiming Some Frames Quickl y

The scheme just described works, and reclaim s

perhaps 90% of frames allocated, but stabl e

frames are reclaimed only via some garbage col-

lection technique. Also, some volatile frames wil l
not be reclaimed . This comes about when a bloc k

context does a "return from method " , as previ-

ously mentioned . What happens is that control

is transferred to the home context's caller, an d

any volatile frames back up the block context ' s

caller chain are lost . In any case, it is conceiv-
able that we could do better by detecting som e
of the most common cases and reclaiming frame s

that we can. In this section we mention som e

possible extensions to our scheme that might b e

useful, but we do not present detailed code .

An obvious special case is when a block does a

"return from method " . We can tack any volatile

frames back up bloc k ' s caller chain onto the fre e

list and reclaim then immediately .

Another normal case we would like to han-
dle better is that of executing a method whic h

uses a block as a loop body or conditional arm .
The Smalltalk compiler optimizes away the blocks

written for if/then/else and while constructs ,

which helps a great deal . Still, there are other

sorts of loops and conditionals that could benefi t

from special treatment in reclamation .
A fact we can use to our advantage is that i f

no pointer to a block context has been explicitl y
stored or assigned to any variable, then the bloc k

context can be freed when its home context re -
turns . Detecting stores into the heap and int o

certain fields of contexts fits in with the inter-
preter as previously envisioned . However, sup-

pose a block b 1 receives block b 2 as one of its ar-

guments, and then stores b 2 into one of b 1 's home
context 's temporaries . If b 1 ' s home outlives b 2 ' s ,

then we cannot reclaim b 2 . Similarly, if a block' s

home context returns the block itself as its value ,

the block has escaped the dynamic scope of it s

home. Thus, to reclaim blocks when their hom e

returns, we need to detect those blocks that might

outlive their home . The necessary checks are pos -

sible, and not very complicated. The question

is whether or not the improvement is worth th e

overhead . We intend to investigate this issue .

Another case that may deserve special treat-
ment is the heap references to contexts that aris e

from process swapping . In this case, a Proces s
object refers to the context on the top of the pro-

cess ' stack, so that the process can be later re-
sumed . These references to contexts typically are

not referred to in any other way . Hence, distin-

guishing heap references in Process objects fro m

other heap references may be worthwhile .

Finally, although many frames are not imme-
diately reclaimable, few have heap references t o

them . Therefore, if we put contexts in a separat e
area, and we do recursive tracing on that area us-

ing as roots those contexts that have been referred

to from the heap at some time, then we will likel y

reclaim many contexts without garbage collecting

the main heap .

3 Previous Work

We now briefly compare our scheme with som e
other published techniques .

/ .*

if

99 ,7237

3 .1 Bobrow and Wegbreit

A stark frame management scheme was describe d

in [Bobrow and Wegbreit 73] some time ago ;
the method has sometimes gone by the nam e

"spaghetti stacks" . Spaghetti stacks use referenc e

counts for reclamation, but achieve contiguou s
stack frame allocation in the normal cases . Our

scheme should perform better in terms of norma l

case allocation and reclamation, since we avoi d

reference count overhead, and our normal cas e
code is at most a few instructions. The amount

and contiguity of memory for stack frames woul d
not seem to be an issue in modern workstations ,

since the total amount of memory involved is bu t
a small fraction of that used by the Smalltalk sys-

tem as a whole .

3 .2 Deutsch and Schiffman

The PS implementation of Smalltalk, describe d
in [Deutsch and Schiffman 84], uses a true con-
tiguous stack . It uses the normal procedure cal l

and stack frame allocation/reclamation techniqu e

offered by the 68000 series microprocessor instruc -

tion set . Comparison is difficult, since what mat-
ters is the entire cost of the send/return mecha-

nism . In particular, we must consider how argu-
ments are accessed, etc . A simplified analysis (w e
are assuming the all other costs are equivalent)
can be seen in Figure 9 and Figure 10 . The con-

tiguous allocation code sequences are as for th e

VAX ; the 68000 has link and unlink instructions

that reduce the number of instructions necessar y

(but not the extra memory references) . The VAX
call instructions are much heavier weight an d

would be a poor choice for this application . Bot h

systems must check for running off the end of th e

stack, etc . — the costs are comparable .
To obtain the efficiency offered in Figure 10,

we must "push" (i .e ., store) arguments for th e

next call in the next frame. This prevents our

having to move them there later . An alternativ e
we considered was leaving the arguments in th e

caller's frame . This works (until the frame is sta-

bilized), but requires an extra pointer to be main-
tained, at a cost of two instructions, and possibl e

two memory references, per send/return pair . It

is also more complex . The scheme in which ar-
gument are built in the new frame has a mino r

drawback : intermediate results cannot be stored

on the stack, but must be saved in local variables ,
and then moved back to the "stack" right before

use. The added overhead is at most a store/fetc h
pair of references, which is what it would have cos t

to maintain the separate pointer to the caller' s

frame . If that store/fetch pair is though of as be-

ing charged to the call that created the intermedi-
ate result, then, since not all results need be save d

that way, we come out ahead . Implementing thi s

scheme will necessitate changing the compiler .

The main difficulty with the PS scheme is tha t

it is quite complex, maintaining frames in thre e

formats: volatile, hybrid, and stable .' The con-

versions and correspondences between these for -

mats are not trivial . Further, stacks must be

allocated with some kind of limit, and PS mus t

do a limit check (similar to our check for n o
more free frames), and chain multiple stack seg-

ments together when one overflows . Dealing with

stack segment chaining adds considerable addi-

tional complexity .
In sum, our scheme appears to be considerabl y

simpler, and of comparable or even lower cost i n
the normal case, as well as being less costly i n
the special cases (we never need to move fram e

contents to stabilize, etc .) .

3 .3 McDermott

In [McDermott 80] there is a design of a fram e

management system for Scheme . That design uses

contiguous stacks, moving things to a heap onl y

when necessary. Some of McDermott's analysi s

of the various cases, especially ways to reclai m
frames that our design stabilizes, should be ex -
tended to our system . However, a number o f

the arguments made about PS also apply her e

— we do not have to move things around, ou r

cost is comparable to contiguous allocation, etc .

One interesting aspect is that we assume fixed

size frames are adequate (they are in Smalltal k

as it currently exists), which may not be reason -

able for LISP . Still, fixed size frames can probabl y

be made to work even if there are no limits o n

5 We took our volatile/stable terminology from PS .

2.RR238

Access arguments via : +n(fp) (stack grows "downwards")

Access locals via :

	

-n(fp)

Send action Code Return action Cod e

save fp
new fp

allot locals

push].

mov l

subl2

f p

sp ,

#n,

fp

sp

restore s p
restore fp

discard args

movl fp,

	

sp
movl

	

(sp)+,

	

fp

addl2 #n,

	

sp

Cost = 3 instructions +
1 memory reference

Cost = 3 instructions +
1 memory reference

'Total cost = 6 instructions + 2 memory reference s

Figure 9 : Calling sequence for contiguous stack .

Access arguments via :

	

-n(fp)

	

(stack grows "downwards ")
Access locals via :

	

-n(fp)

Access new args via :

	

-n(sp)

	

(see text)

Send action Code Return action

	

Cod e

set up fp
set up sp

movl sp,

	

fp
movl next(fp) ,

	

sp
restore sp

	

movl fp,

	

sp

restore fp

	

movl prev(fp) ,

	

fp

Cost = 2 instructions +
1 memory reference

Cost =

	

2 instructions -}-

1 memory reference

Total cost = 2 instructions + 2 memory references

Figure 10: Calling sequence for our scheme .

the numbers of variables, etc. One just allocate s
parts of large frames as separate objects, and pays
an extra penalty when large frames are used . In

sum, our techniques, when applicable, will likel y
out-perform McDermott 's basic approach . But

his analysis of a number of situations should b e
applied to our scheme to improve reclamation of

block contexts, etc . It is probably not urgent t o
do this, since PS gets by without applying suc h

techniques .

4 Conclusions

We have presented a scheme for managing stac k

frames in Smalltalk which should be competitiv e
in performance with the best known techniques ,

yet which is simpler . We have also described som e

extensions to reclaim some frames faster – McDer-
mott's ideas should be applied here . The scheme

is being implemented in a Smalltalk interprete r
currently under construction, but no implemen-

tation results are available as of this writing .

References

[Bobrow and Wegbreit 73] Daniel G . Bobrow

and Ben Wegbreit, " A Model and Stack
Implementation of Multiple Environments " ,

Communications of the ACM, Volume 16 ,
Number 10, October 1973, pp . 591–603 .

[Deutsch and Schiffman 84] L . Peter Deutsc h

and Allan M. Schiffman, "Efficient
Implementation of the Smalltalk-8 0

System " , Conference Record of the Elevent h
Annual ACM Symposium on Principles of
Programming Languages, January 1984 ,

pp . 297–302 .

[Goldberg and Robson 83] Adele Goldberg an d

David Robson, Smalltalk-80 : The Languag e

and its Implementation, Addison-Wesley ,

1983 .

[Krasner, et al . 83] Glenn Krasner, ed . ,

Smalltalk-80 : Bits of History, Words of

23g239

Advice, Addison-Wesley, 1983 ,

[Liskov, et al . 1977] Barbara Liskov, Ala n

Snyder, Russell Atkinson, and Craig

Schaffert, "Abstraction Mechanisms i n
CLU", Communications of the ACM, Volum e
20, Number 8, August 1977, pp . 564-576 .

[Liskov, et al . 1981] B. Liskov, R . Atkinson, T .
Bloom, E. Moss, J . C . Schaffert, R . Scheifler ,

A. Snyder, CLU Reference Manual ,
Springer-Verlag, 1981 .

[McDermott 801 Drew McDermott, "An
Efficient Environment Allocation Scheme i n

an Interpreter for a Lexically-Scoped LISP " ,
Conference Record of the 1980 LISP

Conference, August 1980, pp . 154-162 .

[O ' Brien 85] Patrick O 'Brien, " Trelli s
Object-Based Environment : Language

Tutorial " , Version 1 .1, Eastern Research
Laboratory, Digital Equipment Corporation ,
Technical Report 373, November 1985 .

[Schaffert et al . 85] Craig Schaffert, Tophe r

Cooper, Carrie Wilpolt, "Trelli s
Object-Based Environment : Languag e

Reference Manual " , Version 1 .1, Eastern

Research Laboratory, Digital Equipmen t
Corporation, Technical Report 372 ,

November 1985,

24(1240

